Math 301 Notes

Theorem 0.1. Let (X, d) be a complete metric space and $f: X \rightarrow X$ be a contraction mapping. Then f has a fixed point.

Example 0.2. We would like to compute the cube root of 2 . This is equivalent to solving the equation $x^{3}-2=0$.
Claim 0.3. There exists $\lambda \in \mathbb{R}$ such that for some choice of interval $[a, b] \subset \mathbb{R}$, the map $f:[a, b] \rightarrow[a, b]$ defined as $f(x)=x-\lambda\left(x^{3}-2\right)$ is a contraction mapping.
Proof. First note that we know that cube root of 2 lies in $\left[1, \frac{3}{2}\right]$ and therefore we can restrict our function to $\left[1, \frac{3}{2}\right]$.

We need to find a λ so that f is a contraction mapping.

$$
\begin{aligned}
|f(x)-f(y)| & =\left|x-y-\lambda\left(x^{3}-y^{3}\right)\right| \\
& \leq|x-y|\left|1-\lambda\left(x^{2}+y^{2}+x y\right)\right|
\end{aligned}
$$

Now note that if we assume $x \in\left[1, \frac{3}{2}\right]$ then $\left(x^{2}+y^{2}+x y\right)$ has maximum value $\frac{27}{4}$ and minimum value 3 , then if $\lambda<\frac{4}{27}$, we have $\lambda\left(x^{2}+y^{2}+x y\right)<1$ and

$$
1-\lambda\left(x^{2}+y^{2}+x y\right)<1 .
$$

Therefore, let $\lambda=\frac{1}{16}$. Now define,

$$
f(x)=x-\frac{\left(x^{3}-2\right)}{16}
$$

Verify that $f(x)$ is a increasing function on $\left[1, \frac{3}{2}\right]$ and takes values in $\left[1, \frac{3}{2}\right]$.
Thus we have a function $f:\left[1, \frac{3}{2}\right] \rightarrow\left[1, \frac{3}{2}\right]$ which is a contraction mapping. Since $\left[1, \frac{3}{2}\right]$ is closed in \mathbb{R}, it is complete. Therefore, by previous theorem f has a fixed point.

Further, the fixed point of f is the cube root of 2 .
Now to find the approximate solution of cube root. We first start with a guess. For instance $x=1.1$ may be close to the actual solution.

Take $x_{1}=1.1$ and compute

- $x_{2}=f\left(x_{1}\right)=1.1418125$.
- $x_{3}=f\left(x_{2}\right)=1.173377363488205$
- $x_{4}=f\left(x_{3}\right)=1.1977011220963$
- $x_{5}=f\left(x_{4}\right)=1.21532063080071$
- $x_{6}=f\left(x_{5}\right)=1.228131023304038$.
and so on, in this particular example we would need several more iterations to get correct approximation up to 2 decimals.

