Design of a Transceiver for 3G DECT Physical Layer - Rohit Budhiraja

The Big Picture

DECT - Digital Enhanced Cordless Telecommunications

Overview

- 2G DECT specifications and 2G transceiver
- 3G DECT specifications
- Issues in receiver design
- Digital FM demodulator
- Coherent detector for DPSK symbols
- Results and Conclusion

2G DECT Specifications

- Multi-Carrier TDMA TDD system
- RF carriers separated by 1.728 MHz (=B) each in 1880 MHz to 1938 MHz band

- Bit rate, $R_b = 1/T_b = 1.152$ Mbps
- GFSK modulation with $BT_b=0.5$

2G DECT Specifications (contd.)

• Nominal frequency deviation of ±288 kHz Allowed deviation limits: 70% to 140% of nominal

GFSK Transceiver

TDMA Frame Structure in DECT

• B-Field: Data Packet

3G Physical Layer Specifications

• Modulation Schemes : $\pi/2$ DBPSK, $\pi/4$ DQPSK, $\pi/8$ D8PSK

Constellation for differential PSK modulation

3G Physical Layer Specifications (contd.)

- Root-Raised Cosine with 50% excess bandwidth
- Symbol rate is 1.152 Msps
- Zero ISI at the output of the matched filter in the receiver

3G Physical Layer Specifications (contd.)

• Allowed combination of modulation schemes

Configuration	S-field	A-field	B-field
1a	GFSK	GFSK	GFSK
1b	$\pi/2-DB$	$\pi/2-DB$	$\pi/2-DB$
2	$\pi/2-DB$	$\pi/2-DB$	$\pi/4-DQ$
3	π/2- <mark>DB</mark>	π/2- <mark>DB</mark>	$\pi/8-D8$

• S and A fields always employ $\pi/2$ -DBPSK \Rightarrow can be detected in a non-coherent GFSK receiver

DPSK Transceiver

Bandpass Sampling - choice of IF2

• IF2 = 9.504 MHz = (5+0.5)*B; B = 1.728 MHz \Rightarrow minimum sampling rate, F_s = 2B = 3.456 MHz

I-Q Demodulation

- Carrier Frequency and Carrier Phase synchronization
- Clock Frequency and Clock Phase synchronization

Data Detection in the receiver

- - Transmitted constellation points
- Received constellation points (in noise), y(n)

Performance of Different Demodulation Schemes

Tasks in the receiver

- Slot boundary acquisition on power-up/sync loss
- Clock recovery in every slot
- Frequency and phase offset estimation
- Data detection with adaptive carrier phase tracking

Signal Processing in Digital Domain

FM Demodulation

• An FM signal

• Instantaneous phase

 $\phi(t) = tan^{-1}(x_s(t)/x_c(t))$

• Instantaneous frequency

$$\frac{d \, d(t)}{dt} = 2\pi t_f m(t) + 2\pi t_f$$

Digital FM Demodulator

• r(t) sampled @ 3.456MHz

 $\Rightarrow r(n) = x_c(n) \cos(n\pi/2) - x_s(n) \sin(n\pi/2)$

• $x_c(n) = r(2n+1)(-1)^n$ $x_c(n) = r(2n)(-1)^n$

 \Rightarrow $x_c(n)$ and $x_s(n)$ are not samples at same time instant.

Implementations constraints

• Output of Demodulator should be @ 2.304MHz.

 \Rightarrow Interpolate $x_c(t)$ and $x_s(t)$ by 4 and then decimate by 3

ALSO

• For tan⁻¹() samples of $x_c(t)$ and $x_s(t)$ should be at same time instant \Rightarrow Decimate with different phases

Digital FM Demodulator (contd.)

Tan⁻¹() calculation

• Calculation of $\phi(n) = tan^{-1}(x_s(n)/x_c(n))$ is computation intensive

 \Rightarrow Table Look-up method

Trade-off between computational complexity and memory requirement

Soft FM demodulator block diagram

Signal Processing in Digital Domain

Soft I/Q Demodulator

• $g_k(n)$ - root-raised cosine matched filter $\Rightarrow g_k(n) = g(nT - kT_b/12), k = 0, 1, 2, \dots, 11$, from clock recovery

Symbols in S-field

- $y(n) = (I_n + jQ_n) e^{j(n\alpha + \theta)}$, where $\alpha = 2\pi . \delta f.T_s$
 - S-field (1-0 pattern) always DBPSK

 $\Rightarrow y(n) = [I_o + jQ_o][e^{j\theta}, e^{j(\pi/2+\theta)}, e^{j\theta}, \dots], \delta f = 0, \theta \neq 0$

Estimation of δf

- $y(n) = A.[I_o + jQ_o].[e^{j\theta}, e^{j(\pi/2 + \alpha + \theta)}, e^{j(2\alpha + \theta)}, \dots]$
- $y_1(n) = y(2n) = A.(I_o + jQ_o).e^{j(2n\alpha + \theta)}$

•
$$y_2(n) = y(2n+1) = A.(I_o + jQ_o).e^{j\pi/2}.e^{j((2n+1)\alpha+\theta))}$$

- For i=1,2 $y_i(n).y_i^*(n-1) = A^2 e^{j2\alpha} = A^2 [\cos(2\alpha) + j\sin(2\alpha)]$
- Average $y_i(n).y_i^*(n-1)$ over the preamble to get an estimate of α , denoted by

Estimation of θ

 \bullet Compensate for δf

$$y_d(n) = y(n)e^{-jn\hat{\alpha}} = [I_n + jQ_n]e^{j(\alpha - \hat{\alpha})n + \theta} \approx [I_n + jQ_n]e^{j\theta}$$

• Form two sequences $z_e(n)$, $z_o(n)$

$$\Rightarrow z_e(n)$$

$$z_e(2n) = y_d(2n)e^{-j\pi/2}$$

$$z_e(2n+1) = y_d(2n+1)$$

$$\Rightarrow z_o(n)$$

$$z_o(2n) = y_d(2n)$$

$$z_o(2n+1) = y_d(2n+1)e^{-j\pi/2}$$

Estimation of θ (contd.)

z_e(n) will be points from one of the following,
 z_o(n) will be from the other

• The average of $z_e(n)$ or $z_o(n)$ will be small; the other sequence is used to estimate, $\hat{\theta}$

Data detection with Phase Tracking

Performance of the LMS Algorithm

Performance of the LMS Algorithm (contd.)

Performance of the Receiver Algorithm

Performance of the Receiver Algorithm

Conclusions

- Transceiver hardware design for 3G DECT physical layer was presented
- Issues involved in the receiver design were discussed
- Carrier synchronization algorithms were discussed
- Performance results of the receiver were presented