3GPP Long Term Evolution
Physical Layer

Rohit Budhiraja
Outline of the talk

- Brief overview of the eNodeB MAC-PHY interface
 - Information sent by the MAC to the PHY
 - Data and control information
- Concepts of Adaptive Modulation & Coding, BLER & CQI
- Description of Transceiver chain
 - Discussion of individual sub-blocks
- Concepts of Channel Estimation and Equalization
- Synchronization principles
 - DL Initial access
 - UL RACH
- Initial access example
MAC-PHY Interface

- MAC
 - Control Information
 - Data payload (Transport block)

- PHY
 - Control Information
 - Data payload (Transport block)
Transport block (TB) sizes & Modulation order details

- TB sizes are specified in the standard using a Table
 - Table is indexed using
 - Modulation and Coding Scheme (MCS)
 - Number of PRBS
- MCS indirectly specifies the coding-rate
- MCS and number of PRBS are decided by the Scheduler
 - Based on Channel Quality Information (CQI) feedback from the UE
 - Also a function of fairness and number of active users in the system
Modulation order and TBS Index relationship

<table>
<thead>
<tr>
<th>MCS Index I_{MCS}</th>
<th>Modulation Order Q_m</th>
<th>TBS Index I_{TBS}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>26</td>
</tr>
<tr>
<td>29</td>
<td>2</td>
<td>reserved</td>
</tr>
<tr>
<td>30</td>
<td>4</td>
<td>reserved</td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>reserved</td>
</tr>
</tbody>
</table>

Two MCS indices refer to same TBS indices

Reserved for UL HARQ

Ref: (Table 7.1.7.1-1 of 36.213)
Transport Block Size Table

<table>
<thead>
<tr>
<th>I_{TBS}</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16</td>
<td>32</td>
<td>56</td>
<td>88</td>
<td>120</td>
<td>152</td>
<td>176</td>
<td>208</td>
<td>224</td>
<td>256</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>56</td>
<td>88</td>
<td>144</td>
<td>176</td>
<td>208</td>
<td>224</td>
<td>256</td>
<td>328</td>
<td>344</td>
</tr>
<tr>
<td>2</td>
<td>32</td>
<td>72</td>
<td>144</td>
<td>176</td>
<td>208</td>
<td>256</td>
<td>296</td>
<td>328</td>
<td>376</td>
<td>424</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>104</td>
<td>176</td>
<td>208</td>
<td>256</td>
<td>328</td>
<td>392</td>
<td>440</td>
<td>504</td>
<td>568</td>
</tr>
<tr>
<td>4</td>
<td>56</td>
<td>120</td>
<td>208</td>
<td>256</td>
<td>328</td>
<td>408</td>
<td>488</td>
<td>552</td>
<td>632</td>
<td>696</td>
</tr>
<tr>
<td>5</td>
<td>72</td>
<td>144</td>
<td>224</td>
<td>328</td>
<td>424</td>
<td>504</td>
<td>600</td>
<td>680</td>
<td>776</td>
<td>872</td>
</tr>
<tr>
<td>6</td>
<td>328</td>
<td>176</td>
<td>256</td>
<td>392</td>
<td>504</td>
<td>600</td>
<td>712</td>
<td>808</td>
<td>936</td>
<td>1032</td>
</tr>
<tr>
<td>7</td>
<td>104</td>
<td>224</td>
<td>328</td>
<td>472</td>
<td>584</td>
<td>712</td>
<td>840</td>
<td>968</td>
<td>1096</td>
<td>1224</td>
</tr>
<tr>
<td>8</td>
<td>120</td>
<td>256</td>
<td>392</td>
<td>536</td>
<td>680</td>
<td>808</td>
<td>968</td>
<td>1096</td>
<td>1256</td>
<td>1384</td>
</tr>
<tr>
<td>9</td>
<td>136</td>
<td>296</td>
<td>456</td>
<td>616</td>
<td>776</td>
<td>936</td>
<td>1096</td>
<td>1256</td>
<td>1416</td>
<td>1544</td>
</tr>
<tr>
<td>10</td>
<td>144</td>
<td>328</td>
<td>504</td>
<td>680</td>
<td>872</td>
<td>1032</td>
<td>1224</td>
<td>1384</td>
<td>1544</td>
<td>1736</td>
</tr>
<tr>
<td>11</td>
<td>176</td>
<td>376</td>
<td>584</td>
<td>776</td>
<td>1000</td>
<td>1192</td>
<td>1384</td>
<td>1608</td>
<td>1800</td>
<td>2024</td>
</tr>
<tr>
<td>12</td>
<td>208</td>
<td>440</td>
<td>680</td>
<td>904</td>
<td>1128</td>
<td>1352</td>
<td>1608</td>
<td>1800</td>
<td>2024</td>
<td>2280</td>
</tr>
<tr>
<td>13</td>
<td>224</td>
<td>488</td>
<td>744</td>
<td>1000</td>
<td>1256</td>
<td>1544</td>
<td>1800</td>
<td>2024</td>
<td>2280</td>
<td>2536</td>
</tr>
<tr>
<td>14</td>
<td>256</td>
<td>552</td>
<td>840</td>
<td>1128</td>
<td>1416</td>
<td>1736</td>
<td>1992</td>
<td>2280</td>
<td>2600</td>
<td>2856</td>
</tr>
<tr>
<td>15</td>
<td>280</td>
<td>600</td>
<td>904</td>
<td>1224</td>
<td>1544</td>
<td>1800</td>
<td>2152</td>
<td>2472</td>
<td>2728</td>
<td>3112</td>
</tr>
<tr>
<td>16</td>
<td>328</td>
<td>632</td>
<td>968</td>
<td>1288</td>
<td>1608</td>
<td>1928</td>
<td>2280</td>
<td>2600</td>
<td>2984</td>
<td>3240</td>
</tr>
<tr>
<td>17</td>
<td>336</td>
<td>696</td>
<td>1064</td>
<td>1416</td>
<td>1800</td>
<td>2152</td>
<td>2536</td>
<td>2856</td>
<td>3240</td>
<td>3624</td>
</tr>
<tr>
<td>18</td>
<td>376</td>
<td>776</td>
<td>1160</td>
<td>1544</td>
<td>1992</td>
<td>2344</td>
<td>2792</td>
<td>3112</td>
<td>3624</td>
<td>4008</td>
</tr>
<tr>
<td>19</td>
<td>408</td>
<td>840</td>
<td>1288</td>
<td>1736</td>
<td>2152</td>
<td>2600</td>
<td>2984</td>
<td>3496</td>
<td>3880</td>
<td>4264</td>
</tr>
<tr>
<td>20</td>
<td>440</td>
<td>904</td>
<td>1384</td>
<td>1864</td>
<td>2344</td>
<td>2792</td>
<td>3240</td>
<td>3752</td>
<td>4136</td>
<td>4584</td>
</tr>
<tr>
<td>21</td>
<td>488</td>
<td>1000</td>
<td>1480</td>
<td>1992</td>
<td>2472</td>
<td>2984</td>
<td>3496</td>
<td>4008</td>
<td>4584</td>
<td>4968</td>
</tr>
<tr>
<td>22</td>
<td>520</td>
<td>1064</td>
<td>1608</td>
<td>2152</td>
<td>2664</td>
<td>3240</td>
<td>3752</td>
<td>4264</td>
<td>4776</td>
<td>5352</td>
</tr>
<tr>
<td>23</td>
<td>552</td>
<td>1128</td>
<td>1736</td>
<td>2280</td>
<td>2856</td>
<td>3496</td>
<td>4008</td>
<td>4584</td>
<td>5160</td>
<td>5736</td>
</tr>
<tr>
<td>24</td>
<td>584</td>
<td>1192</td>
<td>1800</td>
<td>2408</td>
<td>2984</td>
<td>3624</td>
<td>4264</td>
<td>4968</td>
<td>5544</td>
<td>5992</td>
</tr>
<tr>
<td>25</td>
<td>616</td>
<td>1256</td>
<td>1864</td>
<td>2536</td>
<td>3112</td>
<td>3752</td>
<td>4392</td>
<td>5160</td>
<td>5736</td>
<td>6200</td>
</tr>
<tr>
<td>26</td>
<td>712</td>
<td>1480</td>
<td>2216</td>
<td>2984</td>
<td>3752</td>
<td>4392</td>
<td>5160</td>
<td>5992</td>
<td>6712</td>
<td>7480</td>
</tr>
</tbody>
</table>

Ref: (Table 7.1.7.2.1-1 of 36.213)

© CEWiT 2011
Adaptive Modulation & Coding
Fundamentals of Adaptive Modulation and Coding (AMC)

- Wireless channel has statistical variations
 - A mobile user channel will vary with its location & speed
- Channel variations can be estimated and fed-back
 - For a slow moving user:
 - (Nearly) exact channel can be fed-back to eNodeB
 - Done by quantizing the channel
 - Done by feeding back the MCS, PMI and RI (Will revisit later)
 - For a fast moving user
 - First (mean) and second order (variance) statistics can be fed

- AMC
 - Achieves capacity
 - Binary (but not practical) way to state:
 - Transmit only when channel is good and don’t when channel is bad
 - Non binary way:
 - Match the code-rate to the channel conditions
Channel Conditions

- Channel condition = SINR seen by a particular user

20% UEs have SINR <= 0 dB

SINR CDF plot
BLER concept

- Turbo codes are capacity achieving
 - Does-not follow water-fall behavior like Convolutional code
 - BER/BLER drops to zero after a particular SNR

Ref: (Figure 10.1 Stefania Sesia et. al, LTE – The UMTS Long Term Evolution)
CQI concept

- UE calculates the **post-processing SNR**
 - Post-processing SNR – Depends on the capability of UE (UE category)
 - A particular category UE has 2 antennas
 - 3 dB extra gain
 - Category indirectly refers to the UE price

- UE maps the post-processing SNR to the MCS

- Different kinds of CQI

Rohit Budhiraja

© CEWiT 2011
Aperiodic CQI reporting (1/2)

- **Wideband**
 - CQI for the entire system bandwidth

- **Higher layer configured sub-band**
 - UE reports a wideband CQI value for the whole system bandwidth
 - In addition, the UE reports a CQI value for each subband, calculated assuming transmission only in the relevant sub-band
 - Sub-band CQI reports are encoded differentially with respect to the wideband CQI using 2-bits as follows

 \[
 \text{Sub-band differential CQI offset} = \text{Sub-band CQI index} - \text{Wideband CQI index}
 \]

 Possible sub-band differential CQI offsets are \{<-1,0,+1,>+2\}

Ref: (Table 7.2.1-3 of 36.213)
Aperiodic CQI reporting (2/2)

- **UE selected sub-bands**
 - UE selects a set of M preferred sub-bands of size k within the whole system bandwidth
 - UE reports one wideband CQI value and one CQI value reflecting the average quality of the M selected sub-bands
 - UE also reports the positions of the M selected sub-bands
 - Sub-band CQI reports are encoded differentially with respect to the wideband CQI using 2-bits as follows

 Differential CQI = Index for average of M preferred sub-bands – Wideband CQI index

- Possible sub-band differential CQI offsets are \{<+1,+2,+3,>+4\}

Table: System Bandwidth vs. Subband Size and M

<table>
<thead>
<tr>
<th>System Bandwidth N_{DL}^{DL}</th>
<th>Subband Size k (RBs)</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 – 7</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>8 – 10</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>11 – 26</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>27 – 63</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>64 – 110</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Ref: (Table 7.2.1-5 of 36.213)
Periodic reporting

- RRC connection reconfiguration message configures the reporting modes
 - Only wideband and UE-selected sub-band feedback is possible for periodic CQI reporting
 - Sent using the PUCCH
 - Period = \{2, 5, 10, 16, 20, 32, 40, 64, 80, 160\} ms or Off
 - The UE selected subband reports are based on bandwidth parts and not on subbands as in the aperiodic case

<table>
<thead>
<tr>
<th>System Bandwidth</th>
<th>Subband Size k (RBs)</th>
<th>Bandwidth Parts (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{RB}^{DL})</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>6 – 7</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>8 – 10</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>11 – 26</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>27 – 63</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>64 – 110</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ref: (Table 7.2.2-2 of 36.213)
LTE Transceiver chain
eNodeB PHY Transmit chain

CRC → Segmentation → CRC → Turbo coding → Rate Matching → Code-block Concatenation → Scrambler → Modulation

CRC → Segmentation → CRC → Turbo coding → Rate Matching → Code-block Concatenation → Scrambler → Modulation

Layer Mapping → Pre-coding → Resource Block mapping → OFDM signal generator (IFFT) → CP addition → Antenna 1

Layer Mapping → Pre-coding → Resource Block mapping → OFDM signal generator (IFFT) → CP addition → Antenna n

Rohit Budhiraja

© CEWiT 2011
CRC

- Performs error detection
 ◦ Does not correct
- Essential for HARQ implementation
- Different CRC for data and control
- 24-bit for data
 ◦ Transport block can be segmented into multiple code blocks
 ◦ CRC is computed for the Transport Block and each segmented code block
 ○ Allows error detection at code-block level
 ○ If a code-block is in error, no need to process remaining code blocks
 ◦ CRC for TB and each code-block
 ○ Duplication of efforts?
 ○ Different polynomials for TB-CRC and code-block CRC
 - Allows detection of any residual errors
- 16-bit for DL control
- 8-bit for UL control (when multiplexed with data)

Ref: (5.1.1 of 36.212)
Segmentation

- Transport block size can be greater than Turbo code block size
 - Maximum Turbo code block size - 6144
 - Maximum Transport block size (for MCS-26 and 110 RBs) - 73376
 - TB should be segmented if TB size > 6144

- BLER performance is limited by the smallest TB size
 - Coding gain is less

- Segmentation block ensures that a TB is divided into equal size code-blocks
 - E.g., TB size of 6224 is segmented into two code block of sizes 3136

- Maximum Turbo code block size in UMTS - 5114
 - Size increased in LTE such that 1500-byte TCP/IP packet is segmented into two code blocks instead of three
 - Increase the coding gain
Forward Error Correction Block

- Turbo block input = K bits
 - Turbo block output - 3 streams of K bits +12 tail bits
 - K Systematic bits, K Parity1 bits, K Parity2 bits
 - 12 tail bits are shared across three stream

- Three streams are rearranged with their own sub-block Interleavers
 - Interleaver handles the block errors by spreading them across the code-block

- Single buffer is formed by placing the rearranged systematic bits

- Systematic bits are followed by interlacing of the two rearranged parity streams
 - Interlacing allows equal protection for each constituent code

Sub-block Interleaver is based on row-column interleaver.
Rate Matching Principles

- Mother code-rate is 1/3
- Coded bits should be pruned to match the allocated resources
- Pruning implies repetition/puncturing
 - E.g., TB size is 256 for MCS-0 (QPSK) and NPRB-10
 - Total number of bits which can be transmitted
 - $10(\text{NPRB}) \times 120(\text{RE}) \times 2(\text{QPSK}) = 2400$
 - Turbo encoder output length – $256 \times 3 = 768$
 - Bits should be repeated as encoded data is less than the resources available
 - code-rate is lower than $1/3^{rd}$
 - E.g., TB size is 1544 for MCS-9 (QPSK) and NPRB-10
 - Total number of bits which can be transmitted
 - $10(\text{NPRB}) \times 120(\text{RE}) \times 2(\text{QPSK}) = 2400$
 - Turbo encoder output length – $1544 \times 3 = 4632$
 - Bits should be punctured as encoded data is more than the resources available
 - code-rate is higher than $1/3^{rd}$
Rate Matcher in LTE

- Circular buffer based rate-matcher

![2-D view of the circular buffer](image)

$N_r \times 96$

Rohit Budhiraja

© CEWiT 2011
Rate Matcher in LTE

- Redundancy version specifies a starting point in the circular buffer
- Different RVs are specified by defining different starting points
- Usually RV-0 is selected for initial transmission to send as many systematic bits as possible
- Scheduler can choose different RVs to support Chase and IR HARQ
- Systematic bits are also punctured
 - Leads to enhanced performance at high-code rates [1]

HARQ Principles

- Code-rate is decided by eNodeB after getting the CQI feedback from UE

- In spite of this, a received TB could be in error
 - Fast moving user
 - CQI reported may be outdated
 - Slow moving user
 - Erroneous reporting of CQI in interference limited scenario
 - Standard specifies that the UE should specify the MCS
 - such that BLER = 10^{-1}

- HARQ is employed to utilize the time diversity
 - Chase – Same bits are transmitted
 - Allows Maximal ratio combining
 - Incremental redundancy – different RVs are transmitted
 - Coding gain
HARQ details

- Multiple parallel Stop and Wait processes in parallel

- Eight processes in parallel

Ref: (Figure 19.1, Dehlman et. al. 3G EVOLUTION : HSPA AND LTE FOR MOBILE BROADBAND)
HARQ flow-diagram in DL

- ACK/NACK for data packets transmitted in the downlink: UE requests retransmission of incorrectly received data packets
 - ACK/NACK is transmitted in UL, either on PUCCH or mux with PUSCH
 - ACK/NACK transmission refers to the data packet received four sub-frames (= 4 ms) before,

Ref: (Figure 4.4, Freescale white paper, Long Term Evolution Protocol Overview)
HARQ flow-diagram in UL

- eNodeB requests retransmission of incorrectly received data packets
 - ACK/NACK is transmitted in PHICH
 - ACK/NACK transmission refers to the data packet received four sub-frames (= 4 ms) before,

Ref: (Figure 4.6, Freescale white paper, Long Term Evolution Protocol Overview)
Scrambler

- Scrambling is applied to all downlink physical channels
 - Initialized using cell-id
 - Serves the purpose of interference randomization
 - Order-31 Gold code
 - 2^{31} sequences
 - Can be generated with very low implementation complexity
 - Modulo-2 addition of two sequences
 - Can be generated from two shift registers

- Reduces correlation between sequence used in adjacent cells
Modulation - Downlink Alphabet

<table>
<thead>
<tr>
<th>Channels</th>
<th>Modulation scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBCH</td>
<td>QPSK</td>
</tr>
<tr>
<td>PDCCH</td>
<td>QPSK</td>
</tr>
<tr>
<td>PDSCH</td>
<td>QPSK, 16-QAM, 64-QAM</td>
</tr>
<tr>
<td>PMCH</td>
<td>QPSK, 16-QAM, 64-QAM</td>
</tr>
<tr>
<td>PCFICH</td>
<td>QPSK</td>
</tr>
<tr>
<td>PHICH</td>
<td>BPSK modulated on I and Q with the spreading factor 2 or 4 Walsh codes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signals</th>
<th>Modulation scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS</td>
<td>Complex I+jQ pseudo random sequence (length-31 Gold sequence) derived from cell ID</td>
</tr>
<tr>
<td>P-SCH</td>
<td>One of three Zadoff-Chu sequences</td>
</tr>
<tr>
<td>S-SCH</td>
<td>Two 31-bit BPSK PN-sequence</td>
</tr>
</tbody>
</table>
Modulation - Uplink Alphabet

<table>
<thead>
<tr>
<th>Channels</th>
<th>Modulation scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUCCH</td>
<td>BPSK, QPSK</td>
</tr>
<tr>
<td>PUSCH</td>
<td>QPSK, 16-QAM, 64-QAM</td>
</tr>
<tr>
<td>PRACH</td>
<td>Zadoff-Chu</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signals</th>
<th>Modulation scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demodulation RS</td>
<td>Zadoff-chu</td>
</tr>
<tr>
<td>Sounding RS</td>
<td>Based on Zadoff-Chu</td>
</tr>
</tbody>
</table>
Code-word to Layer Mapping (1/3)

- Mapping of symbols on-to the antenna ports
- Layer mapping depends on the MIMO scheme employed
- Number of layers is equal to the antenna ports used

Concept of Antenna Port

Layer Mapping for single antenna port

\[x^{(0)}(i) = d^{(0)}(i) \]

(Ref:6.3.3.2 of 36.211)
Code-word to Layer Mapping (2/3)

- **Layer Mapping for transmit diversity**

<table>
<thead>
<tr>
<th>Number of layers</th>
<th>Number of code words</th>
<th>Codeword-to-layer mapping $i = 0, 1, \ldots, M_{\text{symb}}^{\text{layer}} - 1$</th>
</tr>
</thead>
</table>
| 2 | 1 | $x^{(0)}(i) = d^{(0)}(2i)$
$x^{(1)}(i) = d^{(0)}(2i + 1)$
$M_{\text{symb}}^{\text{layer}} = M_{\text{symb}}^{(0)} / 2$ |
| 4 | 1 | $x^{(0)}(i) = d^{(0)}(4i)$
$x^{(1)}(i) = d^{(0)}(4i + 1)$
$x^{(2)}(i) = d^{(0)}(4i + 2)$
$x^{(3)}(i) = d^{(0)}(4i + 3)$
$M_{\text{symb}}^{\text{layer}} = \begin{cases}
 M_{\text{symb}}^{(0)} / 4 & \text{if } M_{\text{symb}}^{(0)} \mod 4 = 0 \\
 (M_{\text{symb}}^{(0)} + 2) / 4 & \text{if } M_{\text{symb}}^{(0)} \mod 4 \neq 0
\end{cases}$
If $M_{\text{symb}}^{(0)} \mod 4 \neq 0$ two null symbols shall be appended to $d^{(0)}(M_{\text{symb}}^{(0)} - 1)$ |

(Ref: 6.3.3.2 of 36.211)
Layer Mapping for spatial multiplexing

<table>
<thead>
<tr>
<th>Number of layers</th>
<th>Number of code words</th>
<th>Codeword-to-layer mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>$x^{(0)}(i) = d^{(0)}(i)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$M_{\text{layer}} = M_{\text{symb}}^{(0)}$</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>$x^{(0)}(i) = d^{(0)}(i)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$x^{(1)}(i) = d^{(1)}(i)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$M_{\text{layer}} = M_{\text{symb}}^{(0)} = M_{\text{symb}}^{(1)}$</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>$x^{(0)}(i) = d^{(0)}(2i)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$x^{(1)}(i) = d^{(0)}(2i+1)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$M_{\text{layer}} = M_{\text{symb}}^{(0)} / 2$</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>$x^{(0)}(i) = d^{(0)}(i)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$x^{(1)}(i) = d^{(1)}(2i)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$x^{(2)}(i) = d^{(1)}(2i+1)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$M_{\text{layer}} = M_{\text{symb}}^{(0)} = M_{\text{symb}}^{(1)} / 2$</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>$x^{(0)}(i) = d^{(0)}(2i)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$x^{(1)}(i) = d^{(0)}(2i+1)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$x^{(2)}(i) = d^{(1)}(2i)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$x^{(3)}(i) = d^{(1)}(2i+1)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$M_{\text{layer}} = M_{\text{symb}}^{(0)} / 2 = M_{\text{symb}}^{(1)} / 2$</td>
</tr>
</tbody>
</table>

(Ref: 6.3.3.2 of 36.211)
Rank Indicator (RI)

- A 2 x 2 MIMO system is represented as a set of linear equations

\[h_{11}x + h_{12}y = c_1 \]
\[h_{21}x + h_{22}y = c_2 \]

- RI definition in the LTE framework
 - Borrowed from Linear Algebra and is defined as the number of independent columns
 - Number of independent columns = Number of streams
 - For a 2 x 2 MIMO system,
 - Number of independent columns = 1, 2

- UE can decide the Rank using different performance criterion
 - Throughput maximization
 - Calculate the throughput using Rank - 1 and Rank - 2
 - Feedback the rank which gives the maximum throughput
Precoder

- **Open loop precoding**
 - No feedback from UE
 - Transmit diversity

- **Closed loop precoding**
 - Requires feedback from the UE
 - UE calculates the post-processing SNR for different precoding matrices
 - Reports the matrix which results in best SNR (PMI)

- **Post-processing SNR for single stream transmission**

Without PMI

- h_2
- h_1
- $h_2^2 + h_1^2$

With PMI = 3

- h_2
- h_1
- $h_3 = jh_2$
- $h_1^2 + h_3^2$
Precoding Matrix Indicator

- Applicable for transmission modes 4, 5 and 6
- Indicates the precoder weights used for precoding
 - usual objective function is post-SINR maximization
- Feedback bits depends on the number of tx antenna ports
 - \{0, 1\} in case with 2 antenna port
 - \{0, 1, ..., 15\} with 4 antenna ports
- PMI sent on either PUSCH or PUCCH

<table>
<thead>
<tr>
<th>Two transmit antennas</th>
<th>Single stream</th>
<th>Dual stream</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[1 \quad 1]</td>
<td>[[1 \quad 1], [1 \quad -1]]</td>
</tr>
<tr>
<td></td>
<td>[1 \quad -1]</td>
<td>[[1 \quad j], [1 \quad -j]]</td>
</tr>
<tr>
<td></td>
<td>[1 \quad j]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[1 \quad -j]</td>
<td></td>
</tr>
</tbody>
</table>
Resource Block Mapping and Baseband Signal Generation

- Symbols are mapped on-to the 2-D Resource Blocks
- Location of Resource blocks allocated to a user depends on the CQI feedback from the user
 - Decided by the scheduler in the MAC layer

Symbols are mapped on to the 2-D Resource Blocks. The location of the Resource blocks allocated to a user depends on the CQI feedback from the user, which is decided by the scheduler in the MAC layer.

Symbols are mapped on to the 2-D Resource Blocks. The location of the Resource blocks allocated to a user depends on the CQI feedback from the user, which is decided by the scheduler in the MAC layer.
OFDM basics (1/2)

- OFDM is the sum of sinusoids on in-phase and quadrature arms
 \[I = \sum_i \sin(2\pi f_i t) + j\sum_i \cos(2\pi f_i t) \]
 - Sinusoids are orthogonal over one period of the lowest frequency sinusoid
 - Sinusoids are separated by \(\Delta f = 1/T_s \)
 - Can be easily separated at the receiver by observing one period of the lowest frequency sinusoid

- From ‘Signal and Systems fundamentals’
 - Sinusoids are Eigen functions of an LTI system
 - In case of wireless systems, multipath channel is the LTI system
 - O/P is only a scaled version of the I/P
 - Individual rx subcarriers are scaled version of tx subcarriers
 - Scaling factor (Channel coefficients) can be easily determined using well established signal processing techniques like Least Squares etc

Rohit Budhiraja
© CEWiT 2011
OFDM basics (2/2)

- CP – Few samples of the sum of sinusoids are taken from the end are appended in the beginning
 - Extends the symbol duration and also phase continuity is maintained
 - Helps in tackling multipath
 - Ensures that timing estimation can have tolerance of few samples

Samples corrupted by Multipath

Window 1

Window 2

Window 3
PHY Receive Chain

TB CRC validation
Concatenation
CRC validation
Turbo decoder
Rate Dematcher
Code-block Segmentation
Descrambler
Demodulation

TB CRC validation
Concatenation
CRC validation
Turbo decoder
Rate Dematcher
Code-block Segmentation
Descrambler
Demodulation

Layer Demapping
Resource Block Demapping
Equalizer
Channel Estimation
OFDM receiver (FFT)
CP deletion
Ant 1

Resource Block Demapping
Equalizer
Channel Estimation
OFDM receiver (FFT)
CP deletion
Ant n
Demodulation (1/2)

- Equalizer output can be processed in two ways
 - Sub-optimum
 - Apply the nearest distance detection rule
 - Threshold the equalized symbols to the nearest transmitted symbol
 - Demap the symbols into bits
 - Results in a penalty of 2-3 dB
Apply the nearest distance detection rule

- Calculate $LLR = \log(b_0/b_1)$
- E.g., if $x = 0.1 - j0.1$,
 - $LLR_{\text{bit0}} \approx 0.1$ & $LLR_{\text{bit1}} \approx -0.1$
De-rate Matching Principles

- Recall
 - Turbo mother code-rate is 1/3
 - Coded bits were pruned to match the allocated resources
 - Pruning implies repetition/puncturing
 - Repetition implies that code-rate is lower than 1/3\(^{rd}\)
 - Puncturing implies that code-rate is higher than 1/3\(^{rd}\)
 - Turbo decoder is designed for code-rate = 1/3
 - Code rate should be made = 1/3
 - LLRs of repeated bits are added
 - Zeros are inserted in place of LLRs of punctured bits
Synchronisation
LTE Initial access

1. Cell Search and Selection
2. Derive System Information
3. Random Access
4. User Data RX/TX

Power-up
Cell search (1/3)

- Cell search: Mobile terminal or user equipment (UE) acquires time and frequency synchronization with a cell and detects the cell ID of that cell
 - Based on BCH (Broadcast Channel) signal and hierarchical SCH (Synchronization Channel) signals

- Cell search procedure:
 1. Step 1: Find Primary SCH sequence
 - Obtain 5ms timing
 - Get cell identity within the cell-identity group (3 nos)
 2. Step 2: Find Secondary SCH sequence
 - Sequence pair to obtain exact frame timing
 - Obtain cell identity group (168 nos)
 - Know also the reference signal sequence
 3. Step 3: Read BCH
 - Obtain basic data as bandwidth, number of antennas etc.
Cell search \((2/3)\)

Synchronization signals in the time domain

Rohit Budhiraja

© CEWiT 2011

[Src: Telesystem Innov.]
1. **Primary synchronization signal (PSS)**
 - 3 possible sequences to identify the cells physical layer identity (0, 1, 2)

1. **Secondary synchronization signal (SSS)**
 - 168 different sequences to identify physical layer cell identity group

Hierarchical cell search as in 3G; providing PSS and SSS for assistance,
- PSS is carrying physical layer identity $N_{ID}^{(2)}$,
- SSS is carrying physical layer cell identity group $N_{ID}^{(1)}$,
- Cell Identity is computed as $N_{ID}^{cell} = 3N_{ID}^{(1)} + N_{ID}^{(2)}$, where $N_{ID}^{(1)} = 0, 1, ..., 167$ and $N_{ID}^{(2)} = 0, 1, 2$.
Summary of Cell-search Stages

1. Primary synchronization signal
 - 3 possible sequences to identify the cell’s physical layer identity (0, 1, 2).

2. Secondary synchronization signal
 - 168 different sequences to identify physical layer cell identity group,
 ⇒ Downlink reference signals,

3. Physical Broadcast Channel (PBCH)
 - Carrying broadcast channel with Master Information Block (MIB)
Physical Broadcast Channel (PBCH)

- Carrying broadcast channel (BCH) with Master Information Block (MIB) System bandwidth [4 bit], PHICH configuration [Duration: 1 bit, Resource: 2 bit], System Frame Number [SFN, 8 bit] and indirect about the used Tx antennas,
- QPSK modulated, cell-specific scrambling
- Transmitted on 72 subcarriers around the carrier frequency
PBCH

- PBCH structure
PBCH Generation

<table>
<thead>
<tr>
<th># of TX antennas</th>
<th>PBCH CRC Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0000000000000000bn</td>
</tr>
<tr>
<td>2</td>
<td>1111111111111111bn</td>
</tr>
<tr>
<td>4</td>
<td>0101010101010101bn</td>
</tr>
</tbody>
</table>

System bandwidth, PHICH configuration, System Frame Number (SFN), Logical channel

Master Information Block (MIB) ➔ Transport Block (TB) ➔ PBCH ➔ Scrambling ➔ Modulation ➔ Layer mapping and pre-coding ➔ Mapping to Resource Elements (RE)
Uplink Synchronisation (1/2)

- Three users in a system
- Three of them located at differential distances from the eNodeB

- Different RTDs will lead to interference at the eNodeB
Uplink Synchronisation (2/2)

- Uplink transmission orthogonality between users is maintained by timing advance
 - Set initially during Random Access Procedure
 - Updated as necessary subsequently

- Supports at least 100 km cell range
 - Greater ranges are up to implementation

\[N_{TA} \times T_S \text{ time units} \]

\[N_{TA} \text{ can range from 0 to 20512, } T_S = 1/30.72 \, \mu\text{sec} \]
Carries the RACH preamble a UE sends to access the network in non-synchronized mode and used to allow the UE to synchronize timing with the eNodeB.
Subcarrier spacing of 1.25 KHz

Consists of 839 subcarriers = 1.05 MHz
 ▶ 15 KHz guard, either side

FDD LTE -> 4 formats
 ▶ Format 0, good up to 14 Km
 ◦ 1 msec subframe

Position fixed by SIB2
Preamble Formats

Near user
Other users CP Sequence Other users

Far user
Other users CP Sequence Other users

Distant-dependent timing uncertainty

Configuration 0
(1 ms window)
CP \(N_{ZC} \)-point Zadoff-Chu sequence
0.1 ms 0.8 ms 0.1 ms

Configuration 1
(2 ms window)
0.68 ms 0.8 ms 0.52 ms

Configuration 2
(2 ms window)
0.2 ms 1.6 ms 0.2 ms

Configuration 3
(3 ms window)
0.68 ms 1.6 ms 0.72 ms
UL Power Control

- Controls uplink power spectral density
 - Total uplink transmit power scales linearly with transmitted bandwidth
- Fractional power control can compensate for all or part of path loss
 - Allows trade-off between intra-cell fairness and inter-cell interference
- MCS-specific offsets may be applied
- Closed-loop power control commands can fine-tune the power setting
 - Carried on PDCCH
 - Individual commands in UL resource grants
 - Group commands for groups of UEs
- Separate power control for PUCCH and PUSCH
Reference Signal Received Power (RSRP)

- RSRP is defined as the linear average over the power contributions (in [W]) of the resource elements that carry cell-specific reference signals within the considered measurement frequency bandwidth.

- Reference point for the RSRP shall be the antenna connector of the UE.
Reference Signal Received Quality (RSRQ)

$$\text{RSRQ} = N \times \frac{\text{RSRP}}{\text{Carrier RSSI}}$$

- N is the number of RBs of the carrier RSSI measurement bandwidth.
- Carrier RSSI is the linear average of the
 - Total received power (in [W]) observed only in
 - Reference symbols for antenna port 0 in N RBs
- Measurements in the numerator and denominator shall be made over the same set of resource blocks.
References

- **3GPP Documents**
 - 36.101 Overview
 - 36.211 Physical channels and modulation
 - 36.212 Multiplexing and channel coding
 - 36.213 Physical layer procedures
 - 36.214 Physical layer measurements
 - 36.133 Radio resource management

- **Books**
 - LTE, The UMTS Long Term Evolution: From Theory to Practice (Matthew Baker et. al., Philips)
 - 3G EVOLUTION: HSPA and LTE for Mobile Broadband (Erik Dahlman et. al., Ericsson)
 - LTE for UMTS - OFDMA and SC-FDMA Based Radio Access (Anti Toskala et. al., Nokia / NSN)

- **Whitepapers and tutorials from Rohde Schwarz, Agilent, ...**
Thanks
Back-up Slides
Example procedures
Example: Indicating PDCCH format

Check PCFICH! It will tell you how many symbols (1, 2, 3 (or 4)) in the beginning of each subframe are allocated for PDCCH!

Physical Control Format Indicator Channel (PCFICH)

Physical Downlink Control Channel (PDCCH)

I would like to read the PDCCH but where is it?
1) Several identities are used in LTE to identify UE’s (e.g. C-RNTI), System Information (SI-RNTI), Paging Information (P-RNTI) or during Random Access Procedure (RA-RNTI), for details see 3GPP TS36.321 V8.5.0 MAC Protocol Specification.

[Src: Rohde Schwarz]
Example: Scheduling for uplink data

Check **PDCCH** for your UE ID. As soon as you are addressed, you will find your uplink scheduling grants there.

Physical Downlink Control Channel (PDCCH)

Physical Uplink Shared Channel (PUSCH)

(QPSK, 16QAM modulated, 64QAM is optional for the UE)

I would like to send **data** on **PUSCH** but I don’t know which resource blocks and transport formats I can use?

[Sr: Rohde Schwarz]
Example: Ack. UL data packets on PHICH

Read the **PHICH**. It carries ACK or NACK for each single packet.

Physical Hybrid ARQ Indicator Channel (PHICH)

Physical Uplink Shared Channel (PUSCH)

I have sent data packets on PUSCH but I don’t know whether they have been received correctly.

[Rohit Budhiraja](mailto:rohit.budhiraja@cewit.org) © CEWiT 2011
Thanks
Thanks
Concept of Antenna port (1/2)

- RS structure for 1, 2 and 4 antennas in normal CP

RS structure for 1, 2 and 4 antennas in normal CP:

- Antenna Port 0
- Antenna Port 1

Rohit Budhiraja
© CEWiT 2011
- UE specific RS for normal CP
 - Supports non-code book based beam forming
Code-rate calculation

- Code - rate = k/n
 - k = Number of information bits
 - n = Total number of bits transmitted

- TBS = 0 & NPRBS = 10
 - k = 256
 - n = modulation-order * Number of resource elements
 = 2 * (NPRBS * 120)
 = 2 * (10 * 120)
 = 2400
 - Code - rate = 256 / 2400 = .1066