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Outline of the talkOutline of the talk
 Brief overview of the eNodeB MAC-PHY interface

◊ Information sent by the MAC to the PHY

oData and control information
 Concepts of Adaptive Modulation & Coding, BLER & 

CQI
 Description of Transceiver chain

◊ Discussion of individual sub-blocks 

 Concepts of Channel Estimation and Equalization
 Synchronization principles

◊ DL Initial access
◊ UL RACH

 Initial access example
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Transport block (TB) sizes & Modulation 
order details
 TB sizes are specified in the standard using a Table

◊ Table is indexed using
oModulation and  Coding  Scheme (MCS)
oNumber of PRBS

 MCS indirectly specifies the coding-rate
 MCS and number of PRBS are decided by the 

Scheduler
◊ Based on Channel Quality Information (CQI) 

feedback from the UE
◊ Also a function of fairness and number of active 

users in the system
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Modulation order and TBS Index 
relationship

Two MCS indices refer 
to same TBS indices

Reserved for UL HARQ

Ref: (Table 7.1.7.1-1 of 36.213)Rohit Budhiraja © CEWiT 2011



Transport Block Size Table 

Ref: (Table 7.1.7.2.1-1 of 36.213)
Rohit Budhiraja © CEWiT 2011
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Adaptive Modulation & Coding 
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Fundamentals of Adaptive Modulation 
and Coding (AMC)

 Wireless channel has statistical variations
◊ A mobile user channel will vary with its location & speed

 Channel variations can be estimated and fed-back
◊ For a slow moving user:

o (Nearly) exact channel can be fed-back to eNodeB 
o Done by quantizing the channel

– Done by feeding back the MCS, PMI and RI (Will revisit later)

◊ For a fast moving user 
o First (mean) and second order (variance) statistics can be fed

 AMC
◊ Achieves capacity
◊ Binary (but not practical) way to state:

o Transmit only when channel is good and don’t when channel is 
bad

◊ Non binary way:
o Match the code-rate to the channel conditions

Rohit Budhiraja © CEWiT 2011



Channel Conditions
 Channel condition = SINR seen by a particular user

Rohit Budhiraja © CEWiT 2011

SINR CDF plot

20% UEs have SINR <= 0 dB



BLER concept
 Turbo codes are capacity achieving

◊ Does-not follow water-fall behavior like Convolutional code
◊ BER/BLER drops to zero after a particular SNR

Ref: (Figure 10.1 Stefania Sesia et. al, LTE – The UMTS Long Term Evolution)
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CQI concept
 UE calculates the post-processing SNR

◊ Post-processing SNR – Depends on the capability of UE (UE 
category)

◊ A particular category UE has 2 antennas
o 3 dB extra gain
o Category indirectly refers to the UE price

 UE maps the post-processing SNR to the MCS
 Different kinds of CQI
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Aperiodic CQI reporting (1/2)
 Wideband 

◊ CQI for the entire system bandwidth

 Higher layer configured sub-band 
◊ UE reports a wideband CQI value for the whole system 

bandwidth
◊ In addition, the UE reports a CQI value for each subband, 

calculated assuming transmission only in the relevant sub-
band

◊ Sub-band CQI reports are encoded differentially with 
respect to the wideband CQI using 2-bits as follows

Sub-band differential CQI offset = Sub-band CQI index 
−Wideband CQI index

◊ Possible sub-band differential CQI offsets are {<-
1,0,+1,>+2}

Ref: (Table 7.2.1-3 of 36.213)Rohit Budhiraja © CEWiT 2011



Aperiodic CQI reporting (2/2)
 UE selected sub-bands

◊ UE selects a set of M preferred sub-bands of size k within 
the whole system bandwidth

◊ UE reports one wideband CQI value and one CQI value 
reflecting the average quality of the M selected sub-bands

◊ UE also reports the positions of the M selected sub-bands
◊ Sub-band CQI reports are encoded differentially with 

respect to the wideband CQI using 2-bits as follows
Differential CQI = Index for average of M preferred 

sub-bands − Wideband CQI index
◊ Possible sub-band differential CQI offsets are 

{<+1,+2,+3,>+4}

Ref: (Table 7.2.1-5 of 36.213)Rohit Budhiraja © CEWiT 2011



Periodic reportingPeriodic reporting
 RRC connection reconfiguration message configures 

the reporting modes
◊ Only wideband and UE-selected sub-band feedback is 

possible for periodic CQI reporting
◊ Sent using the PUCCH
◊ Period   = {2, 5, 10, 16, 20, 32, 40, 64, 80, 160} ms or Off
◊ The UE selected subband reports are based on bandwidth 

parts and not  on subbands as in the aperiodic case

Rohit Budhiraja © CEWiT 2011 Ref: (Table 7.2.2-2 of 36.213)



LTE Transceiver chain
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CRC 
 Performs error detection

◊ Does not correct
 Essential for HARQ implementation
 Different CRC for data and control
 24-bit for data

◊ Transport block can be segmented into multiple code blocks
◊ CRC is computed for the Transport Block and each 

segmented code block
o Allows error detection at code-block level
o If a code-block is in error, no need to process remaining code 

blocks
◊ CRC for TB and each code-block

o Duplication of efforts?
o Different polynomials for TB-CRC and code-block CRC

– Allows detection of any residual errors 
 16-bit for DL control
 8-bit for UL control (when multiplexed with data)

Ref: (5.1.1 of 36.212)Rohit Budhiraja © CEWiT 2011



Segmentation
 Transport block size can be greater than Turbo code block size

◊ Maximum Turbo code block size – 6144
◊ Maximum Transport block size (for MCS-26 and 110 RBs)- 

73376
o TB should be segmented if TB size > 6144

 BLER performance is limited by the smallest TB size
◊ Coding gain is less

 Segmentation block ensures that a TB is divided into equal size 
code-blocks
◊ E.g., TB size of 6224 is segmented into two code block of 

sizes 3136
 Maximum Turbo code block size in UMTS – 5114

◊ Size increased in LTE such that 1500-byte TCP/IP packet is 
segmented into two code blocks instead of three
o Increase the coding gain
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Forward Error Correction Block

Turbo Encoder

S P1 P2

Sub-block Interleaver 0 Sub-block Interleaver 1 Sub-block Interleaver 2

Interleaved S Interleaved & Interlaced P1 and P2

Circular Buffer
1st Tx

2nd Tx
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Forward Error Correction Block
 Turbo block input = K bits

◊ Turbo block output  - 3 streams of K bits +12  tail bits
o K Systematic bits, K Parity1 bits, K Parity2 bits 
o 12 tail bits are shared across three stream

 Three streams are rearranged with their own sub-
block Interleavers
◊ Interleaver handles the block errors by spreading them 

across the code-block
 Single buffer is formed by placing the rearranged 

systematic bits 
 Systematic bits are followed by interlacing of the 

two rearranged parity streams
◊ Interlacing allows equal protection for each constituent 

code

Sub-block Interleaver is based on row-column 
interleaver.
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Rate Matching Principles
 Mother code-rate is 1/3
 Coded bits should be pruned to match the allocated 

resources
 Pruning implies repetition/puncturing

◊ E.g., TB size is 256 for MCS-0 (QPSK) and NPRB-10
o Total number of bits which can be transmitted 

–  10(NPRB) * 120(RE) * 2(QPSK) = 2400
o Turbo encoder output length – 256*3 = 768
o Bits should be repeated as encoded data is less than the 

resources available
– code-rate is lower than 1/3rd

◊ E.g., TB size is 1544 for MCS-9 (QPSK) and NPRB-10
o Total number of bits which can be transmitted 

–  10(NPRB) * 120(RE) * 2(QPSK) = 2400
o Turbo encoder output length – 1544*3 = 4632
o Bits should be punctured as encoded data is more than the 

resources available
– code-rate is higher than 1/3rd
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Rate Matcher in LTE
 Circular buffer based rate-matcher

2-D view of the circular buffer

Rohit Budhiraja © CEWiT 2011



Rate Matcher in LTE
 Redundancy version specifies a starting point in the 

circular buffer
 Different RVs are specified by defining different 

starting points
 Usually RV-0 is selected for initial transmission to 

send as many systematic bits as possible
 Scheduler can choose different RVs to support 

Chase and IR HARQ
 Systematic bits are also punctured

◊ Leads to enhanced performance at high-code rates [1]

[1] S. ten Brink, “Code Doping for Triggering Iterative Decoding

Convergence”
Rohit Budhiraja © CEWiT 2011



HARQ Principles
 Code-rate is decided by eNodeB after getting the 

CQI feed-back from UE
 In spite of this, a received TB could be in error

◊ Fast moving user
o CQI reported may be outdated

◊ Slow moving user
o Erroneous reporting of CQI in interference limited scenario

◊ Standard specifies that the UE should specify the MCS 
o such that BLER= 10-1

 HARQ is employed to utilize the time diversity
◊ Chase – Same bits are transmitted

o Allows Maximal ratio combining

◊ Incremental redundancy – different RVs are transmitted
o Coding gain

Rohit Budhiraja © CEWiT 2011



HARQ details 
 Multiple parallel Stop and Wait processes in parallel

 Eight processes in parallel

Ref: (Figure 19.1, Dehlman et. al.  3G EVOLUTION : HSPA  AND LTE FOR MOBILE BROADBAND)

Rohit Budhiraja © CEWiT 2011



HARQ flow-diagram in DLHARQ flow-diagram in DL
 ACK/NACK for data packets transmitted in the 

downlink: UE requests retransmission of incorrectly 
received data packets
◊ ACK/NACK is transmitted in UL, either on PUCCH or mux 

with PUSCH
◊ ACK/NACK transmission refers to the data packet received 

four sub-frames (= 4 ms) before,

Ref: (Figure 4.4, Freescale white paper, Long Term Evolution Protocol Overview)
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HARQ flow-diagram in ULHARQ flow-diagram in UL
 eNodeB requests retransmission of incorrectly 

received data packets
◊ ACK/NACK is transmitted in PHICH
◊ ACK/NACK transmission refers to the data packet received 

four sub-frames (= 4 ms) before,

Ref: (Figure 4.6, Freescale white paper, Long Term Evolution Protocol Overview)
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Scrambler
 Scrambling is applied to all downlink physical 

channels
 Initialized using cell-id

◊ Serves the purpose of interference randomization

 Order-31 Gold code 
◊ 231 sequences

 Can be generated with very low implementation 
complexity
◊ Modulo-2 addition of two sequences
◊ Can be generated from two shift registers

 Fast-forwarding for 1600 clocks
◊ Reduces correlation between sequence used in adjacent 

cells

Scr

Seq



Modulation – Downlink Alphabet

Channels Modulation scheme

PBCH QPSK

PDCCH QPSK

PDSCH QPSK, 16-QAM, 64-QAM

PMCH QPSK, 16-QAM, 64-QAM

PCFICH QPSK

PHICH BPSK modulated on I and Q with 
the spreading factor 2 or 4 Walsh 
codes

Signals Modulation scheme

RS Complex I+jQ pseudo random 
sequence (length-31 Gold 
sequence) derived from cell ID

P-SCH One of three Zadoff-Chu sequences

S-SCH Two 31-bit BPSK PN-sequence
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Modulation – Uplink Alphabet

Channels Modulation scheme

PUCCH BPSK, QPSK

PUSCH QPSK, 16-QAM, 64-QAM

PRACH Zadoff-Chu

Signals Modulation scheme

Demodulation 
RS

Zadoff-chu

Sounding RS Based on Zadoff-Chu
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Code-word to Layer Mapping (1/3)
 Mapping of symbols on-to the antenna ports
 Layer mapping depends on the MIMO scheme 

employed
 Number of layers is equal to the antenna ports used

◊ Concept of Antenna Port

 Layer Mapping for transmission on single antenna 
port

(Ref:6.3.3.2 of 36.211)
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Code-word to Layer Mapping (2/3)
 Layer Mapping for transmit diversity

(Ref:6.3.3.2 of 36.211)
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Code-word to Layer Mapping (3/3)
 Layer Mapping for spatial multiplexing

(Ref:6.3.3.2 of 36.211)
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Rank Indicator (RI)
 A 2 x 2 MIMO system is represented as a set of 

linear equations
h11x + h12 y = c1

h21x + h22 y = c2

 RI definition in the LTE framework
◊ Borrowed from Linear Algebra and is defined as the number 

of independent columns 
o Number of independent columns = Number of streams
o For a 2 x 2 MIMO system, 

– Number of independent columns = 1, 2

 UE can decide the Rank using different performance 
criterion
◊ Throughput maximization

o Calculate the throughput using Rank - 1 and  Rank – 2
o Feedback the rank which gives the maximum throughput
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Precoder
 Open loop precoding

◊ No feedback from UE
o Transmit diversity

 Closed loop precoding
◊ Requires feedback from the UE

o UE calculates the post-processing SNR for different precoding 
matrices

o Reports the matrix which results in best SNR (PMI)

 Post-processing SNR for single stream transmission

h1

h2
h12 + h22

h1

h3 =j*h2 h12 + h32

Without PMI With PMI = 3
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Precoding Matrix IndicatorPrecoding Matrix Indicator
 Applicable for transmission modes 4, 5 and 6
 Indicates the precoder weights used for precoding

◊ usual objective function is post-SINR maximization

 Feedback bits depends on the number of tx 
antenna ports
◊ {0, 1} in case with 2 antenna port
◊ {0, 1, … , 15} with 4 antenna ports

 PMI sent on either PUSCH or PUCCH
Single stream Dual stream

Two transmit Two transmit 
antennasantennas

[1     1] [[1    1], [1   
-1]]

[1   -1] [[1     j], [1    -j]]

[1     j]

[1    -j]
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Resource Block Mapping and 
Baseband Signal Generation
 Symbols are mapped on-to the 2-D Resource Blocks
 Location of Resource blocks allocated to a user depends on the CQI 

feedback from the user
◊ Decided by the scheduler in the MAC layer

DACs

Frequency domain 
symbol

U1

U2

G

G

IFFT
Time domain symbol

CP 
addition
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OFDM basics (1/2)
 OFDM is sum of sinusoids on in-phase and 

quadrature arms
◊ I = ∑i sin(2*π*fit) + j*∑i cos(2*π*fit)

◊ Sinusoids are orthogonal over one period of lowest 
frequency sinusoid

◊ Sinusoids are separated by ∆f = 1/Ts
◊ Can be easily separated at the receiver by observing one 

period of lowest frequency sinusoid

 From ‘Signal and Systems fundamentals’
◊ Sinusoids are Eigen functions of an LTI systems

o In case of wireless systems, multipath channel is the LTI 
system

◊ O/P is only a scaled version of the I/P
o Individual rx subcarriers are scaled version of tx subcarriers
o Scaling factor (Channel coefficients) can be easily determined 

using well established signal processing techniques like Least 
Squares etcRohit Budhiraja © CEWiT 2011



OFDM basics (2/2)
 CP – Few samples of the sum of sinusoids are taken 

from the end are appended in the beginning
◊ Extends the symbol duration and also phase continuity is 

maintained
o Helps in tackling multipath
o Ensures that timing estimation can have tolerance of few 

samples

Window 1

Window 2

Window 3

Samples corrupted 
by Multipath
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Demodulation (1/2)
 Equalizer output can be processed in two ways

◊ Sub-optimum

o Apply the nearest distance detection rule 
– Threshold the equalized symbols to the nearest transmitted 

symbol 
– Demap the symbols into bits

o Results in a penalty of 2-3 dB

x

(0,0)

(0,1)

(1,0)

(1,1)
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Demodulation (2/2)
 Optimum

◊ Apply the nearest distance detection rule 
o Calculate LLR = log(b0/b1)

o E.g., if x = 0.1 – j0.1, 
– LLR_bit0 ≈ 0.1 & LLR_bit1 ≈ - 0.1

x

(0,0)

(0,1)

(1,0)

(1,1)
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De-rate Matching Principles
 Recall

◊ Turbo mother code-rate is 1/3
◊ Coded bits were pruned to match the allocated resources

o Pruning implies repetition/puncturing
– Repetition implies that code-rate is lower than 1/3rd

– Puncturing implies that code-rate is higher than 1/3rd

 Turbo decoder is designed for code-rate = 1/3
◊ Code rate should be made = 1/3

o LLRs of repeated bits are added
o Zeros are inserted in place of LLRs of punctured bits

Rohit Budhiraja © CEWiT 2011



SynchronisationSynchronisation
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LTE Initial accessLTE Initial access

46Rohit Budhiraja © CEWiT 2011



Cell search (1/3)Cell search (1/3)
 Cell search: Mobile terminal or user equipment (UE) acquires 

time and frequency synchronization with a cell and detects 
the cell ID of that cell
◊ Based on BCH (Broadcast Channel) signal and hierarchical SCH 

(Synchronization Channel) signals
 Cell search procedure:

Step 1: Find Primary SCH sequence
o Obtain 5ms timing
o Get cell identity within the cell-identity group (3 nos)

Step 2: Find Secondary SCH sequence
o Sequence pair to obtain exact frame timing
o Obtain cell identity group (168 nos)
o Know also the reference signal sequence

Step 3: Read BCH
o Obtain basic data as bandwidth, number of antennas etc.

Rohit Budhiraja © CEWiT 2011



Cell search (2/3)Cell search (2/3)

48

[Src: Telesystem 
Innov.]

Synchronization signals in the time domain
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Cell search (3/3)Cell search (3/3)

  

49

1. Primary synchronization signal (PSS)
• 3 possible sequences to identify the 

cells physical layer identity (0, 1, 2)
1. Secondary synchronization signal 

(SSS)
• 168 different sequences to identify 

physical layer cell identity group

[Src: Rohde 
Schwarz]
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Summary of Cell-search StagesSummary of Cell-search Stages

50

[Src: Rohde 
Schwarz]

Rohit Budhiraja © CEWiT 2011



PBCHPBCH
 Physical Broadcast Channel (PBCH)

◊ Carrying broadcast channel (BCH) with Master Information 
Block (MIB) System bandwidth [4 bit], PHICH configuration 
[Duration: 1 bit, Resource: 2 bit], System Frame Number 
[SFN, 8 bit] and indirect about the used Tx antennas,

◊ QPSK modulated, cell-specific scrambling
◊ Transmitted on 72 subcarriers around the carrier frequency

51Rohit Budhiraja © CEWiT 2011



PBCHPBCH
 PBCH structure
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[Src: Telesystem 
Innov.]
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PBCH GenerationPBCH Generation

53

[Src: Rohde 
Schwarz]
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Uplink Synchronisation (1/2)
 Three users in a system
 Three of them located at differential distances from the eNodeB

 Different RTDs will lead to interference at the eNodeB

Sub-frame 
duration

RTD3RTD1 RTD2

B
S

 tim
in

g
 re

fe
re

n
c e
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Uplink Synchronisation (2/2)
 Uplink transmission orthogonality between users is 

maintained by timing advance
◊ Set initially during Random Access Procedure
◊ Updated as necessary subsequently

 Supports at least 100 km cell range
◊ Greater ranges are upto implementation

NTA can range from 0 to 20512, Ts = 1/30.72 µsec

TS 36.211TS 36.211
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PRACH (1/2)PRACH (1/2)
 Carries the RACH preamble a UE sends to access 

the network in non-synchronized mode and used to 
allow the UE to synchronize timing with the eNodeB

Rohit Budhiraja © CEWiT 2011



PRACH (2/2)PRACH (2/2)
 Subcarrier spacing of 1.25 KHz
 Consists of 839 subcarriers = 1.05 MHz

◊ 15 KHz guard, either side

 FDD LTE -> 4 formats
◊ Format 0, good upto 14 Km

o 1 msec subframe

 Position fixed by SIB2

Rohit Budhiraja © CEWiT 2011



Preamble FormatsPreamble Formats

Rohit Budhiraja © CEWiT 2011



UL Power ControlUL Power Control
 Controls uplink power spectral density

◊ Total uplink transmit power scales linearly with transmitted 
bandwidth

 Fractional power control can compensate for all or 
part of path loss
◊ Allows trade-off between intra-cell fairness and inter-cell 

interference

 MCS-specific offsets may be applied
  Closed-loop power control commands can fine-tune 

the power setting 
◊ Carried on PDCCH

o Individual commands in UL resource grants
o Group commands for groups of UEs

  Separate power control for PUCCH and PUSCH
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Reference Signal Received Power (RSRP)

 RSRP is defined as the linear average over the 
power contributions (in [W]) of the resource 
elements that carry cell-specific reference signals 
within the considered measurement frequency 
bandwidth

 Reference point for the RSRP shall be the antenna 
connector of the UE

Rohit Budhiraja © CEWiT 2011



Reference Signal Received Quality (RSRQ)

RSRQ = N x RSRP /Carrier RSSI
 N is the number of RBs of the carrier RSSI 

measurement bandwidth.
 Carrier RSSI is  the linear average of the

◊ Total received power (in [W]) observed only in
o Reference symbols for antenna port 0 in N RBs 

 Measurements in the numerator and denominator 
shall be made over the same set of resource blocks

Rohit Budhiraja © CEWiT 2011
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ThanksThanks
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Back-up Slides
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Example proceduresExample procedures
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Example: Indicating PDCCH formatExample: Indicating PDCCH format

66

[Src: Rohde 
Schwarz]
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Example: Deriving information in LTEExample: Deriving information in LTE

67

1) Several identities are used in LTE to identify UE’s (e.g. C-RNTI), System 
Information (SI-RNTI), Paging Information (P-RNTI) or during Random Access 
Procedure (RA-RNTI), for details see 3GPP TS36.321 V8.5.0 MAC Protocol 
Specification

[Src: Rohde 
Schwarz]
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Example: Scheduling for uplink dataExample: Scheduling for uplink data

Rohit  Budhiraja © CEWiT 2011 68
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Example: Ack. UL data packets on PHICHExample: Ack. UL data packets on PHICH
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[Src: Rohde 
Schwarz]
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ThanksThanks
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ThanksThanks
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Concept of Antenna port (1/2)Concept of Antenna port (1/2)
 RS structure for 1, 2 and 4 antennas in normal CP

72

Antenna Port 0
Antenna Port 1Antenna Port 1
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Concept of Antenna port (2/2)Concept of Antenna port (2/2)
 UE specific RS for normal CP

◊ Supports non-code book based beam forming
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Code-rate calculationCode-rate calculation
 Code – rate = k/n

◊ k = Number of information bits
◊ n = Total number of bits transmitted

 TBS – 0  & NPRBS = 10
◊ k = 256
◊ n = modulation-order * Number of resource elements

= 2 * (NPRBS * 120)
= 2 * (10 * 120)
= 2400

◊ Code – rate = 256 / 2400 = .1066

© CEWiT 2011 74
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