Precoder Design for Asymmetric Two-way AF Shared Relay

Rohit Budhiraja Prof. Bhaskar Ramamurthi

Department of Electrical Engineering Indian Institute of Technology Madras May 29, 2013

- Cooperative communication can lead to significant performance improvements in wireless systems.
- Conventional one-way relaying is an example.

- Cooperative communication can lead to significant performance improvements in wireless systems.
- Conventional one-way relaying is an example.
- Half-duplex signaling in one-way relaying leads to loss of $\frac{1}{2}$ of spectral resources.
- Four channel uses are required for bidirectional data exchange.

- Cooperative communication can lead to significant performance improvements in wireless systems.
- Conventional one-way relaying is an example.
- Half-duplex signaling in one-way relaying leads to loss of $\frac{1}{2}$ of spectral resources.
- Four channel uses are required for bidirectional data exchange.
- Two-way relaying requires two channel uses instead of four.¹

- Cooperative communication can lead to significant performance improvements in wireless systems.
- Conventional one-way relaying is an example.
- Half-duplex signaling in one-way relaying leads to loss of $\frac{1}{2}$ of spectral resources.
- Four channel uses are required for bidirectional data exchange.
- Two-way relaying requires two channel uses instead of four.¹

- Cooperative communication can lead to significant performance improvements in wireless systems.
- Conventional one-way relaying is an example.
- Half-duplex signaling in one-way relaying leads to loss of $\frac{1}{2}$ of spectral resources.
- Four channel uses are required for bidirectional data exchange.
- Two-way relaying requires two channel uses instead of four.¹

¹Rankov, B and Wittneben, A, "Spectral Efficient Protocols for Half-Duplex Fading Relay Channels", IEEE J. Sel. Areas Commun, vol. 25, no. 2, pp. 375–385, 2007.

Two-way relaying

Two source nodes simultaneously transmit to the relay during first phase.

Figure: First phase of two-way relaying

Two-way relaying

Two source nodes simultaneously transmit to the relay during first phase.

Figure: First phase of two-way relaying

Relay broadcasts a function of the sum-signal during second phase.

Figure: Broadcast phase of two-way relaying

 Two-way relaying is most appropriate when two nodes exchange data simultaneously.

- Two-way relaying is most appropriate when two nodes exchange data simultaneously.
- Simultaneous two-way data exchange need not happen in cellular systems.

- Two-way relaying is most appropriate when two nodes exchange data simultaneously.
- Simultaneous two-way data exchange need not happen in cellular systems.
- User might have uplink data to transmit but no downlink data to receive.

- Two-way relaying is most appropriate when two nodes exchange data simultaneously.
- Simultaneous two-way data exchange need not happen in cellular systems.
- User might have uplink data to transmit but no downlink data to receive.
- Two-way relaying will reduce to conventional one-way relaying.

Asymmetric Two-way relaying

• Consider infrastructure relay scenario, where multiple UEs are served through a relay.

Figure: Asymmetric two-way relaying.

Asymmetric Two-way relaying

 Consider infrastructure relay scenario, where multiple UEs are served through a relay.

Figure: Asymmetric two-way relaying.

• Two single-antenna UEs want to communicate with a BS.

Asymmetric Two-way relaying

 Consider infrastructure relay scenario, where multiple UEs are served through a relay.

Figure: Asymmetric two-way relaying.

- Two single-antenna UEs want to communicate with a BS.
- \bullet UE₁ has data to be sent to the BS. UE₂ wants to receive data from BS.

• Leads to problem of asymmetric back-propagating interference (BPI).

- Leads to problem of asymmetric back-propagating interference (BPI).
- BS can cancel the BPI, while Downlink single-antenna UE (UE₂) cannot.

- Leads to problem of asymmetric back-propagating interference (BPI).
- BS can cancel the BPI, while Downlink single-antenna UE (UE₂) cannot.
- We have proposed a precoder to cancel the asymmetric back-propagating interference for UE₂.²

- Leads to problem of asymmetric back-propagating interference (BPI).
- BS can cancel the BPI, while Downlink single-antenna UE (UE₂) cannot.
- We have proposed a precoder to cancel the asymmetric back-propagating interference for UE₂.²
- Proposed precoder is shown to be better than the conventional ZF and MMSE precoders.

Asymmetric Two-way relaying for a shared relay

• Data-flow asymmetry problem is extended to shared relay in this work.³

Figure: Illustration of asymmetric two-way shared relaying.

³ S.W. Peters, A.Y. Panah, K.T. Truong and R.W Heath "Relay architectures for 3GPP LTE-Advanced", EURASIP J. Wireless

Asymmetric Two-way relaying for a shared relay

Data-flow asymmetry problem is extended to shared relay in this work.³

Figure: Illustration of asymmetric two-way shared relaying.

BSs can cancel the back-propagating interference (BPI), but not IUI.

³ S.W. Peters, A.Y. Panah, K.T. Truong and R.W Heath "Relay architectures for 3GPP LTE-Advanced", EURASIP J. Wireless

Asymmetric Two-way relaying for a shared relay

• Data-flow asymmetry problem is extended to shared relay in this work.³

Figure: Illustration of asymmetric two-way shared relaying.

- BSs can cancel the back-propagating interference (BPI), but not IUI.
- Downlink UEs cannot cancel both BPI and IUI.

³S.W. Peters, A.Y. Panah, K.T. Truong and R.W Heath "Relay architectures for 3GPP LTE-Advanced", EURASIP J. Wireless Commun. and Netw.

• BSs and UEs have one antenna each.

• BSs and UEs have one antenna each.

• x_1^k and x_2^k : Data transmitted by $\mathsf{UE}_1^{(k)}$ and $\mathsf{BS}^{(k)}$ to the relay during phase-1.

- BSs and UEs have one antenna each.
- x_1^k and x_2^k : Data transmitted by $\mathsf{UE}_1^{(k)}$ and $\mathsf{BS}^{(k)}$ to the relay during phase-1.
- \mathbf{h}_1^k and \mathbf{h}_2^k : Uplink channels observed by the relay from $\mathsf{UE}_1^{(k)}$ and $\mathsf{BS}^{(k)}$.

- BSs and UEs have one antenna each.
- x_1^k and x_2^k : Data transmitted by $\mathsf{UE}_1^{(k)}$ and $\mathsf{BS}^{(k)}$ to the relay during phase-1.
- \mathbf{h}_1^k and \mathbf{h}_2^k : Uplink channels observed by the relay from $\mathsf{UE}_1^{(k)}$ and $\mathsf{BS}^{(k)}$.
- $\mathbf{y}_r = \sum_{k=1}^K \mathbf{H}_k \mathbf{x}_k + \mathbf{n}_r$: Sum-signal received by the relay during phase-1.

- BSs and UEs have one antenna each.
- x_1^k and x_2^k : Data transmitted by $\mathsf{UE}_1^{(k)}$ and $\mathsf{BS}^{(k)}$ to the relay during phase-1.
- \mathbf{h}_1^k and \mathbf{h}_2^k : Uplink channels observed by the relay from $\mathsf{UE}_1^{(k)}$ and $\mathsf{BS}^{(k)}$.
- $\mathbf{y}_r = \sum_{k=1}^K \mathbf{H}_k \mathbf{x}_k + \mathbf{n}_r$: Sum-signal received by the relay during phase-1.
- Here $\mathbf{H}_k = \begin{bmatrix} \mathbf{h}_1^k & \mathbf{h}_2^k \end{bmatrix}$ and $\mathbf{x}_k = \begin{bmatrix} x_1^k & x_2^k \end{bmatrix}^T$.

- BSs and UEs have one antenna each.
- x_1^k and x_2^k : Data transmitted by $\mathsf{UE}_1^{(k)}$ and $\mathsf{BS}^{(k)}$ to the relay during phase-1.
- \mathbf{h}_1^k and \mathbf{h}_2^k : Uplink channels observed by the relay from $\mathsf{UE}_1^{(k)}$ and $\mathsf{BS}^{(k)}$.
- $\mathbf{y}_r = \sum_{k=1}^K \mathbf{H}_k \mathbf{x}_k + \mathbf{n}_r$: Sum-signal received by the relay during phase-1.
- Here $\mathbf{H}_k = \begin{bmatrix} \mathbf{h}_1^k & \mathbf{h}_2^k \end{bmatrix}$ and $\mathbf{x}_k = \begin{bmatrix} x_1^k & x_2^k \end{bmatrix}^T$.
- Signal transmit by the relay: $\mathbf{x}_r = \mathbf{W}\mathbf{y}_r$.

ullet \mathbf{g}_1^k and \mathbf{g}_2^k : Downlink channels seen by $\mathsf{UE}_2^{(k)}$ and $\mathsf{BS}^{(k)}$ respectively.

- \mathbf{g}_1^k and \mathbf{g}_2^k : Downlink channels seen by $\mathsf{UE}_2^{(k)}$ and $\mathsf{BS}^{(k)}$ respectively.
- Signals received by $\mathsf{UE}_2^{(k)}$ and $\mathsf{BS}^{(k)}$, y_1^k and y_2^k during phase-2

$$y_i^k = \left(\mathbf{g}_i^k\right)^T \mathbf{x}_r + n_i^k, \qquad i = 1, 2. \tag{1}$$

- \mathbf{g}_1^k and \mathbf{g}_2^k : Downlink channels seen by $\mathsf{UE}_2^{(k)}$ and $\mathsf{BS}^{(k)}$ respectively.
- ullet Signals received by $\mathsf{UE}_2^{(k)}$ and $\mathsf{BS}^{(k)}$, y_1^k and y_2^k during phase-2

$$y_i^k = \left(\mathbf{g}_i^k\right)^T \mathbf{x}_r + n_i^k, \qquad i = 1, 2. \tag{1}$$

• Maximum rates observed by $BS^{(k)}$ and $UE_2^{(k)}$ are given respectively as:

$$R_b^k = \log\left(1 + \mathsf{SNR}_b^k\right), R_u^k = \log\left(1 + \mathsf{SNR}_u^k\right). \tag{2}$$

- \mathbf{g}_1^k and \mathbf{g}_2^k : Downlink channels seen by $\mathsf{UE}_2^{(k)}$ and $\mathsf{BS}^{(k)}$ respectively.
- Signals received by $\mathsf{UE}_2^{(k)}$ and $\mathsf{BS}^{(k)}$, y_1^k and y_2^k during phase-2

$$y_i^k = \left(\mathbf{g}_i^k\right)^T \mathbf{x}_r + n_i^k, \qquad i = 1, 2. \tag{1}$$

• Maximum rates observed by $BS^{(k)}$ and $UE_2^{(k)}$ are given respectively as:

$$R_b^k = \log\left(1 + \mathsf{SNR}_b^k\right), R_u^k = \log\left(1 + \mathsf{SNR}_u^k\right). \tag{2}$$

• $R_{sum} = \frac{1}{2} \sum_{k=1}^{K} R_b^k + R_u^k$ is the system sum-rate.

- \mathbf{g}_1^k and \mathbf{g}_2^k : Downlink channels seen by $\mathsf{UE}_2^{(k)}$ and $\mathsf{BS}^{(k)}$ respectively.
- ullet Signals received by $\mathsf{UE}_2^{(k)}$ and $\mathsf{BS}^{(k)}$, y_1^k and y_2^k during phase-2

$$y_i^k = \left(\mathbf{g}_i^k\right)^T \mathbf{x}_r + n_i^k, \qquad i = 1, 2. \tag{1}$$

• Maximum rates observed by $BS^{(k)}$ and $UE_2^{(k)}$ are given respectively as:

$$R_b^k = \log\left(1 + \mathsf{SNR}_b^k\right), R_u^k = \log\left(1 + \mathsf{SNR}_u^k\right). \tag{2}$$

- $R_{sum} = \frac{1}{2} \sum_{k=1}^{K} R_b^k + R_u^k$ is the system sum-rate.
 - Used for performance comparison.

Problem Description

 Design of precoder to cancel the BPI and IUI for downlink UEs and IUI for the BS.

Problem Description

 Design of precoder to cancel the BPI and IUI for downlink UEs and IUI for the BS.

• Precoder structure: W = MDF, where

Problem Description

- Design of precoder to cancel the BPI and IUI for downlink UEs and IUI for the BS.
- Precoder structure: W = MDF, where
 - ▶ **F** : Uplink precoder matrix

- Design of precoder to cancel the BPI and IUI for downlink UEs and IUI for the BS.
- Precoder structure: W = MDF, where
 - ▶ **F** : Uplink precoder matrix
 - ▶ D: Permutation and power-normalization matrix, and

- Design of precoder to cancel the BPI and IUI for downlink UEs and IUI for the BS.
- Precoder structure: W = MDF, where
 - ▶ **F** : Uplink precoder matrix
 - ▶ D: Permutation and power-normalization matrix, and
 - ► M: Downlink precoder matrix.

- Design of precoder to cancel the BPI and IUI for downlink UEs and IUI for the BS.
- Precoder structure: W = MDF, where
 - ▶ **F** : Uplink precoder matrix
 - D: Permutation and power-normalization matrix, and
 - M: Downlink precoder matrix.
- $\mathbf{F} = [\mathbf{F}_1^T \ \mathbf{F}_2^T \ \cdots \ \mathbf{F}_K^T]^T$ and $\mathbf{M} = [\mathbf{M}_1 \ \mathbf{M}_2 \ \cdots \ \mathbf{M}_K]$ are individual uplink and downlink precoders.

- Design of precoder to cancel the BPI and IUI for downlink UEs and IUI for the BS.
- Precoder structure: W = MDF, where
 - ▶ **F** : Uplink precoder matrix
 - ▶ D: Permutation and power-normalization matrix, and
 - M: Downlink precoder matrix.
- $\mathbf{F} = [\mathbf{F}_1^T \ \mathbf{F}_2^T \ \cdots \ \mathbf{F}_K^T]^T$ and $\mathbf{M} = [\mathbf{M}_1 \ \mathbf{M}_2 \ \cdots \ \mathbf{M}_K]$ are individual uplink and downlink precoders.
- $\mathbf{D} = \mathsf{diag}\{\mathbf{D}_1, \mathbf{D}_2, \cdots, \mathbf{D}_K\}$. Permutation matrix \mathbf{D}_k is given as:
 - $\mathbf{D}_k = \begin{bmatrix} 0 & \beta \\ \beta & 0 \end{bmatrix}$. β is used to normalize the relay power.

Two-step precoder design

- Two-step precoder design
 - Precoder to block-diagonalize the channel matrix to cancel the IUI⁴.

⁴Erhan Ylmaz, Randa Zakhour, David Gesbert and Raymond Knopp "Multi-Pair Two-Way Relay Channel with Multiple Antenna Relay Station", Proc. IEEE Int. Conf. Communications (ICC), 2010.

- Two-step precoder design
 - Precoder to block-diagonalize the channel matrix to cancel the IUI⁴.
 - ② Precoder to cancel the BPI for UE_2^k from the IUI-free channel

⁴Erhan Ylmaz, Randa Zakhour, David Gesbert and Raymond Knopp "Multi-Pair Two-Way Relay Channel with Multiple Antenna Relay Station", Proc. IEEE Int. Conf. Communications (ICC), 2010.

- Two-step precoder design
 - Precoder to block-diagonalize the channel matrix to cancel the IUI⁴.
 - ② Precoder to cancel the BPI for UE_2^k from the IUI-free channel
- To cancel the UL IUI, $\mathbf{F}_k^{(1)}$ should be in the null space of $\widetilde{\mathbf{H}}_k = [\ \mathbf{H}_1 \ \cdots \ \mathbf{H}_{k-1} \ \mathbf{H}_{k+1} \ \cdots \ \mathbf{H}_K \].$

⁴Erhan Ylmaz, Randa Zakhour, David Gesbert and Raymond Knopp "Multi-Pair Two-Way Relay Channel with Multiple Antenna Relay Station", Proc. IEEE Int. Conf. Communications (ICC), 2010.

- Two-step precoder design
 - Precoder to block-diagonalize the channel matrix to cancel the IUI⁴.
 - ② Precoder to cancel the BPI for UE_2^k from the IUI-free channel
- To cancel the UL IUI, $\mathbf{F}_k^{(1)}$ should be in the null space of $\widetilde{\mathbf{H}}_k = [\mathbf{H}_1 \ \cdots \ \mathbf{H}_{k-1} \ \mathbf{H}_{k+1} \ \cdots \ \mathbf{H}_K].$
- To cancel the DL IUI, $\mathbf{M}_{k}^{(1)}$ should be in the null space of $\widetilde{\mathbf{G}}_{k} = [\mathbf{G}_{1} \cdots \mathbf{G}_{k-1} \mathbf{G}_{k+1} \cdots \mathbf{G}_{K}].$

⁴Erhan Ylmaz, Randa Zakhour, David Gesbert and Raymond Knopp "Multi-Pair Two-Way Relay Channel with Multiple Antenna Relay Station", Proc. IEEE Int. Conf. Communications (ICC), 2010.

- Two-step precoder design
 - Precoder to block-diagonalize the channel matrix to cancel the IUI⁴.
 - ② Precoder to cancel the BPI for UE_2^k from the IUI-free channel
- To cancel the UL IUI, $\mathbf{F}_k^{(1)}$ should be in the null space of $\widetilde{\mathbf{H}}_k = [\mathbf{H}_1 \quad \cdots \quad \mathbf{H}_{k-1} \quad \mathbf{H}_{k+1} \quad \cdots \quad \mathbf{H}_K].$
- To cancel the DL IUI, $\mathbf{M}_{k}^{(1)}$ should be in the null space of $\widetilde{\mathbf{G}}_{k} = [\mathbf{G}_{1} \cdots \mathbf{G}_{k-1} \mathbf{G}_{k+1} \cdots \mathbf{G}_{K}].$
- $\aleph(\widetilde{\mathbf{H}}_k)$ and $\aleph(\widetilde{\mathbf{G}}_k)$ are found using singular-value-decomposition.

⁴Erhan Ylmaz, Randa Zakhour, David Gesbert and Raymond Knopp "Multi-Pair Two-Way Relay Channel with Multiple Antenna Relay Station", Proc. IEEE Int. Conf. Communications (ICC), 2010.

- Two-step precoder design
 - Precoder to block-diagonalize the channel matrix to cancel the IUI⁴.
 - ② Precoder to cancel the BPI for UE_2^k from the IUI-free channel
- To cancel the UL IUI, $\mathbf{F}_k^{(1)}$ should be in the null space of $\widetilde{\mathbf{H}}_k = [\mathbf{H}_1 \cdots \mathbf{H}_{k-1} \mathbf{H}_{k+1} \cdots \mathbf{H}_K]$.
- To cancel the DL IUI, $\mathbf{M}_{k}^{(1)}$ should be in the null space of $\widetilde{\mathbf{G}}_{k} = [\mathbf{G}_{1} \cdots \mathbf{G}_{k-1} \mathbf{G}_{k+1} \cdots \mathbf{G}_{K}].$
- $\aleph(\widetilde{\mathbf{H}}_k)$ and $\aleph(\widetilde{\mathbf{G}}_k)$ are found using singular-value-decomposition.
- IUI-free channel can be viewed as multiple single-user-pair systems.

⁴Erhan Ylmaz, Randa Zakhour, David Gesbert and Raymond Knopp "Multi-Pair Two-Way Relay Channel with Multiple Antenna Relay Station", Proc. IEEE Int. Conf. Communications (ICC), 2010.

• Precoder designed to cancel the BPI for single-user-pair can be used⁵.

⁵Rohit Budhiraja, Karthik KS and Bhaskar Ramamurthi "Linear Precoders for Two-way Asymmetric Multiuser Relaying in Cellular Systems", Proc. IEEE Int. Conf. Communications (ICC), 2013

- Precoder designed to cancel the BPI for single-user-pair can be used⁵.
- Signal received by UE₂ and BS during the BC phase are re-written as:

$$y = GW(Hx + n_r) + n$$

$$= \underbrace{GM}_{G_t} \underbrace{D}_{H_t} \underbrace{FH}_{H_t} x + \underbrace{GWn_r + n}_{n_t}$$

$$= G_t DH_t x + n_t$$

- Precoder designed to cancel the BPI for single-user-pair can be used⁵.
- Signal received by UE₂ and BS during the BC phase are re-written as:

$$y = GW(Hx + n_r) + n$$

$$= \underbrace{GM}_{G_t} \underbrace{D}_{H_t} \underbrace{FH}_{t} x + \underbrace{GWn_r + n}_{n_t}$$

$$= G_t DH_t x + n_t$$

• Precoders $\mathbf{M}_k^{(2)}$ and $\mathbf{F}_k^{(2)}$ should be designed such that \mathbf{G}_t and \mathbf{H}_t are lower-triangular and upper-triangular.

- Precoder designed to cancel the BPI for single-user-pair can be used⁵.
- Signal received by UE₂ and BS during the BC phase are re-written as:

$$\begin{aligned} \mathbf{y} &= \mathbf{GW} \left(\mathbf{H} \mathbf{x} + \mathbf{n}_r \right) + \mathbf{n} \\ &= \underbrace{\mathbf{GM}}_{\mathbf{G}_t} \mathbf{D} \underbrace{\mathbf{FH}}_{\mathbf{H}_t} \mathbf{x} + \underbrace{\mathbf{GWn}_r + \mathbf{n}}_{\mathbf{n}_t} \\ &= \mathbf{G}_t \mathbf{DH}_t \mathbf{x} + \mathbf{n}_t \end{aligned}$$

- Precoders $\mathbf{M}_k^{(2)}$ and $\mathbf{F}_k^{(2)}$ should be designed such that \mathbf{G}_t and \mathbf{H}_t are lower-triangular and upper-triangular.
 - LQ and QR factorizations are used.

- Precoder designed to cancel the BPI for single-user-pair can be used⁵.
- Signal received by UE₂ and BS during the BC phase are re-written as:

$$\begin{aligned} \mathbf{y} &= \mathbf{GW} \left(\mathbf{H} \mathbf{x} + \mathbf{n}_r \right) + \mathbf{n} \\ &= \underbrace{\mathbf{GM}}_{\mathbf{G}_t} \mathbf{D} \underbrace{\mathbf{FH}}_{\mathbf{H}_t} \mathbf{x} + \underbrace{\mathbf{GW} \mathbf{n}_r + \mathbf{n}}_{\mathbf{n}_t} \\ &= \mathbf{G}_t \mathbf{DH}_t \mathbf{x} + \mathbf{n}_t \end{aligned}$$

- Precoders $\mathbf{M}_k^{(2)}$ and $\mathbf{F}_k^{(2)}$ should be designed such that \mathbf{G}_t and \mathbf{H}_t are lower-triangular and upper-triangular.
 - LQ and QR factorizations are used.
- ullet $\mathbf{M}_k = \mathbf{M}_k^{(2)} \mathbf{M}_k^{(1)}$ and $\mathbf{F}_k = \mathbf{F}_k^{(2)} \mathbf{F}_k^{(1)}$

⁵Rohit Budhiraja, Karthik KS and Bhaskar Ramamurthi "Linear Precoders for Two-way Asymmetric Multiuser Relaying in Cellular Systems", Proc. IEEE Int. Conf. Communications (ICC), 2013

Sum-rate comparison between proposed and ZF precoder

Figure: Average sum-rate comparison with two BSs and number of relay antennas = 4.

• Simultaneous exchange of two-way data traffic, assumed in two-way relaying, normally does not happen in the cellular systems.

- Simultaneous exchange of two-way data traffic, assumed in two-way relaying, normally does not happen in the cellular systems.
- Problem of data-flow asymmetry in shared two-way AF relaying is considered.

- Simultaneous exchange of two-way data traffic, assumed in two-way relaying, normally does not happen in the cellular systems.
- Problem of data-flow asymmetry in shared two-way AF relaying is considered.
- Novel precoder to jointly cancel the IUI and back-propagating interference is designed.

- Simultaneous exchange of two-way data traffic, assumed in two-way relaying, normally does not happen in the cellular systems.
- Problem of data-flow asymmetry in shared two-way AF relaying is considered.
- Novel precoder to jointly cancel the IUI and back-propagating interference is designed.
- Sum-rate performance is shown to be better for the proposed precoder than for the conventional ZF precoder.