Two-way MIMO DF Relaying for Non-Simultaneous Traffic in Cellular Systems

Rohit Budhiraja Bhaskar Ramamurthi

Department of Electrical Engineering Indian Institute of Technology Madras Chennai, India 600036

Email: ee11d021@ee.iitm.ac.in

SPCOM-2014

イロト イポト イヨト イヨト

Background

- Cooperative communication vastly improves performance of wireless systems.
- Half-duplex one-way relaying is an example.¹
- Half-duplex constraint is imposed on the relay (easy to design)
 - Relay cannot concurrently transmit and receive on same resource.

Figure: One-way relaying protocol.

• Four channel uses are required to exchange two data units.

¹ L. Sanguinetti, A. DAmico, and Y. Rong, A tutorial on the optimization of amplify-and-forward MIMO relay systems, IEEE J. Sel. Areas Commun., vol. 30, pp. 13311346, Sep. 2012.

Half-duplex two-way relaying²

• Two source nodes simultaneously transmit to the relay during first phase.

• Relay broadcasts a function of the sum-signal during second phase.

- Both nodes can cancel back-propagating interference as both know self-data.
- Two channel uses are required to exchange two data units

²Y. Rong, Joint source and relay optimization for two-way linear non-regenerative MIMO relay communications, IEEE Trans. Signal Process., vol. 60, pp. 65336546, Dec. 2012.

Basic assumption in two-way relaying

Figure: First phase of two-way relaying

Two nodes want to exchange data via a relay.

Two flows are aggregated to establish bi-directional data flow via a relay.

<ロ> (日) (日) (日) (日) (日)

Data exchange in cellular systems

• Usually does not happen!

Non-simultaneous traffic scenarios

- Example 1: User TUE uploading a Youtube video.
- Example 2: User RUE watching a Netflix movie.
- Two flows cannot be aggregated to establish bi-directional data flow via relay.

Two way relaying cannot be used in these scenarios.

Rohit Budhiraja (IIT Madras, India)

Ion-Simultaneous Two-way MIMO DF Relaying

Option for BS to serve TUE and RUE

• Use one way relaying.

Non-simultaneous traffic scenarios

One way relaying creates two non-interfering end-to-end links

- ▶ TUE \rightarrow RS \rightarrow BS and BS \rightarrow RS \rightarrow RUE.
- BS will require 4 time slots spectrally inefficient.

- Aggregates two flow to establish bi-directional data flow via relay.
- MAC phase: Both BS and TUE transmit to the relay.
- BC phase: Relay broadcasts to both BS and RUE.

• BS requires two channel uses to serve two users.

- Relay Rx signal: $\mathbf{y}_r = \mathbf{H}_u \mathbf{x}_u + \mathbf{H}_b \mathbf{x}_b + \mathbf{n}_r$.
- Relay Tx signal: $\mathbf{x}_r = \mathbf{W}\mathbf{y}_r$ (for an AF relay).

• RUE Rx signal:
$$\mathbf{y}_u = \mathbf{G}_u \mathbf{x}_r = \mathbf{G}_u (\underbrace{\mathbf{WH}_u \mathbf{x}_u}_{\text{BI}} + \mathbf{WH}_b \mathbf{x}_b + \mathbf{Wn}_r) + \mathbf{n}_u$$
.

• BS Rx signal: $\mathbf{y}_b = \mathbf{G}_b \mathbf{x}_r = \mathbf{G}_b (\mathbf{W} \mathbf{H}_u \mathbf{x}_u + \underbrace{\mathbf{W} \mathbf{H}_b \mathbf{x}_b}_{\sim} + \mathbf{W} \mathbf{n}_r) + \mathbf{n}_b.$

- Relay Rx signal: $\mathbf{y}_r = \mathbf{H}_u \mathbf{x}_u + \mathbf{H}_b \mathbf{x}_b + \mathbf{n}_r$.
- Relay Tx signal: $\mathbf{x}_r = \mathbf{W}\mathbf{y}_r$ (for an AF relay).
- RUE Rx signal: $\mathbf{y}_u = \mathbf{G}_u \mathbf{x}_r = \mathbf{G}_u (\underbrace{\mathbf{WH}_u \mathbf{x}_u}_{BI} + \mathbf{WH}_b \mathbf{x}_b + \mathbf{Wn}_r) + \mathbf{n}_u$.
- BS Rx signal: $\mathbf{y}_b = \mathbf{G}_b \mathbf{x}_r = \mathbf{G}_b (\mathbf{W} \mathbf{H}_u \mathbf{x}_u + \underbrace{\mathbf{W} \mathbf{H}_b \mathbf{x}_b}_{\text{BI}} + \mathbf{W} \mathbf{n}_r) + \mathbf{n}_b.$

< ロ > < 同 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- TUE \rightarrow RS \rightarrow BS link is BI-free while the BS \rightarrow RS \rightarrow RUE link experiences BI.
 - ► Unlike one-way relaying solution where both these links are non-interfering.

Aim: Cancel BI for BS \rightarrow RS \rightarrow RUE link.

- NS-TWR will create two non-interfering links as in one-way relaying (OWR).
- We will show that NS-TWR provides higher sum-rate than OWR.
- RUE can cancel BI by overhearing TUE's MAC-phase transmission.³
- In our work, we assume that RUE does not overhear TUE
 - Designed precoder W to cancel BI for AF relay.⁴

³F. Sun, T. M. Kim, A. J. Paulraj, E. de Carvalho, and P. Popovski, Cell-edge multi-user relaying with overhearing, IEEE Commun. Lett., vol. 17, pp. 11601163, Jun. 2013.

¹⁷Rohit Budhiraja, Karthik KS and Bhaskar Ramamurthi "Linear Precoders for Non-Regenerative Asymmetric Two-way Relaying in ellular Svstems", accepted in Trans, Wireless Commun. 2014

- TUE \rightarrow RS \rightarrow BS link is BI-free while the BS \rightarrow RS \rightarrow RUE link experiences BI.
 - ► Unlike one-way relaying solution where both these links are non-interfering.

Aim: Cancel BI for BS \rightarrow RS \rightarrow RUE link.

- NS-TWR will create two non-interfering links as in one-way relaying (OWR).
- We will show that NS-TWR provides higher sum-rate than OWR.
- RUE can cancel BI by overhearing TUE's MAC-phase transmission.³
- In our work, we assume that RUE does not overhear TUE
 - Designed precoder W to cancel BI for AF relay.⁴

³F. Sun, T. M. Kim, A. J. Paulraj, E. de Carvalho, and P. Popovski, Cell-edge multi-user relaying with overhearing, IEEE Commun. Lett.,vol. 17, pp. 11601163, Jun. 2013.

⁴Rohit Budhiraja, Karthik KS and Bhaskar Ramamurthi "Linear Precoders for Non-Regenerative Asymmetric Two-way Relaying in Cellular Systems", accepted in Trans. Wireless Commun., 2014

System model for NS-TWR in present work (1)

- We consider a decode and forward relay.
- No direct links between the BS and two users.
- Users observe this channel in coverage-extension/coverage-hole scenarios.

System model for decode and forward NS-TWR (2)

- All nodes have multiple antennas.
- Relay has complete CSIT and CSIR. The BS and RUE have CSIR alone.
- Sum-signal received by the relay: $\mathbf{y}_r = \mathbf{H}_u \mathbf{x}_u + \mathbf{H}_b \mathbf{x}_b + \mathbf{n}_r$.
- Assumption: RS successfully decodes the MAC phase data.
- RS re-encodes the RUE and BS signals as \mathbf{s}_u and \mathbf{s}_b , respectively.

ヘロト 人間ト 人間ト 人間ト

System model for decode and forward NS-TWR (3)

- Signal transmitted by the relay: $\mathbf{x}_r = \mathbf{W}_u \mathbf{s}_u + \mathbf{W}_b \mathbf{s}_b = \mathbf{W} \mathbf{s}$.
 - Covariance matrices of s_u and s_b are Λ_u and Λ_b.
- RUE receive signal: $\mathbf{y}_u = \mathbf{G}_u \mathbf{W}_u \mathbf{s}_u + \underbrace{\mathbf{G}_u \mathbf{W}_b \mathbf{s}_b}_{BI} + \mathbf{n}_u$.

• BS receive signal:
$$\mathbf{y}_b = \underbrace{\mathbf{G}_b \mathbf{W}_u \mathbf{s}_u}_{\text{BI}} + \mathbf{G}_b \mathbf{W}_b \mathbf{s}_b + \mathbf{n}_b.$$

Objectives

1) Design precoder \mathbf{W} to cancel BI for RUE alone.

2) Design Λ_u and Λ_b to maximize sum-rate – algorithm uses two SDPs.

ヘロト 人間ト 人間ト 人間ト

Proposed precoder design (1)

- W can be chosen as ZF/MMSE precoder. Cancels BI for both BS and RUE.
- ZF/MMSE precoders are sub-optimal as BS can itself cancel BI.

Proposed precoder design

- Cancels BI for RUE alone.
- Sum-rate performance is better than ZF/MMSE precoders.

• Stack the signals received by RUE and BS during the BC phase:

$$\begin{bmatrix} \mathbf{y}_{u} \\ \mathbf{y}_{b} \end{bmatrix} = \underbrace{\begin{bmatrix} \mathbf{G}_{u}\mathbf{W}_{u} & \mathbf{G}_{u}\mathbf{W}_{b} \\ \mathbf{G}_{b}\mathbf{W}_{u} & \mathbf{G}_{b}\mathbf{W}_{b} \end{bmatrix}}_{\widetilde{\mathbf{G}}} \begin{bmatrix} \mathbf{s}_{u} \\ \mathbf{s}_{b} \end{bmatrix} + \begin{bmatrix} \mathbf{n}_{u} \\ \mathbf{n}_{b} \end{bmatrix}.$$
(1)

・ロン ・雪 と ・ ヨ と

Proposed precoder design (1)

- W can be chosen as ZF/MMSE precoder. Cancels BI for both BS and RUE.
- ZF/MMSE precoders are sub-optimal as BS can itself cancel BI.

Proposed precoder design

- Cancels BI for RUE alone.
- Sum-rate performance is better than ZF/MMSE precoders.
- Stack the signals received by RUE and BS during the BC phase:

$$\begin{bmatrix} \mathbf{y}_{u} \\ \mathbf{y}_{b} \end{bmatrix} = \underbrace{\begin{bmatrix} \mathbf{G}_{u}\mathbf{W}_{u} & \mathbf{G}_{u}\mathbf{W}_{b} \\ \mathbf{G}_{b}\mathbf{W}_{u} & \mathbf{G}_{b}\mathbf{W}_{b} \end{bmatrix}}_{\widetilde{\mathbf{G}}} \begin{bmatrix} \mathbf{s}_{u} \\ \mathbf{s}_{b} \end{bmatrix} + \begin{bmatrix} \mathbf{n}_{u} \\ \mathbf{n}_{b} \end{bmatrix}.$$
(1)

イロト イポト イヨト イヨト

Proposed precoder design (2)

Lemma

To cancel RUE's BI, design W such that \widetilde{G} is a block lower-triangular matrix.

With the block lower-triangular matrix, \widetilde{G} , Eq. (1) will become:

$$\begin{bmatrix} \mathbf{y}_{u} \\ \mathbf{y}_{b} \end{bmatrix} = \begin{bmatrix} \mathbf{G}_{u}\mathbf{W}_{u} & \mathbf{0} \\ \mathbf{G}_{b}\mathbf{W}_{u} & \mathbf{G}_{b}\mathbf{W}_{b} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{u} \\ \mathbf{s}_{b} \end{bmatrix} + \begin{bmatrix} \mathbf{n}_{u} \\ \mathbf{n}_{b} \end{bmatrix}$$
(2)
$$\begin{bmatrix} \mathbf{y}_{u} \\ \mathbf{y}_{b} \end{bmatrix} = \begin{bmatrix} \mathbf{G}_{u}\mathbf{W}_{u}\mathbf{s}_{u} \\ \mathbf{G}_{b}\mathbf{W}_{u}\mathbf{s}_{u} + \mathbf{G}_{b}\mathbf{W}_{b}\mathbf{s}_{b} \end{bmatrix} + \begin{bmatrix} \mathbf{n}_{u} \\ \mathbf{n}_{b} \end{bmatrix}$$
(3)

イロト イポト イヨト イヨト

• RUE receives its desired data s_u without experiencing BI.

• As desired, BI experienced by BS is not cancelled.

Proposed precoder design (3)

• For a block lower-triangular
$$\widetilde{\mathbf{G}} = \begin{bmatrix} \mathbf{G}_u \mathbf{W}_u & \mathbf{G}_u \mathbf{W}_b \\ \mathbf{G}_b \mathbf{W}_u & \mathbf{G}_b \mathbf{W}_b \end{bmatrix}$$
, $\mathbf{G}_u \mathbf{W}_b = \mathbf{0}$.

• The SVD of **G**_u is performed to determine its nullspace:

$$\mathbf{G}_{u} = \mathbf{U}_{\mathbf{G}_{u}} \boldsymbol{\Sigma}_{\mathbf{G}_{u}} [\mathbf{V}_{\mathbf{G}_{u}}^{(1)} \ \mathbf{V}_{\mathbf{G}_{u}}^{(0)}]^{H}, \tag{4}$$

The columns of V⁽⁰⁾_{G_u} form an orthonormal basis set for the nullspace of G_u.
 We choose V⁽⁰⁾_{G_u} as the precoder matrix W_b.

• To design \mathbf{W}_u , we note that RUE receive signal $\mathbf{y}_u = \mathbf{G}_u \mathbf{W}_u \mathbf{s}_u + \mathbf{n}_u$.

- ▶ To decode RUE signal, $\mathbf{G}_u \mathbf{W}_u \neq \mathbf{0}$ (\mathbf{W}_u should not lie in nullspace of \mathbf{G}_u).
- Columns of $V_{G_u}^{(1)}$ form an orthonormal basis for the row space of G_u .

• We choose
$$\mathbf{W}_u = \mathbf{V}_{\mathbf{G}_u}^{(1)}$$

Proposed precoder design (3)

• For a block lower-triangular
$$\widetilde{\mathbf{G}} = \begin{bmatrix} \mathbf{G}_u \mathbf{W}_u & \mathbf{G}_u \mathbf{W}_b \\ \mathbf{G}_b \mathbf{W}_u & \mathbf{G}_b \mathbf{W}_b \end{bmatrix}$$
, $\mathbf{G}_u \mathbf{W}_b = \mathbf{0}$.

• The SVD of \mathbf{G}_u is performed to determine its nullspace:

$$\mathbf{G}_{u} = \mathbf{U}_{\mathbf{G}_{u}} \boldsymbol{\Sigma}_{\mathbf{G}_{u}} [\mathbf{V}_{\mathbf{G}_{u}}^{(1)} \ \mathbf{V}_{\mathbf{G}_{u}}^{(0)}]^{H}, \tag{4}$$

- The columns of V⁽⁰⁾_{G_u} form an orthonormal basis set for the nullspace of G_u.
 We choose V⁽⁰⁾_{G_u} as the precoder matrix W_b.
- To design \mathbf{W}_u , we note that RUE receive signal $\mathbf{y}_u = \mathbf{G}_u \mathbf{W}_u \mathbf{s}_u + \mathbf{n}_u$.
 - ▶ To decode RUE signal, $G_u W_u \neq 0$ (W_u should not lie in nullspace of G_u).
 - Columns of $V_{G_u}^{(1)}$ form an orthonormal basis for the row space of G_u .
 - We choose $\mathbf{W}_u = \mathbf{V}_{\mathbf{G}_u}^{(1)}$.

Sum-rate comparison of various precoders

Figure: Sum-rate with 2 antennas at the RS and 1 antenna at the TUE, RUE and BS.

・ロト ・聞ト ・ヨト ・ヨト

System-level comparison of various protocols

- Coverage extension scenario.
- Distance between BS and RS is 1 Km.
- RUE is located at the edge of RS range (500 m).

System parameters based on 802.16j methodology

System parameters	Value
System Bandwidth	10 MHz
Carrier Frequency	2 GHz
Noise Figure	5 dB
Thermal Noise	-174 dBm/Hz
BS / UE Transmit power	46 dBm / 24 dBm
BS / RS / UE height	30 m / 15 m / 1 m
BS-RS channel model	IEEE 802.16j, Type D
BS-MS / RS-UE channel model	IEEE 802.16j, Type B
RS Transmit power	37 dBm

Table: System parameters

E

・ロト ・聞ト ・ヨト ・ヨト

System-level comparison of various protocols

Figure: Average sum-rate comparison with 6 antennas at the RS, 3 antennas at the TUE, RUE and BS. Here BS-RUE distance = 1.5 km.

イロト イヨト イヨト イヨト

Conclusions

- Considered problem of non-simultaneous data-flow in two-way DF relaying.
- Designed a novel precoder to selectively cancel back-propagating interference.
- Maximized sum-rate using SDP-based algorithm.
- Proposed precoder outperforms conventional precoders.
- Sum-rate of proposed protocol is significantly better than OWR.

< ロ > < 同 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Extensions of the Work

• Designed precoder with global CSI at all the nodes.⁵ ⁶

• Extended the system model to include multiple such TUEs and RUEs.⁷

⁵Rohit Budhiraja and Bhaskar Ramamurthi "Diagonalized Two-way MIMO AF Relaying for Non-Simultaneous Traffic in Cellular Systems", presented in SPAWC 2014, Toronto.

⁶Rohit Budhiraja and Bhaskar Ramamurthi "Two-way Diagonalized MIMO AF Relaying for Non-Simultaneous Traffic in Cellular Systems", submitted to Trans. Wireless Commun. 2014.

⁷Rohit Budhiraja and Bhaskar Ramamurthi "Multiuser Two-Way Non-Regenerative MIMO Relaying With Non-Concurrent Traffic", accepted in Trans. Vehicular Tech., 2014