Design of LTE radio access network testbed

Rohit Budhiraja

Advisor – Bhaskar Ramamurthi

Department of Electrical Engineering
IIT Madras
Brief profile

- WiMAX system design (MIDAS).
 - Hardware and physical layer algorithm design for base station and user.

- Design of LTE radio access network testbed (CEWiT).
 - Hardware design and physical layer algorithm development.

Academic research experience

- Aug. 2011 - Jul. 2015 – PhD.
 - Transceiver design for MIMO asymmetric two-way relaying.

 - Design of Transceiver for 3G DECT Physical Layer.
Motivation

Cellular design requires system-level evaluation.

Reason: link-level techniques do not perform well at system level
- Spatial multiplexing MIMO – loses effectiveness in multi-cell environment.\(^1\)
- Interference alignment – blanket use is altogether detrimental.\(^2\)

Motivation

Cellular design requires system-level evaluation.

Reason: link-level techniques do not perform well at system level
 ▶ Spatial multiplexing MIMO – loses effectiveness in multi-cell environment.\(^1\)
 ▶ Interference alignment – blanket use is altogether detrimental.\(^2\)

System simulators are usually built to analyse performance.
 ▶ Much depends on the choice of channel models.

A testbed provides realistic fading and interference settings.

Testbed at IIT Madras

Four base stations and twelve users.
Testbed at IIT Madras

Can emulate realistic interference scenarios.
Base stations can easily coordinate to mitigate interference.

- Possible due to channel and data availability in cloud.
Testbed – conventional distributed mode

Each base station performs MAC, PHY, mixed-signal and RF processing.
Requirements history

Implement cloud radio or distributed mode first?

Sasken – LTE base station MAC; L&T Infotech – LTE user MAC.

My deliverable – physical layer hardware and algorithms.
System development process

Decide hardware architecture – type/number of IC and IC interconnections
 ▶ Based on system specifications.

Board design
 ▶ Ensure ICs and IC interconnections work reliably.
System specifications – based on LTE:

- OFDMA, 20 MHz bandwidth and 2×2 MIMO.
- Transmit power – base station: 5 W and user: 250 mW.
- Baseband hardware should work in
 - Frequency division duplex mode - required by the partners.
 - Time division duplex mode - experimental spectrum availability.
 - Cloud radio/distributed mode.
- Turbo coding for data.
Architecture of generic OFDM transceiver hardware

Two digital-to-analog converters (DAC) per transmit chain.
Architecture of generic OFDM transceiver hardware

Front-end receive algorithms
- Synchronization, channel estimation/equalization, MIMO receiver.
Architecture of generic OFDM transceiver hardware

DAC/ADC, LPF can be part of either baseband processor or RF transceiver.
Our architecture

Baseband Processor

DAC/ADC

I/Q

LPF

Low-power RF

15 dBm

High-power RF

37 dBm

Rohit Budhiraja (IIT Madras)
Architecture of baseband processor

Task partitioning

- DSPs – most of signal processing except turbo decoding (FPGA).

First design decision – number of DSPs, FPGAs, ADCs/DACs

- System bandwidth – 20 MHz; 2 × 2 MIMO.
- Use available processing requirements, cross-compile C code.
- 4 DSPs and a FPGA; 4 DACs and 4 ADCs.

Second design decision – speed of inter-IC communication links

- DAC/ADC sampling rates, low-pass filter design.
Architecture of baseband processor

Task partitioning

- DSPs – most of signal processing except turbo decoding (FPGA).

First design decision – number of DSPs, FPGAs, ADCs/DACs

- System bandwidth – 20 MHz; 2 × 2 MIMO.
- Use available processing requirements, cross-compile C code.
- 4 DSPs and a FPGA; 4 DACs and 4 ADCs.

Second design decision – speed of inter-IC communication links

- DAC/ADC sampling rates, low-pass filter design.
Task partitioning

- DSPs – most of signal processing except turbo decoding (FPGA).

First design decision – number of DSPs, FPGAs, ADCs/DACs

- System bandwidth – 20 MHz; 2 x 2 MIMO.
- Use available processing requirements, cross-compile C code.
- 4 DSPs and a FPGA; 4 DACs and 4 ADCs.

Second design decision – speed of inter-IC communication links

- DAC/ADC sampling rates, low-pass filter design.
System dimensioning LTE - 20 MHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subframe duration</td>
<td>1 ms</td>
</tr>
<tr>
<td>OFDM symbols in a subframe</td>
<td>14</td>
</tr>
<tr>
<td>FFT size</td>
<td>2048</td>
</tr>
<tr>
<td>Cyclic prefix size</td>
<td>144</td>
</tr>
<tr>
<td>DAC/ADC sampling rate</td>
<td>$14(2048 + 144)/10^{-3}$ = 30.72 MHz.</td>
</tr>
</tbody>
</table>
Largest MAC data block size for 1 ms subframe – 75676 bits
 ▶ Peak bit-rate for single antenna – 76 Mbps.
 ▶ Parallel-bus rate – $64 \times 60 = 3.8$ Gbps.

DSPs process transport blocks and compute IFFT samples
 ▶ DSP-0: Tx-chain-I; DSP-1: Tx-chain-II.
DSPs send IFFT samples to FPGA.

DAC sampling rate 30.72 MHz with I/Q bit-width = 12 bits

- DSP-FPGA link required bit-rate = $30.72 \times 24 = 737.28$ Mbps.
- Link works at $F = 150/300/400/600$ MHz with $F \times 8$ throughput.
Filter design might require interpolating the IFFT output

- For example, \(\uparrow 4 \) requires \(F=600 \) MHz.

Difficult to design DSP-FPGA link at \(F=600 \) MHz

- Timing budget constraints in FPGA.

Two options

- Perform interpolation in FPGA.
- DAC which can perform on-chip interpolation.
Engineering decision – ease of testing vs cost

- Can validate the entire baseband chain with DAC/ADC on baseband board.
- RF can be evaluated standalone.
- Difficult to carry 48 signals.
Role of FPGA – glue logic

Facts about DSP-FPGA-DAC link

- **DSP–FPGA link** – 4 bit, throughput $150 \times 8 = 1.2$ Gbps.
- **FPGA–DAC link** – 12 bit, throughput $30.72 \times 2 \times 12 = 737.28$ Mbps.
- Leads to mismatch in data format and throughput.
Architecture of RF transceiver

Desired transmit power for base station – 37 dBm.

Direct conversion receiver
 ▶ DC offset not a problem as zeroth subcarrier is not used in LTE.
Architecture of RF transceiver

High Power Amplifier (HPA) – 28% efficiency
 ▶ Peak power 45 dBm; back-off by 6.5 dB.

PA driver (PAdr) – 10% efficiency
 ▶ Peak power 33 dBm; back-off by 8.5 dB.
System development process – recap

Board design

- Collate requirements of different ICs.
- Design interconnections between different ICs.
- Route signal interconnections and fabricate the board.
Clocks on the baseband board

GPS clocks – synchronizes frame and frequency for base station and user

- To study inter-BS cooperative schemes.
- Frequency accuracy of ±0.1 Hz at 2 GHz.
Layout design

One layer of board layout
Board design also requires working with multiple vendors/companies.
System development process – recap

- Decide Architecture
- Board Design
- Interface Testing
- LTE Algo. Development
- Real Time Testing
Evaluation of transmit links

Pre-computed sin/cos samples stored in DSP memory.

Validates DSP-FPGA, FPGA-DAC, DAC-connector links and glue logic.
Evaluation of receiver links

Signal integrity problem?
- ADC–FPGA link – eye diagram is fine.
- FPGA–DSP link – CRC passed.

GLUE logic problem?

ADC misbehaving due to high jitter.
Captive testing with stolen frame and RF reference clocks

- Useful for standalone RF evaluation, without synchronization algorithms.
- Hardware should be designed for clock stealing!

EVM for 16-QAM 7% (LTE: 12.5%).
System development process – recap

- Decide Architecture
- Board Design
- Interface Testing
- LTE Algo. Development
- Real Time Testing
LTE transmit chain – data

Largest transport (turbo code) block size – 75676 (6144) bits
- Multiple turbo decoders work in parallel – reduced delay.
- For 6144 code block size, our turbo decoder required 0.8668 ms.
- MAC transport block should be segmented.

Developed MATLAB code also for other front-end receiver algorithms
- Used by students to develop embedded code.
System development process – recap

- Decide Architecture
- Board Design
- Interface Testing
- LTE Algo. Development
- Real Time Testing
Core executes PHY transceiver functions and alerts DMA engine. DMA engine sends data to FPGA.
PHY processing and transmission

FPGA is the time-keeper and generates all on-board clocks.
 - Generated using a counter running at 30.72 MHz.

Every 1 ms, FPGA interrupts the DSP to indicate subframe start.
DSP starts PHY processing at $t = 0$ ms and finishes at $t < 1$ ms.
 - DSP copies processed subframe into its DMA buffer.
PHY processing and transmission

Frame duration = 10 ms

0 1 2 3

subframe
(1 ms)

At $t = 1 - \delta_1$ ms, DMA engine starts sending data to FPGA which buffers it.

Core concurrently starts processing new subframe at $t = 1$ ms.

At $t = 1 - \delta_2$ ms with $\delta_2 < \delta_1$, FPGA starts sending data to DAC.

At $t = 1$ ms, first subframe transmission starts and gets over at $t = 2$ ms.
PHY processing and transmission

User starts receiving data at $t = 1$ ms and finishes at $t = 2$ ms.

User starts processing data at $t = 2$ ms and finishes at $t < 3$ ms.
Snapshot of integrated MAC-PHY-RF setup

Demonstrated FTP link that validated

- Inter-working of Sasken, L&T MAC, IITM PHY hardware, algorithms.
Concluding remarks

Led a team of 15 students, project associates and CEWiT engineers.

Worked with RF designer, OS engineers from Sasken and L&T.

Testbed provided a framework where students tested advanced algorithms.

Ten MTechs, DD and MS thesis – highly trained LTE engineers.
Extra slides
Receive baseband filters select exact 20 MHz channel
 - Otherwise adjacent channel interference aliases into desired channel.
 - ADC samples the receive signal at 30.72 MHz.

DSP-2 and DSP-3 perform complete receive processing except turbo decoder.
FPGA glues DSP and DAC together by performing following tasks

- Flow control using FIFO buffer to match data rates.
- Validate CRC.
Data flow for cloud radio

Here IFFT output is send from the computing cloud

- Required link throughput from cloud to board = 30.72 × 24 = 737.28 Mbps.

Require 2 GigE links for 2 × 2 spatial multiplexing MIMO.
Board design

![Diagram showing board design](image)

High-power RF – architected by me with help from a consultant
- Developed by the consultant.
Power supply requirements

DSP
- Digital - 1.2 V, 1.6 V, 2.5 V.

FPGA
- Digital - 1 V, 2.5 V, 3.3 V

Gigabit Ethernet
- Digital - 1.8 V, 2.5 V, Analog - 1.8 V, 2.5 V

ADC/DAC
- Digital 3.3 V, Analog 3.3 V

Different supply rails
- Digital 1.2 V, 1.6 V, 1.8 V, 2.5 V, 3.3 V
- Analog - 1.8 V, 2.5 V, 3.3 V

Design the power supplies
Schematics entry – snapshot
Stackup design

Number/distribution of layers.

Crucial for signal integrity and impedance design.

Each inter-IC link is simulated to evaluate signal integrity.
Downlink synchronization by user

User first acquires symbol and subframe boundaries
- Symbol boundary and fractional frequency offset using CP correlation.
- Subframe boundary and integer frequency offset using synch. signals
Blind decoding of control information

- User need not be necessarily scheduled in a subframe.
- Needs to blindly scan control region for its control channel (PDCCH).
Packet stored in DSP memory is sent fixed number of times to PC.
- Wireshark used to capture packets in PC.

Bit-twist used to send packets from PC to board.

Problem of spurious interrupt generation by Ethernet IC.

Testing starts with writing driver code for accessing Ethernet.
LTE timings and integrated MAC-PHY processing

Frame duration = 10 ms

$\begin{align*}
t = 0 \text{ ms}: & \text{ transmit PHY TICK to MAC.} \\
t = 1 \text{ to } 8 \text{ ms}: & \text{ wait for data from MAC layer.}
\end{align*}$
LTE timings and integrated MAC-PHY processing

Frame duration = 10 ms

$t = 8$ ms: start processing the MAC data.

$t = 9$ ms: transmit the PHY subframe.

APIs need to be developed for MAC-PHY interaction.
Latency of 2.4µsecs, which is less than normal cyclic prefix of 4.7µsecs.

Supports 2 × 2, 2 × 1, 1 × 2 and 1 × 1 MIMO modes.

Can emulate any channel up to 72 taps.

Hardware was also used to build WiMAX base station, multi-user emulator.
Future research

In-band full-duplex cellular networks.

- Network analysis with new sources of interference.
- Use of multiple antennas.

Verification of network analysis by building testbeds.
Future research

Cross layer design between digital baseband and analog RF.

- Hardware impairments for mm-wave and massive MIMO systems.
- Examine effect of low precision ADC on mm-wave systems.
- Transceiver chain calibration for TDD massive MIMO.
- Design hybrid digital-analog beamforming.

Build prototypes and technology demonstrators.