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Notes on Power System Voltage Stability 

By S. Chakrabarti, Dept. of EE, IIT, Kanpur 

1. Power System Voltage Stability 

At any point of time, a power system operating condition should be stable, meeting various operational 

criteria, and it should also be secure in the event of any credible contingency. Present day power 

systems are being operated closer to their stability limits due to economic and environmental 

constraints. Maintaining a stable and secure operation of a power system is therefore a very important 

and challenging issue. Voltage instability has been given much attention by power system researchers 

and planners in recent years, and is being regarded as one of the major sources of power system 

insecurity. Voltage instability phenomena are the ones in which the receiving end voltage decreases well 

below its normal value and does not come back even after setting restoring mechanisms such as VAR 

compensators, or continues to oscillate for lack of damping against the disturbances. Voltage collapse is 

the process by which the voltage falls to a low, unacceptable value as a result of an avalanche of events 

accompanying voltage instability [1]. Once associated with weak systems and long lines, voltage 

problems are now also a source of concern in highly developed networks as a result of heavier loading. 

 The main factors causing voltage instability in a power system are now well explored and 

understood [1-13]. A brief introduction to the basic concepts of voltage stability and some of the 

conventional methods of voltage stability analysis are presented in this chapter. Simulation results on 

test power systems are presented to illustrate the problem of voltage stability and the conventional 

methods to analyze the problem. Limitations of conventional methods of voltage stability analysis are 

pointed out and the scope of the use of Artificial Neural Networks as a better alternative is discussed.  

2. Classification of voltage stability  

The time span of a disturbance in a power system, causing a potential voltage instability problem, can be 

classified into short-term and long-term. The corresponding voltage stability dynamics is called short- 

term and long-term dynamics respectively [2-5]. Automatic voltage regulators, excitation systems, 

turbine and governor dynamics fall in this short-term or ‘transient’ time scale, which is typically a few 

seconds. Induction motors, electronically operated loads and HVDC interconnections also fall in this 

category. If the system is stable, short-term disturbance dies out and the system enters a slow long-term 

dynamics. Components operating in the long-term time frame are transformer tap changers, limiters, 

boilers etc. Typically, this time frame is for a few minutes to tens of minutes. A voltage stability problem 

in the long-term time frame is mainly due to the large electrical distance between the generator and the 

load, and thus depends on the detailed topology of the power system. 

 Figure 1.1 shows the components and controls that may affect the voltage stability of a power 

system, along with their time frame of operation [1]. Examples of short-term or transient voltage 

instability can be found in the instability caused by rotor angle imbalance or loss of synchronism. Recent 

studies have shown that the integration of highly stressed HVDC links degrades the transient voltage 

stability of the system [1].  
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Figure 1.1: Time responses of different controls and components to voltage stability [1] 

 

There is not much scope for operator intervention in transient voltage instability. The transmission 

system operator (TSO) mainly relies on automatic emergency actions to avoid incumbent voltage 

instability. The automatic corrective actions are taken through protective devices to preserve operation 

of largest possible part of the power system by isolating the unstable part [6]. 

 Long-term voltage instability (or mid-term or post-transient, as it is sometimes called) problems 

can occur in heavily loaded systems where the electrical distance is large between the generator and the 

load. The instability may be triggered by high power imports from remote generating stations, a sudden 

large disturbance, or a large load buildup (such as morning or afternoon pickup). Operator intervention 

may be possible if the time scale is long enough. Timely application of reactive power compensation or 

load shedding may prevent this type of voltage instability. 
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From the point of view of techniques used to analyze the voltage stability, it is often useful to 

categorize the problem into small-disturbance and large-disturbance voltage stability [2]. Small 

disturbance or steady state voltage stability deals with the situation when the system is subjected to a 

small perturbation, such that the system can be analyzed by linearizing around the pre-disturbance 

operating point. Steady state stability analysis is helpful in getting a qualitative picture of the system, 

i.e., how stressed the system is, or how close the system is, to the point of instability. Examples of 

steady state stability can be found in power systems experiencing gradual change in load. 

Large-disturbance stability deals with larger disturbances such as loss of generation, loss of line 

etc. To analyze the large-disturbance stability, one has to capture the system dynamics for the whole 

time frame of the disturbance. A suitable model of the system has to be assumed and a detailed 

dynamic analysis has to be carried out in order to get a clear picture of the stability.  

3. Voltage stability of a simple 2-bus system 

The basic concept of voltage stability can be explained with a simple 2-bus system shown in Figure 1.2. 

The load is of constant power type. Real power transfer from bus 1 to 2 is given by [4],  

EV
P sin

X
= δ                                    (1.1) 

Reactive power transfer from bus 1 to 2 is given by,  
2V EV

Q cos
X X

= − + δ                                            (1.2) 

where, E= ∠δE  is the voltage at bus 1,  

V 0= ∠V is the voltage at bus 2,  

X= impedance of the line (neglecting resistance), 

δ = power angle. 

 

 

 
Figure 1.2: 2-bus test system 

 

 

Normalizing the terms in (1.1) and (1.2) with v = V/E , p = P.X/E
2
 and q = Q.X/E

2
, one obtains, 

p = v sin δ                             (1.3) 

q = - v
2
 + v cos δ                  (1.4) 

Squaring the two equations above and rearranging,  

v
2
 (sin 

2
 δ + cos 

2
 δ) = p

2
 +(q + v

2
 )

2
 

or,  v
4
 + v

2
 (2q - 1) + (p

2
 +q

2
) = 0                 (1.5) 

 

Positive real solutions of v from (1.5) are given by, 
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21 1
v q p q

2 4
= − ± − −                  (1.6) 

 

A plot of v on the p-q-v plane is shown in Figure 1.3 [4]. Corresponding to each point (p,q), there are two 

solutions for voltage, one is the high voltage or stable solution, which is the actual voltage at the bus, 

and the other one is the low voltage or unstable solution. The equator, along which the two solutions of 

v are equal, represents maximum power points. Starting from any operating point on the upper part of 

the surface, an increase in p or q or both brings the system closer to the maximum power point. An 

increase in p or q beyond the maximum power point makes the voltage unstable.  

The preceding discussion illustrates voltage instability caused by an increase in system loading. 

In a real power system, voltage instability is caused by a combination of many additional factors which 

includes the transmission capability of the network, generator reactive power and voltage control limits, 

voltage sensitivity of the load, characteristics of reactive compensation devices, action of voltage control 

devices such as transformer under load tap changers (ULTCs) etc.  

 

 

 

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8

-0.4

-0.2

0

0.2

0.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

normalized active load 'p' at load bus

normalized reactive load 'q' at load bus

n
o
rm

a
liz

e
d
 v

o
lt
a
g
e
, 

'v
' 
a
t 

lo
a
d
 b

u
s

 
Figure 1.3: Variation of bus voltage with active and reactive loading for the 2-bus test system 
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4. Tools for voltage stability analysis 

Different methods exist in the literature for carrying out a steady state voltage stability analysis. The 

conventional methods can be broadly classified into the following types. 

1. P-V curve method. 

2. V-Q curve method and reactive power reserve. 

3. Methods based on singularity of power flow Jacobian matrix at the point of voltage 

collapse. 

4. Continuation power flow method. 

 

4.1 P-V curve method 

This is one of the widely used methods of voltage stability analysis. This gives the available amount of 

active power margin before the point of voltage instability. For radial systems, the voltage of the critical 

bus is monitored against the changes in real power consumption. For large meshed networks, P can be 

the total active load in the load area and V can be the voltage of the critical or representative bus. Real 

power transfer through a transmission interface or interconnection also can be studied by this method.  

For a simple two-bus system as shown in Figure 1.2, equation (1.6) gives real solutions of v
2
, 

provided (1 – 4q – 4p
2
) ≥ 0.  

 

Assuming a constant power factor load such that q/p = k (constant), the inequality can be expressed as, 

2 1/ 21
p ((1 k ) k)

2
≤ + −                (1.7) 

For values of ‘p’ satisfying (1.7), there are two solutions of v as follows: 

 

v1 = (1/2 – pk + (1/4 – pk – p
2
)

1/2
)

1/2
                           (1.8) 

and  v2 = (1/2 – pk - (1/4 – pk – p
2
)

1/2
)

1/2
                          (1.9) 

 

For real values of v1 and v2, the terms under the square roots should be positive. 

 

Hence,   (1/2 – pk - (1/4 – pk – p
2
)

1/2
)

 ≥ 0         

or,   p
2
(k

2
 + 1) ≥ 0                          (1.10) 

 

which is always true. 

 

Hence (1.7) is the inequality that determines the maximum value of p. 

Thus, representing the load as a constant power factor type, with a suitably chosen power 

factor, the active power margin can be computed from (1.7). For different values of load power factors, 

i.e., for different corresponding values of ‘k’, the normalized values of load active power are shown in 

Figure 1.4. 

In practice, it is possible to find the Thevenin equivalent of any system with respect to the bus 

under consideration. It is to be noted that the generations are rescheduled at each step of change of the 

load. Some of the generators may hit the reactive power limit. The network topology may keep changing 

with respect to the critical bus, with change in the loading, thereby reducing the accuracy of the 

method. This method works well in the case of an infinite bus and isolated load scenario. 
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Figure 1.4: Normalized P-V curves for the 2-bus test system 

 

4.2 V-Q curve method and reactive power reserve 

The V-Q curve method is one of the most popular ways to investigate voltage instability problems in 

power systems during the post transient period [1, 4, 5]. Unlike the P-V curve method, it doesn’t require 

the system to be represented as two-bus equivalent. Voltage at a test bus or critical bus is plotted 

against reactive power at that bus. A fictitious synchronous generator with zero active power and no 

reactive power limit is connected to the test bus. The power-flow program is run for a range of specified 

voltages with the test bus treated as the generator bus. Reactive power at the bus is noted from the 

power flow solutions and plotted against the specified voltage. The operating point corresponding to 

zero reactive power represents the condition when the fictitious reactive power source is removed from 

the test bus.  

Voltage security of a bus is closely related to the available reactive power reserve, which can be 

easily found from the V-Q curve of the bus under consideration. The reactive power margin is the MVAR 

distance between the operating point and either the nose point of the V-Q curve or the point where 

capacitor characteristics at the bus are tangent to the V-Q curve [1]. Stiffness of the bus can be 

qualitatively evaluated from the slope of the right portion of the V-Q curve. The greater the slope is, the 

less stiff is the bus, and therefore the more vulnerable to voltage collapse it is. Weak busses in the 

system can be determined from the slope of V-Q curve.  

For the simple two-bus system shown in Figure 1.2, equations of V-Q curves for constant power 

loads can be derived as follows. From (1.3) the power angle δ is computed for specified active power 

and used in (1.4). For a range of values of voltage and different active power levels, normalized V-Q 

curves are shown in Figure 1.5. The critical point or nose point of the characteristics corresponds to the 
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voltage where dQ/dV becomes zero. If the minimum point of the V-Q curve is above the horizontal axis, 

then the system is reactive power deficient. Additional reactive power sources are needed to prevent a 

voltage collapse. In Figure 1.5, curves for p=1.00 and p=0.75 signify reactive power deficient busses. 

Busses having V-Q curves below the horizontal axis have a positive reactive power margin. The system 

may still be called reactive power deficient, depending on the desired margin. 
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Figure 1.5: Normalized V-Q curves for the 2-bus test system 

 

 

4.3 Method based on singularity of power-flow Jacobian matrix at the point 

of voltage collapse 

 

A number of methods have been proposed in the literature that uses the fact that the power flow 

Jacobian matrix becomes singular at the point of voltage collapse. Modal analysis [2, 5, 14] of the 

Jacobian matrix is one of the most popular methods. 

4.3.1 Modal analysis 

For a (n x n) square matrix A, left and right eigenvectors are defined as follows: 

 

Ax = λx                           (1.11) 

 yA = λy                (1.12) 

 

where  λ = eigenvalue of the matrix A, x (n x 1) = right eigenvector, y (1 x n) = left eigenvector. 
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The characteristic equation of both (1.11) and (1.12) is,  

 

det (A-λI) = 0                              (1.13) 

 

The solution of (1.13), i.e., λ1,λ2,…..,λn are the eigenvalues of A. For different eigenvalues λi, i = 1,…,n, 

the right and left eigenvectors are defined as, xi, i = 1,…,n  and yi, i = 1,…,n. In matrix form, the right 

eigenvector matrix, X = [x1, x2,….., xn] and   the left eigenvector matrix, Y = [y1
T
,y2

T
,……., yn

T
]

T 
. 

It can be shown that, xj and yi are orthogonal, such that, 

 

       yi.xj = 0, ∀ i ≠ j 

         ≠ 0, ∀ i = j   

 

In practice, eigenvectors are normalized so that yi.xi = 1, ∀ i = 1,…,n. 

 

Hence, Y.X = I, or, Y= X
-1

             (1.14) 

 

Now, A.X = [λ1x1 λ2x2  ……λnxn    ]= X.ΛΛΛΛ             (1.15) 

 

where   

1

2

n

λ 0.....0

0 λ ....0
=

......

0 0...λ

 
 
 
 
 
  

Λ  

or,  A = X ΛΛΛΛ X
-1

 = X ΛΛΛΛY                        (1.16) 

 

Powerflow equations can be written in matrix form as follows. 

 

pδ pV

qδ qV

J J∆ ∆
=

∆ J J ∆

    
    
     

P δ

Q V
          (1.17) 

 

where ∆P and ∆Q are the changes in the real and reactive powers respectively, ∆δδδδ and ∆V are the 

deviations in bus voltage angles and bus voltage magnitudes respectively. 

 

For calculating V-Q sensitivities, one can assume ∆P = 0 

 

Hence,   Jpδ. ∆δδδδ + JpV.∆V = 0 

or,  ∆δδδδ = - Jpδ
-1

.JpV.∆V             (1.18) 

 

Now,  ∆Q = Jqδ.∆δδδδ + JqV.∆V = Jqδ(- Jpδ
-1

.JpV).∆V + JqV.∆V = JR .∆V 

where, JR = JqV – Jqδ.Jpδ
-1

.JpV 

 

Hence, ∆V = JR
-1∆Q            (1.19) 

 

Now, assuming JR = A and using (1.16) one gets, JR = X ΛΛΛΛY 

or,  JR
-1

 = Y
-1ΛΛΛΛ-1

X
-1

 = XΛΛΛΛ-1
Y 

Using (1.19),  ∆V = X ΛΛΛΛ-1
Y ∆Q 
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or,  Y∆V = ΛΛΛΛ-1
Y∆Q ;[since, X=Y

-1
] 

Hence,  vm=ΛΛΛΛ-1
qm 

 

where,  vm = vector of modal voltage variation 

           qm  = vector of modal reactive power variation 

Now,  

1

1

1 1

2

1

n

.....0

0 ...0

0 0....

−

− −

−

 λ
 

Λ = λ 
 λ  

 

 

Thus, vmi = λi
-1

qmi       , ∀ i = 1,…,n 

 

For any i, if λi > 0, then the variation of vmi and qmi are in the same direction and the system is voltage 

stable. When λi < 0 for any i, the system is voltage unstable. 

 To illustrate the use of the singularity-based voltage stability analysis method, modal analysis is 

applied on the 10-bus test system [2, 14] shown in Figure 1.6. Data for the 10-bus test system are given 

in Tables 1.1 to 1.5. Table 1.6 shows the eigenvalues of the reduced Jacobian matrix against load 

multiplication factor, K. Load multiplication factor is the ratio by which load is increased at 1 pu voltage. 

Real parts of the eigenvalues are designated as E1, E2,…, E7. Normalized values of the two smallest 

eigenvalues are plotted against load multiplication factor in Figure 1.7. Computationally obtainable 

minimum values of eigenvalues correspond to a load multiplication factor of 1.146. An increase in load 

beyond this load level makes the receiving end voltage unstable. The magnitude of the minimum 

eigenvalue is therefore used as an indicator of the proximity of an operating point to the point of 

voltage collapse.  

 
Figure 1.6: Single line diagram of the 10-bus test system 

 



 10

Table 1.1: Transmission lines data (R, X and B in pu on 100MVA base) for the 10-bus test system 

End buses R X B 

5-6 0.0000 0.0040 0.0000 

6-7 0.0015 0.0288 1.1730 

9-10 0.0010 0.0030 0.0000 

 

Table 1.2: Transformer data (R, X in pu on 100 MVA base) for the 10-bus test system 

End buses R X Ratio 

1-5 0.0000 0.0020 0.8857 

2-6 0.0000 0.0045 0.8857 

3-7 0.0000 0.0125 0.9024 

7-8 0.0000 0.0030 1.0664 

7-9 0.0000 0.0026 1.0800 

10-4 0.0000 0.0010 0.9750  

 

Table 1.3: Shunt capacitor data for the 10-bus test system 

Bus MVAR 

7 763 

8 600 

9 1710 

 

Table 1.4: Base case Load data for the 10-bus test system 

Bus P (MW) Q (MVAR) 

8 3271 1015 

4 3384 971 

 

 

Table 1.5: Base case Generator data for the 10-bus test system 

Bus P (MW) V (pu) 

1 3981 0.9800 

2 1736 0.9646 

3 1154 1.0400 

 

 

Table 1.6: Eigenvalues of the reduced Jacobian matrix of the 10-bus test system for different load levels 

Load 

multiplication 

factor, K 

E1 E2 E3 E4 E5 E6 E7 

0.9 2364 1407.1 951.37 26.9 161.27 634.92 390.65 

1.0 2203.6 1330.8 425.01 25.062 148.21 598.07 374.9 

1.1 2039.5 1253.1 903.38 22.724 134.36 560.11 360.82 

1.12 1982.8 1224.6 896.14 21.718 129.64 546.49 356.42 

1.14 1885.6 1173.8 881.53 19.795 121.52 522.62 348.03 

1.145 1803.7 1129.5 867.34 17.983 114.62 502.09 340.19 

1.146 1768.2 1110.4 861.03 17.143 111.59 493.21 336.72 
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Figure 1.7: Variation of the real parts of the smallest two eigenvalues of the reduced  

Jacobian matrix against load multiplication factor for the 10-bus test system 

4.4 Continuation powerflow 

It is numerically difficult to obtain a powerflow solution near the voltage collapse point, since the 

Jacobian matrix becomes singular. Continuation powerflow is a technique by which the powerflow 

solutions can be obtained near or at the voltage collapse point [2, 4, 15]. 

 

Powerflow equations can be represented as, 

 

Ps = P(δδδδ,V) and  Qs = Q(δδδδ,V)                       (1.20) 

 

where Ps, Qs are specified active and reactive powers of busses, δ and V are bus voltage angles and 

magnitudes respectively. 

 

Equation (1.20) can be expressed as,  

 

f(δδδδ,V) = PQspc                  (1.21) 

 

where  PQspc =[Ps, Qs]
T
. 

 

Considering variation of load as one of the parameters of the power flow equations, (1.21) can be 

rewritten as,  

 

f(δδδδ,V) = KPQspc                   (1.22) 

 

where K is the loading parameter. For base case loading, K = 1. 

 

Equation (1.22) can be written as,  

 

F(δδδδ,V,K) = 0              (1.23)  

 

Hence, ∆ ∆ ∆ ∆K
K

∂ ∂ ∂
= + +

∂ ∂ ∂

F F F
F δ V

δ V
            (1.24) 
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Now, ∆F = F(δδδδ0
,V

0
,K

0
)  – F(δδδδ,V,K) = – F(δδδδ,V,K)          (1.25) 

 

where (δδδδ0
,V

0
,K

0
)  is the solution of (1.23). 

 

Using the above in equation (1.24) and writing in matrix form, 

[ ]( , , K)
K

K

∆ 
∂ ∂ ∂   ∆ = −   ∂ ∂ ∂ 

 ∆ 

δ

F F F
V F δ V

δ V
                        (1.26) 

This can be written as,  

J . [∆δδδδ  ∆V  ∆K]
T
 = [- F(δδδδ,V,K)] 

or,  [∆δδδδ  ∆V  ∆K]
T
 = J

-1
. [- F(δδδδ,V,K)]           (1.27) 

 

where J is the Jacobian matrix. 

 

Near the point of voltage collapse, the Jacobian matrix, J approaches singularity; hence it is 

difficult to calculate J
-1

 near the collapse point. To overcome the problem one more equation is added 

assuming one of the variables as fixed. This variable is called the continuation variable. 

 

Assuming that the i
th

 variable is the continuation variable, one can write, 

 

[ei] [∆δδδδ  ∆V  ∆K]
T
 = 0             (1.28) 

 

where [ei] is the vector having i
th 

 element as 1 and all other elements as zero. 

 

Augmenting equation (1.28) to (1.27), 

[ ]
T

i

( , , K)
K

0

−   
∆ ∆ ∆ =   

  

J F δ V
δ V

e
            (1.29) 

The difference vector [∆δδδδ  ∆V  ∆K]
T
 is found from (1.29) and added with the initial assumption of vector 

[δδδδ,V,K] to get the predictor. 

 

The predictor may not be exactly on the desired solution curve. To get the exact solution, the following 

corrector equations are added with the set of equations (1.23). 

 

 xi = µ    or  xi - µ = 0   

 

where µ is the assumed fixed value of the continuation variable. 

 

Thus the system of equations becomes,  

 

F(δδδδ,V,K) = 0, and, xi - µ      = 0 

 

In the above set of equations, the number of variables is equal to the number of equations. Thus it can 

be solved by the Newton-Raphson method, having the predictor as the initial guess. 

 Continuation power flow allows the load voltage to be computed even when the power flow 

Jacobian matrix is singular. The complete PV curve, including the nose point and the lower part of the 
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curve, can be drawn using continuation power flow. Figure 1.8 shows the complete PV curve of bus-4 for 

the 10-bus test system, using PSAT [16] that uses continuation power flow. 

 

 
 

Figure 1.8: PV curve of bus-4 for the 10-bus test system, obtained by using continuation power flow 

 

 

5. Detailed voltage stability analysis of the 10-bus test system for 

different loading conditions 

 
Voltage stability analysis is carried out for the 10-bus test system described earlier in this chapter. 

Different transformer tap settings for different load levels and corresponding generations for the 10-bus 

test system are given in Tables 1.7 to 1.9 [2, 17]. Simulations are carried out with and without load tap 

changers (LTCs) between bus 4 and bus 10. The effect of line outage on voltage stability is also studied. 

 Simulations are done in PowerWorld Simulator [18]. Base case conditions for three load levels 

are as follows. 

• All the transformers are at fixed tap [Table 1.7]. 

• The load at bus 8 [Table 1.8] is of constant power type, while that of bus 4 is 50% constant 

power and 50% constant current. 

Simulation results are recorded at four different operating conditions (or ‘snapshots’) at three different 

load levels and are presented in Tables 1.10 to 1.12. The effect of LTC between bus 10 and 4 on voltages 

at different busses, as well as the reactive power generation and consumption in nearby busses are 

studied. 

 At ‘snapshot 1’, i.e., when there is no line outage in the system and the LTC is kept at fixed tap 

position, bus 4 voltage reduces with increased loading. At load level 3, the voltage level is very low and it 

needs LTC operation to restore the voltage. 
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 When the LTC is turned on, there is a considerable increase in load bus (bus 4) voltage. With 

higher voltage, load power consumption increases (because of 50% constant current load), which leads 

to the reduction of voltages in the adjacent busses. At reduced voltage, output of the shunt capacitor 

reduces, thereby stressing the generators to produce more reactive power. 

 With outage of one line between bus 6 and bus 7, less power is available to the load from the 

two generators at the other end of the system, thus the voltages reduce at the load end busses. Output 

of the shunt capacitor falls because of reduced voltage and as a result load voltage deceases further. 

Generators are more stressed and produce more reactive power to compensate for the loss. 

 Even with operation of LTC after line outage, load voltage is not restored significantly. A reason 

for this is the shortage of available reactive power at the load end because of the line outage and 

reduced efficiency of capacitors due to reduced voltage. In an attempt to raise the voltage, LTC 

increases load power consumption. If the load is slightly increased, it can be seen that this reduces the 

voltage further and eventually the system faces a voltage collapse. 

 Modal analysis was carried out on the reduced Jacobian matrix of the system for different 

operating conditions and the results are shown in Table 1.13. It can be seen that the minimum 

eigenvalue of the reduced Jacobian matrix reduces with load. It can be used as an indicator of the 

closeness of the operating point to the point of voltage collapse. 

 

Table 1.7:  Transformer data for different load levels for the 10-bus test system  

(R, X in pu on 100 MVA base) 

End busses R X Tap setting 

10-4 0.0000 0.0010 0.9750 (load level: 1) 

0.9938 (load level: 2) 

1.0000 (load level: 3) 

 

Table 1.8: Load data for different load levels for the 10-bus test system 

Bus P (MW) Q (MVAR) Load level 

8 3271 

3320 

3335 

1015 

1030 

1035 

1 

2 

3 

4 3384 

3435 

3460 

971 

985 

993 

1 

2 

3 

 

Table 1.9: Generator data for different load levels for the 10-bus test system 

Bus P (MW) V (pu) Load level 

1 3981 

4094 

4252 

0.9800 

0.9800 

0.9800 

1 

2 

3 

2 1736 

1736 

1736 

0.9646 

0.9646 

0.9646 

1 

2 

3 

3 1154 

1154 

1154 

1.0400 

1.0400 

1.0400 

1 

2 

3 
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Table 1.10: Load voltages and reactive power outputs of generator 2 and 3 at load level 1 

 

Table 1.11: Load voltages and reactive power outputs of generator 2 and 3 at load level 2 

 

Table 1.12: Load voltages and reactive power outputs of generator 2 and 3 at load level 3 

 

Table 1.13: Eigenvalues of the reduced Jacobian matrix for different contingencies  

and load levels for the 10-bus test system 

 Without outage, 

fixed tap 

Without outage, 

LTC active 

Line outage, fixed 

tap 

Line outage, LTC 

active 

 

 

 

Load level 1 

2203.6 2272.3 2190.9 2249.1 

1330.8 1313.1 1230.3 1206.2 

925.01 919.68 899.14 893.12 

25.062 24.737 21.788 21.376 

148.21 143.97 135.57 130.19 

598.07 588.45 560.6 547.69 

374.9 371.46 347.46 343.47 

     

 

 

 

Load level 2 

2151.1 2284.1 2191.8 2219.2 

1329.8 1293.5 1206.4 1193.5 

924.85 913.89 893.15 889.96 

24.979 24.308 21.228 21.002 

148.54 139.86 130.69 127.86 

598.04 578.28 548.21 541.37 

374.75 367.68 343.41 341.31 

     

 

 

 

Load level 3 

2130.8 2294.4 2194.9 2203.7 

1327.8 1281.2 1191.4 1187 

924.32 910.3 889.43 888.33 

24.903 24.043 20.877 20.797 

148.34 137.29 127.63 126.66 

597.18 571.89 540.44 538.08 

374.38 365.35 340.92 340.2 

Contingency V4 V8 V7 QG3 (MVAR) QG2 (MVAR) 

Without outage, fixed tap 0.98 1.03 1.11 390 -94 

Without outage, LTC active 1.00 1.01 1.10 505 31 

Line outage, fixed tap 0.95 0.96 1.05 700 440 

Line outage, LTC active 0.93 0.92 1.00 700 723 

Contingency V4 V8 V7 QG3 

(MVAR) 

QG2 

(MVAR) 

Without outage, fixed tap 0.96 1.03 1.11 390 -93 

Without outage, LTC active 0.99 0.99 1.08 627 164 

Line outage, fixed tap 0.91 0.91 1.00 700 724 

Line outage, LTC active 0.92 1.01 1.09 543 146 

Contingency V4 V8 V7 QG3 

(MVAR) 

QG2 

(MVAR) 

Without outage, fixed tap 0.95 1.02 1.11 401 -81 

Without outage, LTC active 0.99 0.98 1.07 700 249 
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