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Instructions:

1. Please write down your name, roll no. and section no. in the answer book.

2. Please number the pages of the answer book. Make a tabular column on the top cover indicating

the page number in which the respective question has been answered.

3. Answer all parts of a question together at one place.

1. (a) Let A =

 3 −6 0

−6 0 6

0 6 −3

. Find an orthogonal matrix U and a diagonal matrix D such that

A = UDUT . [10]

(b) Let A =

 5 2 −1

2 2 2

−1 2 5

 and let I be the 3 × 3 identity matrix. Find a ∈ R for which the

nullity of A− aI is maximum. [4]

(c) Let A,B,C are 2× 2 diagonalizable matrices. The graphs of characteristic polynomials of

A,B,C are shown below. From this information, determine the rank of the matrices A,B and

C. [6]

Figure 1: Graphs of characteristic polynomials

Marking Scheme:



The characteristic polynomial of A is

pA =

∣∣∣∣∣∣∣
3− λ −6 0

−6 −λ 6

0 6 −3− λ

∣∣∣∣∣∣∣
= (3− λ)

∣∣∣∣∣ −λ 6

6 −3− λ

∣∣∣∣∣− (−6)

∣∣∣∣∣ −6 6

0 −3− λ

∣∣∣∣∣
= (3− λ)(λ2 + 3λ− 36) + 6(6λ+ 18)

= −λ3 + 81λ

= −λ(λ− 9)(λ+ 9)

[2]

Hence, the eigenvalues are 0, 9, and −9.

The RREF of A is

1 0 −1

0 1 −1
2

0 0 0

. Hence, a basis for N(A) is given by the single vector v1 =

1
1
2

1

.

The RREF of A−9I is

1 0 2

0 1 −2

0 0 0

. Hence, a basis for N(A−9I) is given by the single vector

v2 =

−2

2

1

.

The RREF of A− (−9)I is

1 0 1
2

0 1 1

0 0 0

. Hence, a basis for N(A− (−9)I) is given by the single

vector v3 =

−
1
2

−1

1

 [4]

The vectors {v1, v2, v3} is an orthogonal set of eigen-vectors for the matrix A. [1]

Normalizing we get {u1 = 1
‖v1‖v1 = 2

3
v1 =


2
3
1
3
2
3

 , u2 = 1
‖v2‖v2 = 1

3
v2 =

−
2
3

2
3
1
3

 , u3 = 1
‖v3‖v3 =

2
3
v3 =

−
1
3

−2
3

2
3

} is a orthonormal set of eigen vectors. [2]

Let U = 1
3

2 −2 −1

1 2 −2

2 1 2

 and D =

0 0 0

0 9 0

0 0 −9

. Then A = UDUT . [1]

Marking Scheme:

Note that if a is not an eigenvalue of the matrix A, then the matrix A−aI is invertible, that is,

the null space of A−aI is the zero space, and the dimension is 0. So a should be an eigenvalue.

[1]



The characteristic polynomial of A is t(6− t)2. 0 and 6 are the eigen values with multiplicity

1 and 2 respectively. [1]

Since the matrix A is a real symmetric matrix, it is diagonalizable and hence the null space of

A− 6I has exactly two linearly independent eigen vectors, whereas the null space of A− 0I is

of dimension 1. So a = 6. [2]

Note: If you are doing it in other methods then you should explain why 6 is the only value

possible and others are ruled out. Without this explanation you may lose 2 marks.

Marking Scheme:

The graph of the characteristic polynomial pA(λ) of A passes through origin. So λ = 0 is an

eigen value of A and since the x-axis is tangential to the graph of pA(λ), 0 is the only root of

pA(λ) with multiplicity 2. Since A is diagonalizable it is similar to the zero matrix and hence

rank(A) = 0. [2]

The graph of characteristic polynomial pB(λ) of B does not pass through the origin. Thus

λ = 0 is not an eigenvalue of B. Since B is diagonalizable, it is similar to a diagonal matrix

with diagonal entries nonzero. So rank(B) = 2. [2]

For the matrix C, 0 is a simple root of the characteristic polynomial. So C is similar to a

diagonal matrix with exactly one of the diagonal entry is nonzero. So rank(C) = 1. [2]



2. (a) Does the function f(x, y) =
√
y + 1 satisfy Lipschitz condition in any rectangle containing

the origin ? What can you say about the existence and uniqueness of solution of the IVP

y′ =
√
y + 1, y(0) = 0, x ∈ [0, 1] ? Give proper justification to your answer.

[4+4]

Marking Scheme:

Consider any rectangle R = [0, a]× [0, b] containing origin. We have

|f(x, y1)− f(x, y2)|
|y1 − y2|

=
|√y1 −

√
y2|

|y1 − y2|
= 1/

√
δ, for y1 = δ > 0, y2 = 0.

[2]

For δ arbitrary small, we can make |f(x,y1)−f(x,y2)||y1−y2| arbitrarily large on R. Hence f does not

satisfy Lipschitz condition in any rectangle containing origin. [2]

Since f(x, y) is continuous at (0, 0), the IVP has a solution by Picard theorem. [1]

Let g1(x), g2(x) be two solutions of the IVP. Consider z(x) = (
√
g1 −

√
g2)

2. Then z′(x) =

− z(x)√
g1
√
g2
≤ 0. [1]

Thus z(x) is a decreasing function. Further z(x) is non negative and z(0) = 0. Then z(x) = 0

for all x ≥ 0. Hence g1 = g2.

[2]

Remark: If you have solved the equation explicitly, then [4] marks are awarded for the last

[4] marks breakup.

(b) Let Ω = R2 − (0, 0). Consider the functions M,N : Ω → R defined by M(x, y) = −y
x2+y2

and N(x, y) = x
x2+y2

. Show that ∂M
∂y

= ∂N
∂x

on Ω. Is the differential Mdx+Ndy exact i.e. does

there exist a differentiable function u : Ω → R such that M = ∂u
∂x

and N = ∂u
∂y

? Justify your

answer. [2+6]

Marking Scheme:

• ∂M
∂y

= ∂N
∂x

= y2−x2
(x2+y2)2

. [2]

• If such a u exists then Mdx+Ndy = du and so by Fundamental theorem of Line integral∮
C

Mdx+Ndy = 0 for ANY closed curve C in Ω ( C need NOT be SIMPLE ). [2]

• But the line integral

∮
C

−y
x2 + y2

dx +
x

x2 + y2
dy = 2π where C is the unit circle with

anticlockwise orientation.

To see that, consider x = cos t, y = sin t, 0 ≤ t ≤ 2π. Then∮
C

−y
x2 + y2

dx+
x

x2 + y2
dy =

2π∫
0

(cos2 t+ sin2 t)dt = 2π.

So the differential is not exact.

(Remark: If you have written the value of the integral as 2π but have NOT shown

calculation, then 0 mark is awarded.) [4]

———————————————



• Explanation why the choice u(x, y) = tan−1(y/x) does not work:

Fist of all, for a given (x, y) 6= (0, 0), tan−1(y/x) can have many values. Even if we fix a

range length of 2π, for example [0, 2π), then tan−1(y/x) becomes a well defined function

on R2− (0, 0). But still it does not satisfy the required condition. We can see it as follows:

Observe that any u which satisfies ∇u(x, y) = ( −y
x2+y2

, x
x2+y2

) for all (x, y) 6= (0, 0) has to be

differentiable on R2 − (0, 0) (since the partial derivatives are continuous.) But our choice

of tan−1(y/x) is discontinuous along positive x-axis (since it takes value small positive

values just above positive x-axis and takes value near 2π just below the positive x-axis.)

(c) Solve the first order equation: y′ = y(xy3 − 1). [4]

Marking Scheme:

[Recall that Bernoulli equation is of the form y′ + P (x)y = Q(x)yn. To solve it, we have to

change variable to z = y1−n. Then it reduces to linear ODE z′ + (1− n)P (x)z = (1− n)Q(x).]

The ODE is y′ + y = xy4. Substitute u = 1/y3.

[1]

We get u′ − 3u = −3x. [1]

Using integrating factor e−3x, we write

d

dx
(ue−3x) = −3xe−3x =⇒ ue−3x =

1 + 3x

3
e−3x + C =⇒ u =

1 + 3x

3
+ Ce3x.

Hence, the solution is 1
y3

= Ce3x + x+ 1/3. [2]



3. (a) The normal form of the Bessel equation is

y′′ + (1 +
1/4− p2

x2
)y = 0, x > 0.

Let yp be a non-trivial solution of it on the positive x-axis. If 0 ≤ p < 1/2, then show that for

every interval [a, a + π], a > 0, of length π there is a zero of yp in (a, a + π). If x1 < x2 be

consecutive positive zeros of yp, then show that x2 − x1 is less than π and x2 − x1 approaches

π as x1 →∞.

[10]

Marking Scheme: Given equation y′′ + q(x)y = 0, x > 0−−−−−−−−−−(1)

where q(x) = 1 + 1/4−p2
x2

> 1. [1]

Take v′′ + v = 0−−−−−−−−(2). [1]

By Sturm comparison theorem between two consecutive roots of v(x) there is a root of yp.

Consider an interval [a, a+ π]. Take v(x) = sin(x− a) a solution of (2). Then a, a+ π are two

consecutive roots of v(x). By SCT yp must vanish in between two consecutive zeros a, a+ π of

v(x). Hence there exists a zero of yp in (a, a+ π). [2]

(Remark: If you have used v(x) = sinx in this step, then the conclusion can not be reached

using Sturm comparison theorem and hence 0 mark is given in that case.)

Let x1, x2 be two consecutive zeros of yp. Take the interval [x1, x1 + π]. By above x2 < x1 + π.

Hence x2 − x1 < π. [1]

For any given ε > 0, we can find x′ such that 1 < q(x) < 1 + ε for all x > x′. [1]

Here take x1 > x′. [1]

Consider the equation w′′ + (1 + ε)w = 0. Take solution w = sin[(x− x1)
√

1 + ε]. [1]

Then w(x1) = 0 and next zero is x1 + π√
1+ε

. By SCT we must have x1 + π√
1+ε

< x2 i.e.

x2 − x1 > π√
1+ε

. As ε→ 0, we have x′ →∞ and so x1 →∞. [2]

Remark: If you have argued that q(x)→ 1 as x→∞ and the roots of v′′+ v = 0 are π apart.

Hence x2 − x1 → π. This is an imprecise but intuitively right answer. In this case [3] marks

are awarded in place of last [5] marks breakup.

(b) Solve the IVP by Laplace transforms:

y′′(t) + 9y(t) =

{
8 sin t if 0 < t < π

0 if t > π
y(0) = 0, y′(0) = 4. [6]

Marking Scheme:

Let r(t) = 8(u(t)− u(t− π)) sin t = 8u(t) sin t+ u(t− π) sin(t− π). [1]

Taking Laplace Transform on both sides of the ODE, we get

(s2 + 9)Y (s) = R(s) + 4 =⇒ Y (s) =
4

s2 + 9
+

R(s)

s2 + 9



[2]

We can explicitly write R(s) and then use partial fraction technique.

Y (s) =
4

s2 + 9
+ (1 + e−πs)

8

(s2 + 1)(s2 + 9)
=

4

s2 + 9
+ (1 + e−πs)

(
1

s2 + 1
− 1

s2 + 9

)
[2]

This gives

y(t) =
4

3
sin 3t+

(
sin t− 1

3
sin 3t

)
+ u(t− π)

(
sin(t− π)− 1

3
sin 3(t− π)

)
= sin t+ sin 3t+ u(t− π)

(
1

3
sin 3t− sin t

)
[1](

Otherwise, use convolution as follows

y(t) =
4

3
sin 3t+

1

3

∫ t

0

r(τ) sin 3(t− τ) dτ

Thus for 0 < t < π, we get

y(t) =
4

3
sin 3t+

8

3

∫ t

0

sin τ sin 3(t− τ) dτ =
4

3
sin 3t+ sin t− 1

3
sin 3t = sin 3t+ sin t

and for t > π, we get [since r(t) = 0]

y(t) =
4

3
sin 3t+

8

3

∫ π

0

sin τ sin 3(t− τ) dτ +
1

3

∫ t

π

0 sin 3(t− τ) dτ =
4

3
sin 3t

This solution matches with that obtained earlier.
)

(c) Solve the Integral equation by Laplace transform: e−t = y(t) + 2

∫ t

0

cos(t− τ)y(τ)dτ.

[4]

Marking Scheme:

Taking Laplace Transform, we get

Y (s) =
s2 + 1

(s+ 1)3
=

1

1 + s
− 2

(s+ 1)2
+

2

(s+ 1)3

[2]

Thus,

y(t) = e−t(t− 1)2

[2]



4. (a) (i) Prove that the zeros of an analytic function f(x), which is not identically zero, are isolated

points i.e. if f(x0) = 0 then there exists ε > 0 such that f(x) 6= 0 for all 0 < |x− x0| < ε.

(ii) Deduce that if f, g are analytic functions on an interval I and the Wronskian W (f, g) = 0

on I then f, g are linearly dependent on I.

[4+4]

Marking Scheme:

(i) Write f(x) =
∑

n≥0 an(x − x0)n on |x − x0| < R for some R > 0. Since a power series can

be differentiated term by term, we get n!an = f (n)(x0). Since f(x0) = 0, we have a0 = 0. Since

f is not zero function there exists m such that am 6= 0.

[1]

Choose m to be the least such that am 6= 0. Then f(x) = am(x−x0)m+am+1(x−x0)m+1+· · · =
(x− x0)m[am + am+1(x− x0) + · · · ] = (x− x0)mg(x) where g is analytic and g(x0) = am 6= 0.

[1]

By continuity of g, there exists exists ε > 0 such that g(x) 6= 0 for all |x − x0| < ε. Hence

f(x) 6= 0 for all 0 < |x− x0| < ε. [2]

(ii) Given that fg′−f ′g = 0 on an interval I. Since zeros of f are isolated points we can choose

an interval I ′ ⊂ I such that f 6= 0 on I ′.

[1]

Then on I ′, we have (fg′ − f ′g)/f 2 = 0, implies (g/f)′ = 0, imples g = cf on I ′.

[2]

Now h = g − cf is analytic on I and h is zero on an interval I ′ i.e. h has non isolated zero.

Hence by (i), we must have h = 0 on I. [1]

Remark: If you have written: fg′ − gf ′ = 0 =⇒ f ′/f = g′/g =⇒ f = cg by integrating.

This is a wrong argument, since it shows that if just Wronksian is zero then the functions are

dependent. This is not true as we have done the example in class x2, x|x|. So in this case 0

mark is given.

(b) Consider the equation y′′− 2xy′+ 2my = 0 where m is a positive integer. Show that x = 0

is an ordinary point and one of the power series solutions about x = 0 is a polynomial of degree

m. [8]

Marking Scheme:

Comparing with y′′ + p(x)y′ + q(x)y = 0 we have p(x) = −2x, q(x) = 2m. Both of them are

analytic at the origin. So x = 0 is an ordinary point. [1]

Assume solution y =
∑
anxn. Then y′ =

∑
nanx

n−1 and y′′ =
∑
n(n− 1)anx

n−2. [1]

Substituting in the given equation:
∑
n(n− 1)anx

n−2 − 2x
∑
nanx

n−1 + 2m
∑
anxn = 0 .



Coff of xn is (n+ 2)(n+ 1)an+2 − 2nan + 2man. Equating it to 0, we get

an+2 = 2
n−m

(n+ 2)(n+ 1)
an.

[2].

Then am+2 = am+4 = · · · = 0.

General solution: y = a0(1−mx2 − m(2−m)
6

x4 · · · ) + a1(x− (1−m)
3

x3 + · · · ) = a0y1 + a1y1.

[2]

So if m is odd y2 becomes a polynomial of degree m. If m is even, then y1 becomes a polynomial

of degree m.

[2]

(c) Solve x2y′′ + 2xy′ − 12y = 0. [4]

[Recall: The ODE of the form x2
d2y

dx2
+ ax

dy

dx
+ by = 0, where a, b are constants, is called the

Cauchy-Euler equation. Under the transformation x = et (when x > 0) for the independent

variable, the above reduces to
d2y

dt2
+ (a − 1)

dy

dt
+ by = 0, which is an equation with constant

coefficients. ]

Marking Scheme:

Using the substitution x = et, the given equation reduces to

d2u

dt2
+
du

dt
− 12u = 0

[2]

=⇒ m2 +m− 12 = 0 =⇒ m = −4, 3 =⇒ u(t) = Ae−4t +Be3t = y(et).

[1]

The general solution is thus

y(x) =
A

x4
+Bx3.

[1]



5. (a) Find a particular solution by operator method and find the general solution of the ODE:

y′′′ − 3y′′ − y′ + 3y = x2ex.

[6]

Marking Scheme:

Characteristic equation m3 − 3m2 −m+ 3 = 0 =⇒ m = −1, 1, 3. [1]

Hence homogeneous solution yh = Ae−x +Bex + Ce3x. [1]

Now r(x) = x2ex. Let D ≡ d/dx and yp be the particular solution. Then

1

D3 − 3D2 −D + 3
x2ex =

1

(D − 1)3 − 4(D − 1)
x2ex = ex

1

D3 − 4D
x2

[2]

= ex
1

−4D(1−D2/4)
x2 = ex

1

−4D
(1 +D2/4 + · · · )x2 = ex

1

−4D
(x2 +

1

2
) = −e

x

4
(
x3

3
+
x

2
).

So the particular integral is

yp(x) = −ex
(
x

8
+
x3

12

)
.

[2]

Thus the general solution is

y = Ae−x +Bex + Ce3x − ex
(
x

8
+
x3

12

)
.

Remark: If you have not calculated particular integral by operator method, then 0 mark.

(b) Given that y = x is a solution of the homogeneous part of the following ODE, find its

general solution.

x2y′′ − x(x+ 2)y′ + (x+ 2)y = x3, x > 0.

[8]

Marking Scheme: y1 = x is a solution of the homogeneous part. To find another linearly

independent solution we assume y = xu. This gives

u′′ − u′ = 0 =⇒ u′ − u = 1 =⇒ u = ex − 1 =⇒ y = xex − x

[3]

Since y1 = x, we take y2 = xex. The nonhomogeneous part is written as

y′′ − x+ 2

x
y′ +

(x+ 2)

x2
y = x.

Thus r(x) = x and W (y1, y2) = x2ex. [1]

Now

u = −
∫
y2r

W
dx = −x



and

v =

∫
y1r

W
dx = −e−x

Thus yp = −x− x2. [3]

General solution: (absorbing first term of yp in the homogeneous solution)

y = x(A+Bex)− x2.

[1]

(c) Consider an ODE of the form y′′ + p(x)y + q(x)y = 0.

(i) Show that if p(x) and q(x) are continuous functions for all x, a solution whose graph is

tangent to the x-axis at some point must be identically zero.

(ii) Find an equation of the above form having x2 as a solution by calculating its derivatives

and finding a linear equation connecting them. Why isnt part (i) contradicted, although the

graph of x2 is tangent to the x axis at 0 ? [3+3]

Marking Scheme:

(i) Let y(x) be a solution whose graph is tangent to the x-axis at x = a. Then y(a) = y′(a) = 0.

[1]

But z(x) = 0 is also a solution of the given ODE with same initial value z(a) = z′(a) = 0.

[1]

Hence by Existence and Uniqueness of solution of second order liner ODE we must have y = z

i.e. y = 0.

[1]

(ii) Let y = x2. Then y′ = 2x, y′′ = 2. We have xy′′ = 2x = y′. So we get y′′ − y′/x = 0.

[1]

This is not a contradiction to part (i) since here p(x) = 1/x, q(x) = 0. So p(x) is not continuous

at the origin. So we can not apply Existence and Uniqueness Theorem. Hence there is no

contradiction.

[2]

Remark: Many of you have argued that: Putting y = x2 in the above equation 2 + p(x)2x+

q(x)x2 = 0 =⇒ 2/x = −2p(x) + q(x)x for x 6= 0. The RHS is continuous at 0 but LHS is not.

This argument shows x2 can not be a solution of differential equation of the above form with

p, q continuous at the origin.

BUT this is not what the question asked and hence 0 mark given. According to the question:

step1: You have to find an ODE of the above form which has x2 as solution (y′′ = 2 is NOT in

the above form since it is not homogeneous).

step 2: Then you have to explain why the this is not a contradiction to conclusion of part (i).


