Quiz-II, MTH-102A: LINEAR ALGEBRA AND ODE

Date: 5th April, 2019
Time: 6.30 PM-7.00 PM
Max. Marks: 20

1. Write your Name, Roll No. and Section.
2. Write answers only in the space provided.
3. No additional sheets will be provided.
4. Find a suitable integrating factor and solve the equation.

$$
x y^{\prime}+(3-4 x) y=\frac{e^{4 x}}{x}, \quad x>0 .
$$

Answer:
Solution: For $y^{\prime}+p(x) y=r(x)$, a integrating factor is $\mu(x)=e^{\int p d x}$. Here

$$
p(x)=\frac{3}{x}-4, \quad r(x)=\frac{e^{4 x}}{x^{2}} .
$$

So

$$
\mu(x)=x^{3} e^{-4 x}
$$

Hence the solution is $y \mu(x)=\int r(x) \mu(x)=x^{2} / 2+c$. So

$$
y=c \frac{e^{4 x}}{x^{3}}+\frac{e^{4 x}}{2 x} .
$$

2. Which pairs of functions below can be an independent set of solutions for $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$ with $p(x), q(x)$ being continuous on the interval as indicated below? Justify your answer for each case.
(a) $y_{1}=x^{3}, \quad y_{2}=x^{2}, \quad x \in(0, \infty)$.
(b) $y_{1}=x, \quad y_{2}=\sin x, \quad x \in(0, \infty)$.
(c) $y_{1}=0, \quad y_{2}=e^{4 x}, \quad x \in(-\infty, \infty)$.

Solution: Clearly functions in (c) are linearly dependent.
For (b) the wronskian is $(x \cos x-\sin x)$. It has zero at infinitely many points on $(0, \infty)$. So they can not be independent solution of second order linear homogeneous ODE.
3. Find the general solution of the following equation using variation of parameters.

$$
y^{\prime \prime}+2 y^{\prime}+y=\frac{e^{-x}}{x}, \quad x>0 .
$$

Solution:

- Characteristic equation of the homogeneous part : $m^{2}+2 m+1=0$, so $m=-1,-1$. [1]
- Two independent solution of the homogeneous part $y_{1}=e^{-x}, y_{2}=x e^{-x}$.
- Wronskian $W\left(y_{1}, y_{2}\right)=e^{-2 x}$.

Particular integral $y_{p}=u(x) y_{1}+v(x) y_{2}$.

- $u(x)^{\prime}=-\frac{y_{2} r}{W}=-1$ so $u(x)=-x$
- $v(x)^{\prime}=\frac{y_{1} r}{W}=1 / x$ so $v(x)=\ln (x)$.
- So particular integral $y_{p}=-x e^{-x}+\ln (x) x e^{-x}$.
- General solution: $y=c_{1} e^{-2 x}+c_{2} x e^{-x}-x e^{-x}+\ln (x) x e^{-x}$.
or $y=c_{1} e^{-x}+c_{2} x e^{-x}+\ln (x) x e^{-x}$

4. Consider the IVP.

$$
\left(x^{2}-2 x\right) y^{\prime}=2(x-1) y, \quad y\left(x_{0}\right)=y_{0} .
$$

(a) For which values of $\left(x_{0}, y_{0}\right)$, Picard's theorem implies unique solution of the the IVP?
(b) Determine all values of $\left(x_{0}, y_{0}\right)$ such that the IVP has no solution.
(c) Determine all values of $\left(x_{0}, y_{0}\right)$ such that the IVP has more than one solution.

Solution:

(a) Here $f(x, y)=2(x-1) y /\left(x^{2}-2 x\right)$ and $\partial f / \partial y=2(x-1) /\left(x^{2}-2 x\right)$. The existence and uniqueness theorem guarantees the existence of unique solution in the vicinity of $\left(x_{0}, y_{0}\right)$ where f and $\partial f / \partial y$ are continuous and bounded. Thus, existence of unique solution is guaranteed at all x_{0} for which $x_{0}\left(x_{0}-2\right) \neq 0$. Hence, unique solution exists when $x_{0} \neq 0,2$.

When $x_{0}=0$ or $x_{0}=2$, nothing can be said using the existence and uniqueness theorem. However, since the equation is separable, we can find the general solution to be $y=C x(x-2)$.

Using initial condition we get $y_{0}=C x_{0}\left(x_{0}-2\right)$. Clearly the IVP has no solution if $x_{0}\left(x_{0}-2\right)=0$ and $y_{0} \neq 0$.

If $x_{0}\left(x_{0}-2\right)=0$ and $y_{0}=0$ then $y=\alpha x(x-2)$ is a solution to the IVP for any real α.
Hence, in summary
(i) No solution for $x_{0}=0$ or $x_{0}=2$ and $y_{0} \neq 0$;
(ii) Infinite number of solutions for $x_{0}=0$ or $x_{0}=2$ and $y_{0}=0$;
(iii) Unique solution for $x_{0} \neq 0,2$.

