
SOME NOTES

MTH102A

1. A short proof of the uniqueness of row reduced echelon form

Theorem 1.1. The row reduced echelon form of a matrix is unique.

Proof. Let A be a matrix and suppose it has two row reduced echelon forms say B and C.
That means applying a sequence of row operations to A we got B and applying another
sequence of row operations we got C. We need to show that B = C.

Note that A,B,C are row equivalent to each other since row operation gives a row equiva-
lent matrix. That means every row in A is a linear combination of rows of B and vice versa.
Similarly every row in A is a linear combination of rows of C and vice versa.

On the contrary let us assume that B and C are not equal. Then select the leftmost
column where they differ and also select all pivot columns (leading 1 columns) to the left of
this column giving rise to two matrices say R and S. Since B and C were row rquivalent
the matrices R and S are row equivalent since deletion of columns does not affect row
equivalence.

Note that after interchanging some rows (if requird) the matrices R and S look like:

R =

[
Ir×r r

0 0

]

S =

[
Ir×r s

0 0

]

It follows that R and S are row equivalent since deletion of columns (variables simulta-
neously) does not affect row equivalence, and that they are reduced but not equal. Now we
treat these matrices as augmented matrices of two linear systems. The system for R has a
unique solution r or is inconsistent, respectively. Similarly, the system for S has a unique
solution s or is inconsistent, respectively. Since the systems are equivalent, r = s or both
systems are inconsistent. Either way we have R = S, a contradiction.

�

2. Even and odd permutations

Theorem 2.1. The identity permutation is even.

Proof. Let id = t1t2 · · · tm−1tm where ti’s are transpositions. We need to show that m is
even. Note that m 6= 1 as a single transposition is not the identity.

If m = 2 we are done.

We proceed by (strong) induction. Suppose that the theorem is true for any integer less
than m, m ≥ 2. We will show that it holds for m. Let tm = (a, b)
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The idea is that we will try to rewrite the permutation in such a way that we shift a
as far left as possible until we eventually remove a from the permutation. The last pair of
transpositions tm−1tm must be one of these four cases:

(ab)(ab), (bc)(ab), (ac)(ab), (cd)(ab).

If tm−1tm = (ab)(ab) = id, we are left with m − 2 transpositions and by induction m − 2
is even and so m is even.

If tm−1tm = (bc)(ab), then we can replace it by (ac)(bc) since (bc)(ab) = (ac)(bc).

If tm−1tm = (ac)(ab), then we can replace it by (ab)(bc) since (ac)(ab) = (ab)(bc).

If tm−1tm = (cd)(ab), then we can replace it by (ab)(cd) since (cd)(ab) = (ab)(cd).

So we have rewritten tm−1tm in such a way that a no longer occurs in the last transposition.

Successively, we rewrite the pairs tm−1tm, then tm−2tm−1, tm−2tm−1, and so on. Eventually,
we will reach the first case above, (ab)(ab), where we can cancel out two transpositions. If
we don?t, then the left most transposition t1 will have the only occurrence of a. This
would contradict the assumption that the permutation is the identity, because if only one
transposition contains a, then the permutation does not fix a.

Once we cancel the two transpositions, then there are only m − 2 transpositions in the
permutation, and we can apply our induction hypothesis. �

Corollary 2.2. Suppose a permutation σ can be written as a product of m number of trans-
positions and also as a product of n number of transpositions for some m and n. Then m
and n are both even or both odd.

Proof. If σ = t1t2 · · · tm = s1s2 · · · sn where ti and sj are transpositions. Then id = σ.σ−1 =
t1t2 · · · tmsnsn−1 · · · s2s1. Since the identity permutation is even m+ n is even. So m and n
are both even or both odd.

�

3. A short proof of Cramer’s rule

Theorem 3.1. The system AX = d, where A is an n × n invertible matrix, has a unique

solution, whose individual values for the unknowns are given by: xi =
det(Ai)
det(A)

, i = 1, 2, · · ·n,

where Ai is the matrix formed by replacing the i-th column of A by the column vector d.

Proof. Let Xi be the matrix obtained from the identity matrix by replacing the i-th column

by the column X. Then AXi = Ai. Since det(Xi) = xi we have xi =
det(Ai)
det(A)

.

�

4. Existence of a Basis

Example: The set of real numbers R is a vector space over Q. What could possibly be a
basis ? The elements

√

(2),
√

(3),
√

(5),
√

(6), · · · can be shown to be linearly independent,
but they certainly don’t span R as we also need elements like π, π2, π3, · · · which also form a
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linearly independent set. In fact, because Q is countable, it is easy to show that the subspace of
R generated by any countable subset of R must be countable. Because R itself is uncountable,
no countable set can be a basis for R over Q. This means that any basis for R over Q , if
one exists, is going to be difficult to describe.

The above example makes it clear that even if we could show that every vector space has a
basis, it is unlikely that a basis will be easy to find or to describe in general. To prove that
every vector space has a basis, we need Zorn’s Lemma.

Zorn’s Lemma: Let C be a collection of subsets of some fixed set, and assume that C has
the property that whenever there is a chain S1 ⊂ S2 ⊂ S3 · · · of sets in C the union of this
chain also belongs to C then C contains a maximal element.

Theorem 4.1. Every vector space has a basis.

Proof. First, consider any linearly independent subset of a vector space V , for example, a
set consisting of a single non-zero vector will do. Call this set S1. If S1 spans V it is a
basis, and the proof is complete. If not, we can choose a vector of V not in S and the union
S2 = S1 ∪ {v} is a larger linearly independent set. Either this set is a basis, or we can again
enlarge it by choosing some vector of V not in the span. We can repeat this process over and
over, and hope that it eventually ends. But it is easy to see that such a naive approach will
not work in general unless V is finite dimensional. Indeed, starting from S1 being a single
element set, every Si produced this way will be finite. On the other hand, using this idea, we
either get a basis for V eventually or we get an increasing collection of linearly independent
sets S1 ⊂ S2 ⊂ S3 · · · . The union S of all the Si is a linearly independent set, since any
finite linear combination of the elements of the union must involve elements from one of the
sets Si. If this set S spans V , it is a basis and we are done.

However, even if S does not span V , it is at least linearly independent, so we could again
choose a vector v not in the span of S. By adding v to S, we again get a larger linearly
independent set, and we can repeat the process. Does this process eventually terminate,
producing for us a basis of V ? This is not at all clear.

Now let C be the collection of all linearly independent subsets of a vector space V . Since
the union of any increasing chain S1 ⊂ S2 ⊂ S3 · · · of linearly independent sets is also a
linearly independent set, Zorn’s Lemma implies that there is a maximal linearly independent
set say M . This maximal linearly independent set is a basis for V . Indeed, if it doesn’t span
V , we could choose a vector in V but not in the span of M , and by adding it to M , we could
enlarge our supposedly maximal linearly independent set. This contradiction completes the
proof that every vector space V has a basis.

�

Remark: There is a major drawback to this proof that every vector space has a basis:
unless the dimension is finite, or at least countable, it doesn’t give us any idea how to ac-
tually find a basis. In fact, this is a serious problem with the concept of a basis for infinite
dimensional spaces in general. Although Zorn’s Lemma tells us a basis exists, in practice,
this fact may be useless if we do not have a procedure for finding one.
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Remark: Zorn’s Lemma is logically equivalent to the “axiom of choice”. The axiom of
choice says that given any collection C of sets, we can choose an element x from each set S of
C. This may seem “obvious”- or does it ? There is of course no problem if there are finitely
many sets in the collection, but what if there are infinitely many, may be even uncountably
many ? The axiom of choice and Zorn’s Lemma bothered many mathematicians (and still
bothers some!) for various reasons. For example, using the axiom of choice, one can prove
that a ball the size of the sun can be cut into finitely many pieces and then reassembled into
a ball the size of a pinhead. So if we accept the axiom of choice (and equivalently, Zorn’s
Lemma), we must accept such statements.

Remark: There is no way to prove the axiom of choice: one either accepts it as an axiom
or one doesn’t. The axiom of choice (and so the equivalent formulation Zorn’s Lemma) is
logically independent from the other axioms of set theory, a fact proven by Paul Cohen in
1963. In other words, we derive no contradictions if we assume it is true, and we derive no
contradictions if we assume it is false. The axiom of choice is no longer as controversial as
it once was. It is accepted by most mathematicians these days, but the degree to which it is
used without comment depends on the branch of mathematics.

5. Minimal Polynomial and diagonalizability

Theorem 5.1. A n×n matrix A is diagonalizable over F if and only if its minimal polynomial
is a product of distinct linear factors over F.

Proof. If A is diagonalizable, then there exists an invertible matrix P such that P−1AP
is diagonal. Since A and P−1AP have the same minimal polynomial, we can compute the
minimal polynomial of A using the diagonal matrix, and then it is clear that we just need one
linear factor for each of the distinct entries along the diagonal. That means if λ1, λ2, · · · , λk

are the distinct eigen values, then m(x) = (x − λ1)(x − λ2) · · · (x − λk) is the minimal
polynomial of A. (Note that m(A) = (A − λ1I)(A − λ2I) · · · (A − λkI) = 0 and it is the
smallest degree monic polynomial having this property).

Conversely, assume that the minimal polynomial m(x) for A is a product of distinct linear
factors. We need to show that A is diagonalizable, that means we need to find an invertible
matrix P such that P−1AP is diagonal. Note that in this case the columns of A have to be
the eigen vectors of A and the invertibility of P ensures that the columns of P form a basis
for Fn.

Let W be the subspace of Fn spanned by all eigenvectors of A. So in order to show that
A is diagonalizable we need to show that W = Fn. Assume on the contrary that W 6= V .

Claim: There exists v ∈ Fn \W such that (A− λI).v ∈ W for some eigen value λ.

Proof of the claim: Let z ∈ V \ W . Since m(A) = 0 we have 0 = m(A).z ∈ W .
Let g(x) be a monic polynomial of minimal degree with g(A).z ∈ W . We show that g(x)
divides m(x). By division algorithm write m(x) = q(x)g(x) + r(x) where either r(x) = 0 or
deg(r(x)) < deg(g(x)). Then 0 = m(A).z = q(A)g(A).z + r(A).z.

Note that since W is spanned by all eigenvectors of A, we have A.w ∈ W for any w ∈ W
and so q(A).g(A).z ∈ W as w = g(A).z ∈ W . So from the above equation we have r(A).z ∈
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W . Since deg(r(x)) < deg(g(x)) and g(x) is a monic polynomial of minimal degree with
g(A).z ∈ W we conclude that r(A).z ∈ W implies r(x) = 0. So g(x) divides m(x). So by
the assumption g(x) is a product of distinct linear factors.

Write g(x) = (x − λ)h(x) where deg(h(x)) < deg(g(x)) and λ is an eigen value. By the
definition of g(x) we have h(A).z /∈ W . Then (A−λI).h(A).z = g(A).z ∈ W . So we showed
that the vector v = h(A).z /∈ W but (A− λI).v ∈ W .

Since g(x) divides m(x), write m(x) = (x− λ)q(x) for some q(x).

Now 0 = m(A).z = (A − λI)(q(A).v). Then q(A).v is an eigen vector for the eigen value
λ. So q(A).v ∈ W .

Again write q(x) = t(x)(x− λ) + q(λ) for some polynomial t(x). Then q(λ).v = q(A).v −
t(A)(A − λI).v. Now q(A).v ∈ W because it is an eigenvector. By the claim we have
(A− λI).v ∈ W and so t(A)(A− λI).v ∈ W (since W is spanned by the eigen vectors). So
q(λ).v ∈ W . Since v /∈ Wwe have q(λ) = 0. This says that λ is a multiple root of m(x), a
contradiction. �

Remark: Note that the above claim holds for any proper subspace W ⊂ Fn with the
property that A.w ∈ W for all w ∈ W .

Triangulizable Matrix: A matrix A is said to be triangularizable (or triangulable) if
there exists an invertible matrix P such that P−1AP is upper-triangular.

Theorem 5.2. A n× n matrix A is triangularizable over F if and only if its characteristic
(or minimal) polynomial is a product of linear factors over F.

Proof. Note that the characteristic polynomial is a product of linear factors over F if and only
if the minimal polynomial is a product of linear factors over F. The matrix A defines a linear
map T : Fn → Fn defined by X 7→ AX. Then A is triangularizable iff T is triangularizable,
i.e., there exists a basis B of Fn for which [T ]B is upper -triangular.

Assume that the minimal polynomial is a product of linear factors over F. Let u1 be an
eigen vector of A with some eigen value say λ1. Let W1 = span{u1}. So W1 is a proper
subspace of Fn. So by the remark (and proof of the claim) there exists u2 ∈ V \W1 such that
(T − λ2I)(u2) = (A− λ2I).u2 ∈ W1 for some eigen value λ2. So T (u2)− λ2u2 ∈ W1. Hence
T (u2) = λ2u2 + w1 where w1 ∈ W1. Next let W2 be the subspace spanned {u1, u2}. Since
T maps the basis for W2 back into W2. So by the remark again there exists u3 ∈ V \ W2

such that (T − λ3I)(u3) = (A − λ3I).u3 ∈ W2. So T (u3) = λ3u3 + w2 where w2 ∈ W2 and
we can repeat the argument. In this process we get a basis B = {u1, u2, · · · , un} such that
T (ui) = λiui + wi−1 for an eigen value λi and wi−1 belongs to the subspace spanned by
{u1, u2, · · · , ui−1}. t follows that the matrix for T relative to the basis B which has been
chosen is an upper triangular matrix. �

Corollary 5.3. Any matrix is triangulizable over C.

==============================================
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6. Singular Value Decomposition

We need the following two lemmas for the proof of singular value decomposition.

Lemma 6.1. For a nonzero m × n matrix the non-zero eigen values of A∗A and AA∗ are
same.

Proof. Let λ 6= 0 be an eigenvalue of A∗A, i.e. A∗Ax = λx for some x 6= 0. Multiplying A
from the left we get AA∗(Ax) = λ(Ax). If Ax = 0 then λx = 0 which is not possible as both
λ and x are non-zero. So Ax 6= 0 and hence Ax is an eigen vector of AA∗ with eigen value
λ. �

Definition: We say A is a positive definite (resp. positive semi-definite) matrix if x∗Ax >
0 (resp. x∗Ax ≥ 0) for all nonzero vectors x.

Lemma 6.2. All the eigen values of a positive definite matrix are strictly positive.

Proof. Let λ be an eigen value of A. If λ = 0, then there is some eigenvector x so that
Ax = 0. But then x∗Ax = 0, and so A is not positive definite.

If λ < 0, then there is some eigenvector x so that Ax = λx. But then x∗Ax = λ‖x‖2,
which is negative since ‖x‖ > 0 and λ < 0. Thus A is not positive definite.

So if A is positive definite, it only has positive eigenvalues. �

Remark: All the eigen values of a positive semi-definite matrix are strictly positive.

Singular Value Decomposition: The singular value decomposition (SVD) is a matrix
factorization. If A is an m× n matrix, then we may write A as a product of three factors:

(6.1) A = UΣV ∗ ,

where U is an unitary m × m matrix, V is an unitary n × n matrix, V ∗ is the conjugate
transpose of V , and Σ is an m× n matrix that has all zeros except for its diagonal entries,
which are nonnegative real numbers. If σij is the i, j entry of Σ, then σij = 0 unless i = j
and σii = σi ≥ 0. The σi’s are called the “singular values” and the columns of U and V are
respectively called the left and right singular vectors. A common convention is to list the
singular values in descending order.

σ1 ≥ σ2 ≥ · · · .

A = UΣV ∗ =

[
u1 u2 . . . ur
︸ ︷︷ ︸

ur+1 . . . um

]

︸ ︷︷ ︸

ColA NulA∗












σ1 0 . . . 0 0 . . . 0
0 σ2 . . . 0 0 . . . 0
. . .
0 0 . . . σr 0 . . . 0
0 0 . . . 0 0 . . . 0
. . .
0 0 . . . 0 0 . . . 0























v∗

1

v∗

2

. . .
v∗

r

v∗

r+1

. . .
v∗

n


















RowA






NulA
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In the above picture ColA,RowA,NulA,NulA∗ denote the four fundamental subspaces
associated to the matrix A, namely column space of A, row space of A, null space of A and
null space of A∗ respectively.

Proof of Existence: Let A be an m× n complex matrix. Since A∗A is Hermitian, it is
unitarily diagonalizable. So there exists an n×n unitary matrix V such that V ∗A∗AV = D =[
D 0

0 0

]

where D is a diagonal matrix of size r×r. (r = rank(A∗A) = rank(A) ≤ min{m,n}

and if r = n then there are no zeros in the diagonal of D). Again since A∗A is positive semi-
definite the diagonal entries of D (the eigen values) are non-negative real numbers. Note
that by definition the columns of V are the eigen vectors of A∗A. Write V = [V1 V2] where
V1 is a n × r matrix whose columns are the eigen vectors corresponding to the non-zero
eigen values of A∗A whereas V2 is a n× (n− r) matrix whose columns are the eigen vectors
corresponding to the eigen value 0.

Then

[
D 0

0 0

]

= V ∗A∗AV =

[
V ∗

1

V ∗

2

]

A∗A[V1 V2] =

[
V ∗

1 A
∗AV1 V ∗

1 A
∗AV2

V ∗

2 A
∗AV1 V ∗

2 A
∗AV2

]

.

Equating we get V ∗

1 A
∗AV1 = D and V ∗

2 A
∗AV2 = 0. This implies (AV1)

∗AV1 = D and
(AV2)

∗AV2 = 0.

The 2nd equation shows that AV2 = 0. (For a matrix B, if B∗B = 0 then B = 0).

Since V = [V1, V2] is unitary we have V ∗V = V V ∗ = I. From here we get V ∗

1 V1 =
I, V ∗

2 V2 = I and V1V
∗

1 + V2V
∗

2 = I. (The identity matrices on the right hand side of the
equations are of different sizes, the 1st one is of size r× r, the 2nd one is of size n− r×n− r
and the 3rd one is of size n× n).

We define U1 = AV1D
−

1

2 . It is a matrix of size m× r. The entries of D−
1

2 are same as the
entries of D except the positive diagonal entries of D are replaced by their −1

2
-th power.

Then U1D
1

2V ∗

1 = AV1D
−

1

2D
1

2V ∗

1 = AV1V
∗

1 = A(I − V2V
∗

2 ) = A − AV2V
∗

2 = A (We used
the fact that V1V

∗

1 + V2V
∗

2 = I and AV2 = 0.)

We also have U∗

1U1 = D−
1

2V ∗

1 A
∗AV1D

−
1

2 = D−
1

2DD−
1

2 = I. So the columns of U1 form
an orthonormal set in Cm and can be extended to form an orthonormal basis for Cm.

Let U = [U1 U2] where the columns of U2 are the extended part of the above orthonormal
basis of Cm. Then U is unitary.

Define Σ =

[

D
1

2 0

0 0

]

( if necessary extra zero rows may be added or removed to make the

number of zero rows equal the number of columns of U2 and hence the overall size of Σ is
m× n).

Then UΣV ∗ = [U1 U2]

[

D
1

2 0

0 0

]

[V1 V2]
∗ = U1D

1

2V ∗

1 = A.

Remark: We are aiming for A = UΣV ∗. We have A∗A = V Σ∗U∗UΣV ∗ = V Σ∗ΣV ∗.
This implies A∗AV = V Σ∗Σ. So the columns of V must be the eigen vectors for A∗A with
respect to the eigen values placed in the diagonal of Σ∗Σ. Similarly the column vectors of
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U are the eigen vectors of the matrix AA∗ with respect to the same (nonzero) eigen values.
(A∗A and AA∗ have same nonzero eigen values).

Remark: The diagonal entries σi of Σ are known as the singular values of A. A common
convention is to list the singular values in descending order. In this case, the diagonal matrix,
Σ, is uniquely determined by A but not the matrices U and V .

Algorithm: Given a m× n matrix A.

(1) Compute the eigen values of A∗A.

(2) Compute the eigen vectors corresponding to the eigen values of A∗A.

(3) Construct the matrix V by placing the eigen vectors of A∗A as columns.

(4) Construct the diagonal matrix Σ by putting the square roots of the (positive) eigen
values of A∗A in decreasing order on the main diagonal and adding some zero rows at the
end if necessary to make it an m× n matrix.

(5) Solve the linear system AV ∗ = UΣ for U . (The matrix U can be constructed by finding
the eigen vectors of AA∗ with respect to the eigen values of A∗A found in step (1)).
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