Assignment – 1 (On Vector Calculus background)

- 1. Derive the Gauss' divergence theorem and the Stokes theorem for vector fields
- 2. Obtain the following quantities

$$\begin{array}{c} \nabla \left| \frac{1}{\vec{r} - \vec{r'}} \right| \\ \nabla^2 \left| \frac{1}{\vec{r} - \vec{r'}} \right| \end{array}$$

3. Derive the quantities $(\partial \hat{u}_j)/(\partial u_i)$ for the unit vectors of the spherical polar coordinates (r, θ, ϕ) and the cylindrical coordinates (r, ϕ, z) . In each case, express in terms of the unit vectors in the respective coordinate system as

$$\frac{\partial \hat{u}_j}{\partial u_i} = \sum_k \omega_{ijk} \hat{u}_k$$

- 4. Using the above relations, obtain
 - (a) $\nabla \cdot \hat{u}_i$
 - (b) $\nabla \times \hat{u}_i$

for all the unit vectors in the spherical and cylindrical coordinate systems Following this, obtain $\nabla \cdot \vec{A}(\vec{r})$, $\nabla \times \vec{A}(\vec{r})$ and $\nabla^2 f(\vec{r})$, where $\vec{A}(\vec{r})$ is an arbitrary vector field and f(vecr) is a scalar field. Compare your expressions to the expressions in Griffith's book or notes on the course-webpage.

5. Given

$$\vec{A}(\vec{r}) = \frac{\hat{r} \times \hat{z}}{r^2} \vec{B}(\vec{r}) = \exp\left[-\alpha r^2\right] \hat{r} \vec{C}(\vec{r}) = x \exp\left[-\alpha r^2\right] \hat{y}$$

obtain

- (a) $\nabla \cdot \vec{A}(\vec{r})$
- (b) $\vec{B} \cdot \vec{C}$
- (c) $\nabla\times\vec{B}(\vec{r})$
- (d) $\int \vec{A}(\vec{r}) \cdot \vec{C}(\vec{r}) d^3r$
- 6. Using Dirac delta and Heaviside step functions in appropriate coordinates, express the charge densities in the following cases:
 - (a) A charge Q spread uniformly on a circle of radius R
 - (b) Charge λ per unit length uniformly distributed over a cylindrical surface of radius R
 - (c) A charge Q distributed on the upper hemisphere of a spherical surface only
 - (d) The surface of a cone with cone angle α and carrying a surface charge density σ