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the bounding surface S of the volume V , then the field ~A is uniquely specified.

Following this theorem, we can separate the given vector field into two parts:

~A(~r) = ~AD + ~AR (2.27)

where ~AD is an irrotational field with zero curl and non-zero divergence only, and
~AR is a divergenceless field with a non-zero curl only such that ∇ · ~A = ∇ · ~AD and

∇ × ~A = ∇ × ~AR. The Helmholtz theorem is of a great help in those situations

where we know the divergence and the curl of a vector field. Then we can be sure

that there is a unique vector field that has the divergence and the curl, subject to

the specification of the boundary terms.

2.3 Curvilinear geometries and coordinates

In our discussions of electromagnetism in this course, very often we will deal with

geometries containing cylinders or spheres. The Cartesian coordinate geometry is

not the most well suited system to handle spherical and cylindrical geometries. Par-

ticularly, if there are symmetries associated with the problem such as an invariance

with angle or distance from a given point, considerable simplifications can occur

in the calculations if other coordinate systems are used. Usually it is simpler to

consider coordinate systems with orthogonal axes. Here we will formally introduce

and detail the three orthogonal coordinate systems that we will frequently use.

2.3.1 The Cartesian coordinate system

This is the familiar coordinate system to the student. Consider space in three

dimensions: let us choose one point and call it the Origin. Now choose three mutually

perpendicular axes in three dimensions that we will call as the X, Y, and the Z axes

that intersect at the Origin (see Fig. 2.5). We label every point in space by three

numbers, (x, y, z), that correspond to the distances from the origin that one would

have to travel parallel to the three axes. Three unit vectors (x̂, ŷ, ẑ) are defined

in the directions along the three principal axes. Note that these unit vectors are

constant vectors and remain the same when transposed to any given point – this

follows from the property that the principal surfaces are planes in this coordinate

system (see Fig. 2.5. By definition, we have x̂ · ŷ = ŷ · ẑ = ẑ · x̂ = 0.

We list the following quantities for the sake of completeness and comparison with

other coordinate systems:

1. The infinitesimal line element : d~r = x̂dx+ ŷdy + ẑdz.

2. The infinitesimal volume element: d3r = dx dy dz.

3. The infinitesimal surface elements: d~sx = dy dz x̂, d~sy = dz dx ŷ, d~sz = dx dy ẑ.
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Figure 2.5 The Cartesian coordinate system consists of three mutually orthogonal axes
along which the distances to a given point are measured. The infinitesimal volume element
is also shown.

2.3.2 Cylindrical coordinate system

This becomes useful when the problem at hand has a preferred axis and when

the fields primarily depend only on the absolute distance of the point from the

the preferred axis. In this system, we label each point in space again by three

numbers: but only two of them correspond to distances while the third corresponds

to an angle. First we take the preferred axis (direction) and call it the Z axis.

Choose the origin on this axis, and arbitrarily choose another direction in the plane

perpendicular to the Z axis (– that would be the X–Y plane). Now any point in

three dimensional space can be labelled by the radial distance (r) from the Z axis,

the angle (φ) the radius vector makes with the X-axis in the X–Y plane and the
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Figure 2.6 The Cylindrical coordinate system is a curvilinear coordinate system and is
illustrated by the figure. The infinitesimal volume element is shown in the right panel.

height (Z) along the Z axis. This is depicted in Fig. 2.6. The values of these numbers

are confined to the ranges 0 ≤ r ≤ ∞, 0 ≤ φ < 2π and −∞ < Z < ∞ so that each

point has a unique triplet that labels it. The relation to the Cartesian coordinates

is obtained as

x = r cosφ, y = r sinφ, z = Z, (2.28)

which are relations that can be easily inverted.

The unit vectors corresponding to each of these numbers point along the direction

of increasing coordinate at each point as shown in Fig. 2.6. These are easily related

to the Cartesian unit vectors as

r̂ = cosφ x̂+ sinφ ŷ, (2.29)

φ̂ = − sinφ x̂+ cosφ ŷ, (2.30)

Ẑ = ẑ. (2.31)

It can be easily verified that the unit vectors are mutually perpendicular r̂ · φ̂ =

φ̂ · Ẑ = Ẑ · r̂ = 0 . It is clear from the above that the unit vectors change from

point to point, in this case they depend on the location through the angle φ. This

is unlike the unit vectors in the Cartesian system. Hence, we cannot thoughtlessly

just move the unit vectors in or out across derivatives and integrals.

Another crucial difference comes from the consideration of the infinitesimal dis-

placements along the three directions. Along the radial and axial directions, the
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infinitesimal displacements corresponds to the change in the coordinates (dr and

dZ), which dimensions of length. Along the φ̂ direction, however, an infinitesimal

change in the coordinate (dφ) is an angle and translates to a length as rdφ (see

Fig. 2.6). Thus, there is a scale factor of r that depends on the given point in space.

The infinitesimal quantities in this coordinate system are:

1. The infinitesimal line element : d~r = r̂dr + φ̂rdφ+ ẐdZ.

2. The infinitesimal volume element: d3r = dr rdφ dZ.

3. The infinitesimal surface elements: d~sr = rdφ dZ r̂, d~sφ = dZ dr φ̂, d~sZ =

dr rdφ Ẑ.

2.3.3 Spherical coordinates

When a given problem has complete angular symmetry, i.e., when no direction is

preferrable over any other, the spherical coordinate system is very useful. Typically,

all properties of the system depend only on the absolute distance from a specific

point in space, which we will choose to be the origin. Now we will arbitrary choose

an axis, the z axis and a x axis on the plane perpendicular to the z axis and

containing the origin. Now any point in (three dimensional) space can be labelled

uniquely by a triplet of numbers: one representing the absolute radial distance (r)

to the origin, an angle θ indicating the angle between the radial line joining the

origin to the given point and the chosen z axis, and another angle φ that is the

angle between the projection of the radial line to the point on the X-Y plane and

the chosen x axis (see Fig. 2.7). The values of these numbers are confined to the

ranges 0 ≤ r ≤ ∞, 0 ≤ θ ≤ π, and 0 ≤ φ < 2π so that each point corresponds to a

unique triplet that labels it. The relation to the Cartesian coordinates is obtained

as

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ, (2.32)

relations that can be easily inverted as

r = (x2 + y2 + z2)1/2, θ = cos−1

(

z
√

x2 + y2 + z2

)

, φ = tan−1
(y

x

)

. (2.33)

The unit vectors corresponding to each of these numbers point along the direction

of increasing coordinate at each point as shown in Fig. 2.6. These are easily related

to the Cartesian unit vectors as

r̂ = sin θ cosφ x̂+ sin θ sinφ ŷ + cos θ ẑ, (2.34)

θ̂ = cos θ cosφ x̂+ cos θ sinφ ŷ − sin θ ẑ, (2.35)

φ̂ = − sinφ x̂+ cosφ ŷ. (2.36)

Once again note that these relations are invertible. As in the case of the cylindrical
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Figure 2.7 The Cartesian coordinate system consists of three mutually orthogonal axes
along which the distances to a given point are measured. The infinitesimal volume element
is also shown.

system, these unit vectors point in different directions at different points. This is a

general property of all curvilinear coordinate systems which we will briefly discuss

later. Hence one has to be careful while differentiating or integrating expressions

containing these unit vectors. As examples consider the follwing two integrals:
∫ b

a

r̂dr = (b− a)r̂,

∫ 2π

0

r̂ dφ = 0

In the first case, the r̂ vector remains constant as r is changed, while it is not so in

the second case.

The infinitesimal quantities in this system are:

1. The infinitesimal line element : d~r = r̂ dr + θ̂ rdθ + φ̂ r sin θdφ.

2. The infinitesimal volume element: d3r = dr rdθ r sin θdφ.

3. The infinitesimal surface elements: d~sr = rdθ r sin θdφ r̂, d~sθ = dr r sin θdφ θ̂,

d~sφ = dr rdθ φ̂.

It can be seen that the scale factor r multiplies the infinitesimal change dθ to give

rise to an infinitesimal length rdθ along θ̂. Similarly, a scale factor r sin θ (projected

length of the radial vector on the X-Y plane) accompanies the infinitesimal quantity

dφ to give an infinitesimal length r sin θdφ along φ̂.

2.3.4 An orthogonal curvilinear coordinate system

We will not discuss in detail the properties of a curvilinear coordinate system,

but will only list some results that can be written down in general for orthogonal
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coordinate systems. For details, we refer the reader to ?. Consider an invertible

mapping to the coordinate system (u1, u2, u3) from the Cartesian coordinates by

the functions:

u1 = u1(x, y, z), u2 = u2(x, y, z), u3 = u3(x, y, z). (2.37)

It can be shown that the unit vectors are given by

ûi =
∇ui

|∇ui|
. (2.38)

The infinitesimal displacement vector can be written as

d~r = h1du1 û1 + h2du2 û2 + h3du3 û3, (2.39)

where the scale factors hi are given by

h2
i = |∇ui|2. (2.40)

Now the infinitesimal volume is written as

d3r = h1du1 h2du2 h3du3. (2.41)

In general, we can also write down expressions for the gradient, divergence and

curl in the generalized coordinates using the scale factors

∇f = û1
1

h1

∂f

∂u1
+ û2

1

h2

∂f

∂u2
+ û3

1

h3

∂f

∂u3
, (2.42)

∇ · ~A =
1

h1h2h3

[

∂(A1h2h3)

∂u1
+

∂(A2h3h1)

∂u2
+

∂(A3h1h2)

∂u3

]

(2.43)

∇× ~A =
1

h1h2h3
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∣

∣

∣

∣
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(2.44)

It is easily seen that the scale factors for the cylindrical coordinates are given by

hr = 1, hφ = r, hZ = 1, (2.45)

and for the spherical coordinates they are given by

hr = 1, hθ = r, hφ = r sin θ. (2.46)

Knowledge of the scale factors enables us to carry out all the calculations on the

vectors fields in any desired coordinate system.

2.4 The Dirac δ− function

Consider the function

f(x) =

{

1
2w ∀ |x| < w

0 ∀ |x| > w.
(2.47)
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Figure 2.8 The rectangular function in the limit of (infinite) increasing height and simul-
taneously (zero) decreasing width while keeping the area constant behaves as a delta-
function.

It is evident that the integral
∫ L

−L
f(x)dx = 1 if L > w (see Fig. 2.8). Now examine

this function in the limit w → 0. It is clear that the function is zero everywhere

except the single point x = 0 where it diverges, and yet the integral is exactly unity.

This is contrary to our usual understanding of (Riemann) integrals where the value

of the integral is zero unless the integration range is finite. In other words, a single

point usually has zero measure. Yet this mathematical object that results from a

well defined function in the limit w → 0 has a non-zero integral.

We will often face such mathematical objects in our study of electromagnetism.

Consider the following definition

δ(x− x0) =

{

0 ∀ x 6= x0,

∞ ∀ x = x0,
(2.48)

such that the integral
∫ b

a

δ(x− x0)dx = 1, (2.49)

if the interval [a, b] includes the singular point x0 and is zero otherwise. It is simple

to construct that δ(x − a) = δ(a − x). Note that the principal properties of this

object derive from the integral. The above mathematical construct was first formally

discussed in connection with quantum mechanics by a scientist called Dirac, and it

is called the Dirac δ function. Although we call this object a function, it is not a

function in the conventional sense and belongs to a generalized class of functions

called distributions by mathematicians.

The Dirac δ function can work as a sieve to pick out values of functions at specific

points. It is easily seen that
∫ b

a

δ(x − x0)f(x)dx = lim
ǫ→0

∫ x0+ǫ

x0−ǫ

δ(x− x0)f(x)dx = f(x0), (2.50)

where f(x) is a usual continuous function. Sometimes it is convenient to work with

certain functions that become δ functions in limiting cases. The rectangular func-

tion presented above is one example. Other possible examples include a Gaussian
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function

δ(x− x0) = lim
σ→0

1√
2πσ

exp

[

− (x− x0)
2

2σ2

]

, (2.51)

and a Lorentzian function

δ(x− x0) = lim
σ→0

1

π

σ

(x− x0)2 + σ2
. (2.52)

In both of the cases above, σ is linearly proportional to the full width of the functions

where the value of the singly peaked functions falls to half their peak value. As this

width falls to zero in the limit, the peak value rises keeping the value of the integral

constant (unity).

The δ function can also be interpreted as the derivative of a step-function at the

point of discontinuity. Consider the Heaviside step function defined as

Θ(x− x0) =

{

1 ∀ x > x0,

0 ∀ x < x0.
(2.53)

The vaue of the step function depends on whether its argument is positive or neg-

ative. Its derivative can be shown to be a δ function. We can do this by showing

that it has the property of the δ function. The derivative is clearly zero everywhere

except at x0, and for an arbitrary function that is continuous at x0, the integral

∫ b

a

f(x)
d

dx
Θ(x− x0) dx = [f(x)Θ(x − x0)]

b
a −

∫ b

a

Θ(x− x0)
df

dx
dx,

= f(b)−
∫ b

x0

df

dx
dx,

= f(b)− [f(b)− f(x0)] = f(x0), (2.54)

where the interval [a, b] is assumed to contain the point x0, and we have integrated

by parts. Clearly the derivative of the step-function has all the essential properties

of the δ function.

The idea of the δ function as a point of singularity but with a finite integral

is easily extended to higher dimensions. In three dimensional space, we have the

integral
∫

V

δ(~r − ~r0)d
3r = 1, (2.55)

if the integration volume V contains the point ~r0 and is zero otherwise. In Cartesian

coordinates, it is straightforward to represent the δ function as a product of one-

dimensional δ functions,

δ(~r − ~r0) = δ(x− x0) δ(y − y0) δ(z − z0). (2.56)

Representation of higher dimensional δ functions in other co-ordinate systems will

be discussed in the next section. Note that the one dimensional δ function has
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dimensions of inverse length, Hence the three-dimensional δ function has dimen-

sions of inverse volume. This gives rise to the interpretation that the δ function is

effectively a density. It is customary for some authors ? to indicate the dimension-

ality of the space in which the δ function is defined, by a superscript: for example,

δ(3)(~r − ~r0). We will, however, only write it as δ(~r − ~r0), with the understanding

that the dimensionality of the space is given by that in which the argument vectors

are defined.

In general curvilinear coordinate systems, the infinitesimal volumes depend on

the location of the point and it becomes important to normalize the δ function

to account for this change in the density. For a δ function located on the point

(u′

1, u
′

2, u
′

3), we write

δ(~r − ~r′) =
1

h1h2h3
δ(u1 − u′

1)δ(u2 − u′

2)δ(u3 − u′

3). (2.57)

Unless properly normalized, the δ function would begin to have different weights

depending on where it is placed. Overall the δ function should be defined such that

the integral over a volume containing the point where the singularity is located

should yield unity. Thus, in spherical coordinates the δ function would be written

as

δ(~r − ~r′) =
1

r2 sin θ
δ(r − r′)δ(θ − θ′)δ(φ− φ′). (2.58)

Special mention must be made of points of singularity such as the origin or points

on the z axis where the spherical coordinates θ and φ may become ill-defined, i.e.,

the point is multiply described by the curvilinear coordinates. In such cases, if the

coordinate u3 multiply describes the point where the δ function is located, there

will be no such factor such as δ(u3 − u′

3) in the representation for the δ function,

since the value of u′

3 would be non-unique and ill-defined. Hence the representation

the curvilinear coordinate system would only appear as

δ(~r − ~r′) =
1

h1h2

∫ b

a h3du3

δ(u1 − u′

1)δ(u2 − u′

2). (2.59)

Similar arguments would apply if two of the coordinates were multiply valued at

a given point, for example, the origin in the spherical coordinate system. Then we

have

δ(~r − ~r′) =
1

∫ q

p h2du2

∫ b

a h3du3

δ(u− u1). (2.60)

EXAMPLES:

1. Consider a point charge q located at the origin. In cylindrical coordinates, the

corresponding charge density would be described as

δ(~r) = q
1

2πr
δ(r)δ(z).
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In spherical coordinates, the representation would be

δ(~r) = q
1

4πr2
δ(r).

2. Consider a charged thin disk of radius R carrying a charge per unit area of σ

lying on the X − Y plane. The volume charge density can be represented in

cylindrical coordinates as

ρ(~r) = σδ(z)Θ(R− r),

while the representation in spherical coordinates is

ρ(~r) = σ
1

r
δ(θ − π/2)Θ(R− r).

Note that the Heaviside step function has been used to confine the charge toa

radius smaller than R.

3. Consider a line charge with linear charge density λ per unit length, located along

the Z axis. In Cartesian coordinates, this is is easily represented as

ρ(~r) = λδ(x)δ(y),

while in the cylindrical coordinates, we can write

ρ(~r) = λ
1

2πr
δ(r),

and in the spherical coordinates, the representation would be

ρ(~r) = λ
1

2πr2 sin θ
[δ(θ) + δ(θ − π)].


