PHY 103N: PHYSICS 2, (2007-2008, Semester -II)
 Department of Physics, I.I.T. Kanpur

Assignment - 3 (4, 6, 7, 8 will be discussed in the tutorials)

1. If the vector field in some region is stated to be

$$
\vec{E}(\vec{r})=\frac{1}{r}(A \hat{r}+B \sin \theta \cos \phi \hat{\phi}),
$$

is this a valid static electric field ? If so, find what would be the charge distribution that would be associated with it.
2. (Problem 2.36 of Griffiths) Two non-intersecting spherical cavities of radii, r_{A} and r_{B} are hollowed from a sphere of radius R. At the centre of these two cavities are kept two charges q_{A} and q_{B}.
(a) Find the surface charge distributions on all the surfaces
(b) Find the electric field everywhere
(c) What is the force on the charge q_{A} and q_{B}
(d) Which of these answers would change if a third charge were brought near the sphere?
3. Find the force of repulsion between the "northern" hemisphere and the "southern" hemisphere of a metal sphere of radius R and carrying a total charge Q.
4. Find the capacitance associated with two long conducting cylinders, if
(a) they are concentric (coaxial) and have radii R_{1} and $R_{2}\left(R_{2}>R_{1}\right)$. What is the associated energy?
(b) their axes are parallel, with a distance d separating their centres (approximate that $d \gg R_{1}+R_{2}$). Also obtain the equipotential surfaces in this case when they are held at potentials $+V$ and $-V$.
5. Using the method of images, compute the potential within a slab of thickness $2 d$ (cavity) bound by semiinfinite conducting regions on both sides and when a charge q is placed in the cavity at a distance $a<d$ from the one of the conductors.
6. Using the method of images, find the force between a sphere of radius R held at potential V and a charge q as a function of of the distance from the centre of the sphere. Plot this dependence with distance for both signs of the charge $(\pm q)$.
7. (Problem 3.27 of Griffiths) The charges and locations of four particles are: $q:(0,0,-a),-2 q:(0, a, 0)$, $-2 q:(0,-a, 0)$ and $3 q:(0,0, a)$. Find the dipole and quadrupole moments. Find a simple approximate expression for the potential at large distances $(r \gg a)$.
8. (Problem 3.41 of Griffiths) Show that the average field inside a sphere of radius R due to all charge inside is

$$
\vec{E}_{\text {ave }}=-\frac{1}{4 \pi \varepsilon_{0}} \frac{\vec{p}}{R^{3}}
$$

where \vec{p} is the total dipole moment. Show that the average field due to all charges outside the sphere is the field they would produce at the centre.

