

Engineering Characterization of Soils

Particle Size; Standard Sieve Sizes

ASTM Particle Size Classification

Sieve Size		Particle Diameter			
Passes	Retained on	(in)	(mm)	Soil Classification	
	12 in	> 12	> 350	Boulder	Rock
12 in	3 in	3 - 12	75.0 - 350	Cobble	Fragments
3 in	3/4 in	0.75 - 3	19.0 - 75.0	Coarse gravel	
3/4 in	#4	0.19 - 0.75	4.75 - 19.0	Fine gravel	
#4	#10	0.079 - 0.19	2.00 - 4.75	Coarse sand	0.1
#10	#40	0.016 - 0.079	0.425 - 2.00	Medium sand	Soil
#40	#200	0.0029 - 0.016	0.075 - 0.425	Fine sand	
#200		< 0.0029	< 0.075	Fines (silt + clay)	

Sieve Analysis (Mechanical Analysis)

- This procedure is suitable for coarse grained soils
- See next slide for ASTM Standard Sieves
- No.10 sieve Has 10 apertures per linear inch

ASTM Standard Sieves

Sieve	Opening Size (in) (mm)		Sieve	Opening Size	
Identification			Identification	(in)	(mm)
3 inch	3.00	76.2	#16	0.0465	1.18
2 inch	2.00	50.8	#20	0.0335	0.850
1 ¹ /2 inch	1.50	38.1	#30	0.0236	0.600
1 inch	1.00	25.4	#40	0.0167	0.425
3/4 inch	0.75	19.0	#50	0.0118	0.300
3/8 inch	0.375	9.52	#60	0.00984	0.250
#4	0.187	4.75	#100	0.00591	0.150
#8	0.0929	2.36	#140	0.00417	0.106
#10	0.0787	2.00	#200	0.00295	0.075

Hydrometer Analysis

- Also called Sedimentation Analysis
- Stoke's Law

$$v = \frac{D^2 \gamma_w (G_s - G_L)}{18\eta}$$

Grain Size Distribution Curves

Terminology

- C.... Poorly-graded soil
- D Well-graded soil
- E Gap-graded soil
- D₁₀, D₃₀, D₆₀ = ??
- Coefficient of Uniformity, $C_u = D_{60}/D_{10}$
- Coefficient of Curvature,

$$C_c = (D_{30})^2 / (D_{10}) (D_{60})$$

Particle Distribution Calculations Example

TABLE 2-3				
Sieve Analysis	Data	for	Example	2-1

(1) Sieve Number	(2) Sieve Opening (mm)	(3) Weight Retained (g)	(4) Per- centage Retained	(5) Cumulative Percentage Retained	(6) Per- centage Passing
¾ in.	19 .0	0	0	0	100
¾ in.	9.50	158	7.9	7.9	92.1
No. 4	4.75	308	15.4	23.3	76.7
No. 10	2.00	608	30.4	53.7	46.3
No. 40	0.425	652	32.6	86.3	13.7
No. 100	0.150	224	11.2	97.5	2.5
No. 200	0.075	42	2.1	99.6	0.4
Pan		8	0.4	100.0	_

Required

A grain-size distribution curve for this soil sample.

Solution

To plot the gradation curve, one must first calculate the percentage retained on each sieve, the cumulative percentage retained, and the percentage passing through each sieve, then tabulate the results, as shown in Table 2-3.

Total sample weight = 2000 g

1. The percentage retained on each sieve is obtained by dividing the weight retained on each sieve by the total sample weight. Thus,

Percentage retained on ¾-in. sieve
$$= \frac{0 \text{ g}}{2000 \text{ g}} \times 100\% = 0\%$$

Percentage retained on ¾-in. sieve $= \frac{158 \text{ g}}{2000 \text{ g}} \times 100\% = 7.9\%$
Percentage retained on No. 4 sieve $= \frac{308 \text{ g}}{2000 \text{ g}} \times 100\% = 15.4\%$ etc.

Therefore,

$$Column (4) = \frac{Column (3)}{Total sample weight} \times 100\%$$

2. The cumulative percentage retained on each sieve is obtained by summing the percentage retained on all coarser sieves. Thus,

Cumulative percentage retained on $\frac{3}{-in}$. sieve = 0%

Cumulative percentage retained on %-in. sieve = 0% + 7.9% = 7.9%

Cumulative percentage retained on No. 4 sieve = 7.9% + 15.4%= 23.3%Cumulative percentage retained on No. 10 sieve = 23.3% + 30.4%= 53.7% etc.

3. The percentage passing through each sieve is obtained by subtracting from 100% the cumulative percentage retained on the sieves. Thus,

Percentage passing through
$$34$$
-in. sieve = $100\% - 0\% = 100\%$
Percentage passing through 36 -in. sieve = $100\% - 7.9\% = 92.1\%$
Percentage passing through No. 4 sieve = $100\% - 23.3\%$
= 76.7% etc.

Therefore, column (6) = 100% - column (5).

4. Upon completion of these calculations, the grain-size distribution curve is obtained by plotting column (2), sieve opening (mm), versus column (6), percentage passing through, on semilog paper. The percentage passing is always plotted as the ordinate on the arithmetic scale and the sieve opening as the abscissa on the log scale (see Fig. 2-2).

Particle Shapes

Clay Formation

- Clay particles < 2 μm</p>
- Compared to Sands and Silts, clay size particles have undergone a lot more "chemical weathering"!

Clay vs. Sand/Silt

- Clay particles are generally more platy in shape (sand more equi-dimensional)
- Clay particles carry surface charge
- Amount of surface charge depends on type of clay minerals
- Surface charges that exist on clay particles have major influence on their behavior (for e.g. plasticity)

Clay Minerals

- Kaolinite family
 - Kaolinite (ceramic industry, paper, paint, pharmaceutical)
- Smectite family
 - Montmorillonite (weathered volcanic ash, Wyoming Bentonite, highly expansive, used in drilling mud)
- Illite family

Elements of Earth

% by weight in crust

= 49.20 Si = 25.7 82.4% Al = 7.5 = 4.7Fe = 3.4Ca Na = 2.6Κ = 2.4Mg = 1.9 other = 2.6

Atomic Structure

Basic Structural Units

Clay minerals are made of two distinct structural units.

Tetrahedral Sheet

Several tetrahedrons joined together form a tetrahedral sheet.

Tetrahedral & Octahedral Sheets

For simplicity, let's represent silica tetrahedral sheet by:

Si

and alumina octahedral sheet by:

Different Clay Minerals

Different combinations of tetrahedral and octahedral sheets form different clay minerals:

1:1 Clay Mineral (e.g., kaolinite, halloysite):

Different Clay Minerals

Different combinations of tetrahedral and octahedral sheets form different clay minerals:

<u>2:1 Clay Mineral</u> (e.g., montmorillonite, illite)

Kaolinite

 used in paints, paper and in pottery and pharmaceutical industries
(OH)₈Al₄Si₄O₁₀

Halloysite

kaolinite family; hydrated and tubular structure
(OH)₈Al₄Si₄O₁₀.4H₂O

Montmorillonite

> also called <u>smectite</u>; expands on contact with water

montmorillonite family

used as drilling mud, in slurry trench walls, stopping leaks

Others...

Chlorite

A 2:1:1 (???) mineral. Si Al Al or Mg

Vermiculite

montmorillonite family; 2 interlayers of water

<u>Attapulgite</u>

> chain structure (no sheets); needle-like appearance

A Clay Particle

Clay Fabric

face-to-face contact

Clay Fabric

Electrochemical environment (i.e., pH, acidity, temperature, cations present in the water) during the time of sedimentation influence clay fabric significantly.

 \succ Clay particles tend to align perpendicular to the load applied on them.

Identifying Clay Minerals

Scanning Electron Microscope

common technique to see clay particles

> qualitative

plate-like structure

X-Ray Diffraction (XRD)

to identify the molecular structure and minerals present

Differential Thermal Analysis (DTA)

> to identify the minerals present

Casagrande's PI-LL Chart

Isomorphous Substitution substitution of Si⁴⁺ and Al³⁺ by other lower valence (e.g., Mg²⁺) cations

results in charge imbalance (net negative)

Clay Particle with Net negative Charge

The replacement power is greater for higher valence and larger cations.

 $Al^{3+}\!>\!Ca^{2+}\!>\!Mg^{2+}\!>\!NH_4^+\!>K^+\!>H^+\!>Na^+\!>Li^+$

A Comparison

Mineral	Specific surface (m²/g)	C.E.C (meq/100g)
Kaolinite	10-20	3-10
Illite	80-100	20-30
Montmorillonite	800	80-120
Chlorite	80	20-30

Cation Concentration in Water

cation concentration drops with distance from clay particle

Adsorbed Water

> A thin layer of water tightly held to particle; like a skin

- > 1-4 molecules of water (1 nm) thick
- > more viscous than free water

Clay Particle in Water

Practical Significance

Summary - Clays

Clay particles are like plates or needles. They are negatively charged.

Clays are plastic; Silts, sands and gravels are non-plastic.

Clays exhibit high dry strength and slow dilatancy.

Summary - Montmorillonite

Montmorillonites have very high specific surface, cation exchange capacity, and affinity to water. They form reactive clays.

Montmorillonites have very high liquid limit (100+), plasticity index and activity (1-7).

Bentonite (a form of Montmorillonite) is frequently used as drilling mud.