A Comparative study of Support for Power Tunnel

- Hua Saphan Hin Hydroelectric Project Location: Eastern Sea board of Thailand –near Thai-Kampuchean Border
- Intake Channel 1 km long, Main Dam 209 m above MSL, Power tunnel – 732 m long 3.2 m wide horse shaped section, feeds6.1 MW power generation units 100m below with 13.2 cu m/sec
- Thicket overburden 90 m, Meta-sedimentary rock excavated by drill and blast method.

- Empirical approaches Rock Structure Rating, Geomechanical Classification (RMR) and Barton's Rock Mass Rating, Q
- Analytical Approach Rock Structure Interaction Analysis, Micro- Computer program developed.

Fig. 2.1 Project Arrangement of the Huai Saphan Hin Hydroelectric Project

Fig. 2.2 Plan and Section of the Power Tunnel

Fig. 3.6aEngineering Geologic Map of Power Tunnel, Chainage Om to 50m

Table 3.1 Strike and Dip Orientations of the Joint Sets

Joint Set No.	Average Strike	Panges	Dip and Direction
1	14°	from 0° to 30°	64° S
2	52°	from 40° to 65°	54° S
3	126°	from 115° to 150°	68° N
4	161°	from 150° to 180°	65° S

Table 4.1 F atures Along the Power Tunnel

-

Tunnel Section	Governing Joint Sets	RQD	In-situ Stress	Water Seepage
(1) Ch.11.2-150m	Set 1, Set 3 and Set 4	96-70	1.96 MPa	Heavy Inflow
(2) Ch. 150-220m	Set 2	96-70	2.12 f.a	Dripping
(3) Ch.220-320m	Set 3 and Set 4	95-32	2.27 MPa	Dripping
(4) Ch.320-550m	Set 1 and Set 3	99-76	2.42 MPa	Dripping
(5) Ch.550-732.8m	Set 1, Set 3 and Set 4	98-77	1.76 MPa	Dry

Method	Parameters Used	Modulus Em
RQD vs. Em	Max. RQD = 99%	69 GPa
(1970)	Ave. $RQD = 87\%$	34.5 GPa
Joint Frequency(n)	Min. n = 5.8	68 GPa
Singh (1970)	Ave. n = 1.6	29.76 GPa
RMR vs. Em	Max. $RMR = 87$	74 GPa
(1983)	Ave. $RMR = 58$	16 GPa
RMR vs. Em '	Max. $RMR = 87$	c 19.25 GPa
(1983)	Ave. $RMR = 58$	12 Gra
RMR vs. Em	\sim Max. RMR = 87	10.6° GPa
(1980)	Ave. $RMR = 58$	5.38

``

Table 4.7 Computation cf Deformation Modulus

Table 4.8 Estimated Cost of Supports Recommended by RSR Concept

Section	No. of Ribs	Quantity (tons)	Quantity (tons)	Unit Price (Baht/ton)	Sub-total (Baht)
(1)	117	19.28	0.129	25,000	481,880
(2)	76	12.52	0.179	25,000	313,016
(3)	12:	20.59	0.206	25,000	514,829
(4)	165	27.18	0.118	25,000	679,575
(5)	109	17.96	0.980	25,000	448,931
Steel lag	i gings and s	i preaders	58.52	27,500	1,609,233
Wooden Bl	ocks		12.11	· 12,000	145,200

(a) Alternative 1 (Steel Set)

(b) Alternative 2 (Rock bolts and Shotcrete)

Support		Quantity per Section				Unit Price (Baht)	Sub-total (Baht)	
2 COMO	(1)	(2)	(3)	(4)	(5)	(Dune)	(Dune)	
Rock Bolts	2478m	1593m	2450m	3612m	2205m	240/m	2,961,120	
Shot- crete	68.80	38.08	59.50	99.71	73.06	4000/cu.m	1,356,766	
Liner Plate	2124kg	1365kg	2100kg	3096kg	1.90kg	38/kg	401,850	
				L	L	Total Cost	B 2,719,736	

1

Support		Quantit	y per S	ecti n		Unit Price (Baht)	Sub-total (Baht)			
ILEMS	(1)	(2)	(3)	(4)	(5)	()				
Rock Bolts	3200m	1504m	2144m	2760m	2208m	320/m	3,781,120			
Shot- crete	27.50	59.50	85.00	83.95	66.75	4000/cu.m	1,690,790			
Liner Plate	 2400kg	1128kg	1608kg	2070kg	1656kg	38/kg	336,756			
Wire Mesh	3825kg	1785kg	2550kg	3795kg	3017kg	24/kg	359,336			
	Total Cost B 5,168,002									

Table 4.9 Estimated Cost of Supports Recommended by RMR Method

Support Items		Quanti	ty per	Unit Price	Sub-total		
1.0.000	(1)	(2)	(3)	(4)	(5)	(Balle)	(bant)
Rock							X
(a)utg	4200m	-	-	-	-	320/m	1,344,000
(b) tg	-	-	2800m	-	-	,350/m	980,000
Shot- crete	63.75	29.75	42.50	97.75	77.72	4000/cu.m	1,245,879
Liner Plate	3600kg	-	2400kg	-	-	38/kg	228,000
Wire Mesh	3188kg		2125kg	-	-	24/kg	127,512

Table 4.10 Estimated Cost of Supports Recommended by Q System

Note: utg = untensioned grouted bolts tg = te sioned grouted bolts

2

Support It ms	Quantit	ty	Unit Price	Sub-total
Stee ¹ ribs	14.585	tons	25,000/ton	364,625
Steel laggings	10.442	tons	27,500/ton	287,155
Timber laggings	6.692	tons	8,750/ton	58,555
Invert struts	3.344	tons	25,000/ton	83,600
Roc. bolts	412.3	m	240/m	98,952
Liner plates	354.90	kg	38/kg	13,486
Wire mesh	119.51	kg	24/kg	2,868
Concrete	4711	cu.m	3000/cu.m	14,133,000
	•		Total Cost	B 15,042,241

2

1

Table 4.11 Estimated Cost of Actual Supports Used

(1) Set 1, Set 3 96-70 1.96 MPa Hea (1) Set 1, Set 3 96-70 1.96 MPa Hea (2) Set 2 96-70 2.12 MPa Dri (1) Set 3 and 95-32 2.27 MPa Dri (3) Set 3 and 95-32 2.27 MPa Dri (4) Set 1 and 99-76 2.42 MPa Dri (5) Set 1, Set 3 98-77 1.76 MPa Dry	Tunnel Section	Governing Joint Sets	RQD	In-situ Stress	Water Seepage
(2) Ch.150-220 m Set 2 96-70 2.12 MPa Dri (3) Ch.220-320 m Set 3 and Set 4 95-32 2.27 MPa Dri (4) Ch.320-550 m Set 1 and Set 3 99-76 2.42 MPa Dri (5) Set 1, Set 3 98-77 1.76 MPa Dry	(1) Ch.11.2-150 m	Set 1, Set 3 and Set 4	96-70	1.96 MPa	Heavy Inflow
(3) Set 3 and 95-32 2.27 MPa Dri Ch.220-320 m Set 4 99-76 2.42 MPa Dri (4) Set 1 and 99-76 2.42 MPa Dri (5) Set 1, Set 3 98-77 1.76 MPa Dry	(2) Ch.150-220 m	Set 2	96-70	2.12 MPa	Dripping
(4) Set 1 and 99=76 2.42 MPa Dri Ch.320-550 m Set 3 98=77 1.76 MPa Dry (5) Set 1, Set 3 98=77 1.76 MPa Dry	(3) Ch.220-320 m	Set 3 and Set 4	95-32	2.27 MPa	Dripping
(5) Set 1, Set 3 98-77 1.76 MPa Dry	(4) Ch.320-550 m	Set 1 and Set 3	99-76	2.42 MPa	Dripping
Ch. 550-732.8m and Set 4	(5) Ch.550-732.8m	Set 1, Set 3 and Set 4	98-77	1.76 MPa	Dry

Table 1 Features Along the Power Tunnel

Table 2 Ratings and Supports Recommended by RSR Method

			1	Support	
Section	Condition	RSR	Shotcrete	Bolts	Steel Ribs
• 1	Best	81	2.48	-	-
	Worst	46	5.31	1.28	1.29
	Average	64	3.59	2.07	3.38
2	Best	76	2.77	4.41	15.25
	Worst	38	6.36	1.09	0.93
1	Average	57	4.18	1.66	2.18
3	Best	70	3.16	-	-
	Worst	34	6.99	1.01	0.80
	Average	52	4.65	1.46	1.69
4	Best	88	2.12	-	-
	Worst	48	5.08	1.34	1.69
	Average	67	3.37	2.15	3.64
5	Best	80	2.54	_	-
	Worst	52	4.65	1.46	1.69
	Average	65	3.52	2.15	3.64

Section	Condition	Ground	Support	t Type		
		Class	Shotcrete	Block Bolts		
(1)	Best	Good	None	Spot bolting (utg)		
	Worst	Very poor	t=50 mm + (wmr)	s=lm (utg)		
	Average	Poor	t=20=30mm	None		
(2)	Best	Very good	None	Spot bolting (utg)		
	Worst	Poor	t=25-50mm	None		
	Average	Fair	None	s=1-1.5m (utg)		
(3)	Best	Poor	t=25-50nm+(wmr)	s=lm (utg)		
	Worst	Ext. poor	t=25-50nm+(wmr)	s=lm (tg)		
	Average	Very good	t=50nm + (wmr)	s=lm (tg)		
(4)	Best	Good	None	Spot bolting (utg)		
	Worst	Very poor	t=25-50mm	None		
	Average	Fair	None	s=1-1.5m (utg)		
(5)	Best	Good	None	Spot bolting (utg)		
	Worst	Poor	t=25-50mm	None		
	Average	Fair	6=20-30mm	None		

Table 6 Recommended Supports Based on NGI (Q) System

Note: t = thickness of shotcrete

s = spacing of bolts

(utg) = untensioned grouted bolts

(tg) = tensioned grouted bolts
(wmr) = wiremesh reinforced

(clm) = chainlink mesh

Table	5	Rock	Mass	Classification	According	to	NGI	(1)	System

	Contian	C				Paramet	ers		,	Cupport
_	section	Condition	RQD	Jn	Jr	Ja	Jw	SRF	Q	Category
	(1)	Best Worst Average	96 70 83	·9 15 10.5	3 2 2.5	0.75 3 1.8	1 0.5 0.75	2.5 2.5 2.5	17.07 0.62 3.29	13 25 17
	(2)	Best Worst Average	96 70 83	2 6 5	3 2 2.5	1 3 2	1 0.66 0.85	2.5 2.5 2.5	57.60 2.05 8.82	9 21 17
	(3)	Best Worst Average	95 32 64	4 6 5	2 1 1.5	2 6 4	1 0.66 0.85	10 10 10	2.38 0.06 0.41	22 33 25
	(4)	Best Worst Average	99 77 88	4 9 6.5	3 2 2.5	0.75 3 1.8	1 0.66 1	2.5 2.5 2.5	39.60 1.51 6.39	13 21 17
	(5)	Best Worst Average	98 77 88	9 12 10.5	3 1.5 2.3	0.75 3 1.8	1 1 1	2.5 2.5 2.5	17.42 1.28 4.28	13 21 17

Section	Condition	RMR	Rock Mass	Sup	port Type
			Class	Shotcrete	Rock Bolts
(1)	Best	82	I	Generally no support	required except for occasional bolting
	Worst	39	IV	100-150mm in crown and 100mm in sides	systematic bolts 4-5m long, spac- ed 1-1.5m in crown and walls with wiremesh
	Average	61	II	50mm in crown where required	locally bolts in crown 3m long, spaced 2.5m with occasional wire- mesh
(2)	Best	70	II	50 mm in crown where required	loca-ly bolts in crown 3m long, spaced 2.5m with occasional wire- mesh
	Worst	33	VI	100-150mm in crown and 100mm in sides	systematic bolts 4-5m long, spac- ed 1-1.5m in crown and walls with wiremesh
	Average	61	111	50-100mm in crown, 30mm in sides	systematic bolts 4m long, spaced 1.5-2m in crown and walls with mesh in crown
(3)	Best	70	II	50mm in crown where required	locally bolts in crown 3m long, spaced 2.5m with occasional wire- mesh
	Worst	33	IV	100-150mm in crown and 100mm in sides	systematic bolts 4-5m long, spac- ed 1-1.5m in crown and walls with wiremesh
	Average	61	III	50-100mm in crown reguired	systematic bolts 4m long, spaced 1.5-2m in crown and walls with wiremesh in crown
(4)	Best	82	I	Generally no support	required except for occasional bolting
	Worst	44	111	50-100mm in crown, 30mm in sides	systematic bolts 4m long, spaced 1.5-2m in crown and walls with wiremesh in crown
	Average	61	II	50mm in crown where required	locally bolts in crown 3m long, spaced 2.5m with occasional wire- mesh
(5)	Best	82	I	Generally no support	required except for occasional bolting
	Worst	44	III	50-100mm in crown, 30mm in sides	systematic bolts 4m long, spaced 1.5-2m in crown and walls with wiremesh in crown
	Average	61	II	50mm in crown where required	locally bolts in crown 3m long, spaced 2.5m with occasional wire- mesh

Table 4 Rock Mass Class and Recommended Supports Based on RMR Method

	7		Rock Mass	Supp	ort Type
Section	Condition	RMR	Class	Shotcrete	Rock Bolts
(1)	Best	82	I	Generally no support	required except for occasional bolting
	Worst	39	IV	100-150mm in crown and 100mm in sides	systematic bolts 4-5m long, spac- ed 1-1.5m in crown and walls with wiremesh
	Average	61	II	50mm in crown where required	locally bolts in crown 3m long, spaced 2.5m with occasional wire- mesh
(2)	Best	70	II	50 mm in crown where required	loca-ly bolts in crown 3m long, spaced 2.5m with occasional wire mesh
	Worst	33	IV	100-150mm in crown and 100mm in sides	systematic bolts 4-5m long, spac ed 1-1.5m in crown and walls wit wiremesh
	Average	61	III	50-100mm in crown, 30mm in sides	systematic bolts 4m long, spaced 1.5-2m in crown and walls with mesh in crown
(3)	Best	70	II	50mm in crown where required	locally bolts in crown 3m long, spaced 2.5m with occasional wire mesh
	Worst	33	IA	100-150mm in crown and 100mm in sides	systematic bolts 4-5m long, spac ed 1-1.5m in crown and walls wit wiremesh
	Average	61	III	50-100mm in crown required	systematic bolts 4m long, spaced 1.5-2m in crown and walls with wiremesh in crown
(4)	Best	82	I	Generally no support	required except for occasional bolting
	Worst	44	III	50-100mm in crown, 30mm in sides	systematic bolts 4m long, spaced 1.5-2m in crown and walls with wiremesh in crown
	Average	61	II	50mm in crown where required	locally bolts in crown 3m long, spaced 2.5m with occasional wire \mesh
(5)	Best	82	I	Generally no support	required except for occasional bolting
	Worst	44	III	50-100mm in crown, 30mm in sides	systematic bolts 4m long, spaced 1.5-2m in crown and walls with wiremesh in crown
	Average	61	II	50mm in crown where required	locally bolts in crown 3m long, spaced 2.5m with occasional wire mesh

Table 4 Rock Mass Class and Recommended Supports Based on RMR Method

Table 3 Rock Mass Ratings

Soction	RMR rat:	ings for co	onditions
Section	Best	Worst	Average
1	82	39	61
2	70	33	52
3	64	29	52
4	87	49	67
5	82	41	63

Table 7 Cost Estimate for Supports

Sr No	Type of Support Cost	Estimated Total Cost
1.	Actual Support	15,042,241
2.	Support recommended by RSR Method (Steel Sets)	4,192,664
3.	Support recommended by RSR Method (Rock Bolts & Shot- crete)	4,719,736
4.	Support recommended by RMR Method	5,168,002
5.	Support recommended by Q system	3,925,391

Fig.4.? Rock-Support Interaction Analysis of Hock Class 111

Fig.4.2 1 juired and Available Support Curves for Rock Support Interaction Analysis of Rock Class IV

١

Fig.4.la Computer Drawn Characteristic Curves for Tunnel Section (4), Using Shotcrete Layer 25mm Thick

Central Tunnel- A part of 'The Southern Link Railway Project' in South Taiwan

 Overall 8070 m, 10 m diameter horse shoe shaped tunnel through Meta-sedimentary rock excavated by drill and blast method.
 Period of construction : March 1984 to 1990.

Fig.2.1 Layout of The South Link Railway Project

Fig.2.2 Layout of Construction Methods along The Central Tunnel, Length and Elevation

Fig.1.2 Central Tunnel Area of The S. 1th Link Railway

Fig.3.6(a) Engineering Geologic Map of Central Tunnel , Chainage 25k+905 to +940

Fig.3.1 Geological Profile of Central Tunnel, Representation of Overturned Bedding, Major Folds, Axial Planes and Location of Borehole. (after Central Geological Survey, 1981)

Purpose of the study

- To correlate four empirical methods.
- To access relationship between support recommended and the geological parameters.
- To compare results of NATM with those of preliminary design.
- To establish most stable and economical support system.

	Section	RMR	Q	RSR	RQD
	25 + 904.8				
	25 + 905.8	41	0.867	44	52
	25 + 906.8	45	0.833	50	50
	25 + 907.8	40	0.917	44	55
	25 + 908.8	43	1.08	50	65
	25 + 909.8	34	0.292	39	70
	25 + 910.8	43	0.625	44	75
	25 + 911.8	44	1.333	50	80
	25 + 912.8	42	0.833	46	75
	25 + 913.8	41	0.583	46	70
	25 + 914.8	38	0.750	44	60
2	25 + 915.8	34	0.281	38	45
	25 + 916.8	37	0.313	38 .	50
	25 + 918	37	0.313	38	50
	25 + 920.5	36	0.313	38	50
	25 + 922	39	0.375	46	60
	25 + 923.5	36	0.313	38	50
	25 + 925	37	0.313	46	50
	25 + 928.1	42	0.667	50	60
	25 + 929.9	40	0.556	44	50
	25 + 931.4	41	0.611	44	55
	25 + 932.9	42	0.667	44	60

Table 3.2 : Ratings of Various Rock MAss Classifications

	Tuni	nel Sub	osection	•	RMR	Q	RSR	RQD
(1)	Ch.	904.8	- 913.8	m	41	0.818	46	66
(2)	Ch.	913.8	- 925	m	37	0.371	41	52
(3)	Ch.	925	935.9	100	41	0.621	45	56
(4)	Ch.	935.9	- 951.5	m	37	0.367	42	4
(5)	Ch.	951.9	958.4	III	44	0.722	47	50
(6)	Ch.	958.4	- 980.4	m	35	0.373	39	43
(7)	Ch.	980.4	- 982.4	m	13	0.042	26	15

Table 4.1 Geologically Similar Subsections Corresponding to Rock Mass Classifications

Rock Mass Class	Subsection No.	Shortcrete	Rockbolts (20 mm Fully Bonded	Steel Sets
Fair rock III RMR = 41 - 44	1, 3, 5	5-10 cm in crown and 3 cm in sides	Systematic bolts 4 m long, spaced 1.5-2 m in crown and walls with mesh in crown	None
Poor rock IV RNR = 35 - 37	2, 4, 6	10-15 cm in crown and 10 cm in sides	Systematic bolt 4-5 m long, spaced 1-1.5 m in crown and walls with wiremesh	Light ribs spaced 1.5 m where required
Very poor rock V RMR = 13	7	15-20 cm in crown, 15 cm in sides and 5 cm on face	Systematic bolt 5-6 m long, spaced 1-1.5 m in crown and walls with viremesh. Bolt invert	Medium to heavy ribs spaced 0.75m with steel logging and forepoling if required; close invert

Table 4.2 Rock Mass Class and Recommended Supports Based on RMR Method

Q	Subsection No.	Shortcrete	Rockbolts	Steel Sets
Very poor 0.621 - 0.818	1, 3, 5	5-7.5 cm with wiremesh	Untensioned grou- ted dowels on grid spacing 1.0m	None
Very poor 0.367 - .373	2, 4, 6	7.5-25 cm with wiremesh	None	None
Extremely poor 0.042	7	15-25 cm with wirenesh	None	None

Table 4.3 Rock Mass Classification According to NGI (Q) System

	~	/	*	
Rock	Subsection	Altern	native Support Sy	stems
RQD	Nó.	Shortcrete	Rockbolts	Steel Sets
Fair 50 - 66	1, 2, 3, 5	4 in or more on crown and sides	Pattern, 3 to 5 ft center	Light to medium sets, 4-5ft center
Poor 43 - 44	4,6	6 in or more on crown and sides. Com- bined with bolts	Pattern, 2 to 4 ft center	Medium to heavy sets, 2-4ft center
Very poor 15	7	6 in or more on whole sec- tion. Com- bined with medium to heavy sets	Pattern, 3 ft center	Heavy cir- cular sets, on 2 ft center

Table 4.4 Support Recommendations Based on RQD

RSR Rating	Sub- section	RR	Wr kip/ ft ² e	Shortcrete Rockbolts Steel Sels		
45 47 Ave. 56	1, 3, 5	36	3.57	3.9 in thick	load 24 kips grid spa :ng 2.59 ft	8WF40 spacing 3.47 ft
39-42 Ave. 40	2, 4, 6	46	4.54	4.6 in thick	load 24 kips grid spacing ⁹ . ft	8WF40 spacing 2.72
26	7	77	7.65	7.1 in thick	load 24 kips grid spacing 1.77 ft]Q√F49 s´cir 2.17 ft

Table 4.5 Ratings and Supports Recommended by RSR Method

Method	Parameters Used	Modulus	Em x 104	kg/cm ²
RQD vs Em COON & MERRIT (1970)	<pre>III. RQD = 50-66, Average 58 </pre>	4.9	2.1	< 0.7
RQD vs Em/El BIENIAWSKI (1978)	<pre>III. RQD = 58, Em/El = 0.17, El = 18.8 IV. RQD = 47, Em/El = 0.14, . El = 18.8 IV. RQD = 15, Em/El = 0.11, El = 18.8</pre>	3.2	2.6	2.1
RMR vs Em SARAFIN and PEREIRA (1983)	III. RMR = 41-44, Average 42 IV. RMR = 35-37, Average 36 V. RMR = 7-20, Average 13	6.4	4.6	1.2
RMR vs Em CHAPPLE and MAURICE (1980)	III. RMR = 41 IV. RMR = 36 V. RMR = 35	2.8/	1.9/8.6	0/0
JOINT FRE- QUENCY vs Em SINGH (1973)	III. RQD = 58, n=9, r=0.25 IV. RQD = 47, n=108, r=0.25 V. RQD = 15, n=16.4, r=0.6	5.8	5.1	1.7

Table 4.9 Computation of Deformation Modulus

Table	4.10	Material	Constants	of	Jointed	and	Broken	Rock	Mass

•

Rock Class	III	IV	V
Average RMR m S	51 0.38 0.0004	31 0.084 0.00002	10 0.018 0.000001
Lowest RMR mr Sr	41 0.18 0.00009	27 0.063 0.000009	0.014 0

Table 4.11	Support Analysis	Requirements	Based on	Rock-Support	Intersection
	2.				**

Rock Class RMR	ubsection No.	Reinforced Shotcrete	Grouted Rockbolt (25 mm dia, 10 tons)	Steel Sets
III	1, 3, 5	12.5 cm with wiremesh \\$ x100x100 mm	1 = 3 m spacing 1.5x2.0 m	H100 x 100 max. spacing 2.0 m
IV	2, 4, 6	25 cm with wiremesh,	1 = 4 m spacing 1.2x1.5 m	H125 x 125 max. spacing 1.5 m
V	7	65 cm (σc = 240 kg/cm ²), with wiremesh	l = 5 m 0.8 m on grid pattern	H200 x 200 max. spacing 0.8 m

Parameters	Rock Class III	Rock Class IV	Rock Class V
Rock MAss			,
uniaxial compressive strength of intact rock (kg/cm ²) material constant for original	552	552	552
rock mass (m) material constant for original	0.38	0.084	0.018
rock mass (S) modulus of deformation for rock	0.0004	0.00002	0.000001
mass	61000	48000	14000
poission's ratio material constant for broken	0.2	0.2	0.2
rock mass (mr) material constant for broken	0.18	0.063	0.014
rock mass (Sr) unit weight of broken rock mass	0.00009	0.00009	0
(kg/cm^3)	0.0027	0.0027	0.0027
in-situ stress (kg/cm ²)	59	59	59
radius of tunnel	510	520	525
Shotcrete Lining			
modulus of elasticity Ec (kg/cm ²)	200000	200000	200000
cisson's ratio	0.25	0.25	0.25
compressive strength (kg/cm ²)	210	210	240
thickness (cm)	12.5	25	65
Blocked Steel Sets			
flange width (cm)	10	12.5	20
section depth (cm)	10	12.5	20
moment of inertia (cm ⁴)	21.9	30.31	63.53
Young's modulus of steel (kg/gm ²)	383	847	4720
Yield strength of steel (kg/cm ²)	2070000	2070000	2070000
Young's modulus of blocking	2500	2500	- 2500
material (kg/cm ²)	200000	200000	200000
Rcc. Bolts			
bolt diameter (cm)	2.54	2.54	2.54
Young's modulus of bolts (kg/cm ²)	2070000	2070000	2070000
anchor stiffness (cm/kg)	0	0	0
pull out Strengthi (tons)	10	10	10

Table 4.12 Input Data for Rock-Support Intersection Analysis

Fig.3.13(b) Results of Tangential Pressure Cell Measurement

		The second s	C. Lineard and an and	1	and a state of the	and the second second second				
	RMR =	a + b b	log Q r	RSR =	c + d d	log Q r	RSR =	= e+f f	.RMR r	No. o Cases
BIENIAWSKI, (1976)	44	20.7	-	-	-	-		-	-	111
RUTLEDGE and PRESTON, (1977)	43	13.5		46.5	13.3	-	12.4	0.77	-	-
Pando N.*	58.8	13.5	0.82	56.28	11.5	0.12	13.5	0.74	0.87	37
Negron N.*	47.96	16.0	0.73	51.9	6.68	0.36	19.5	0.61	0.71	31
Negron S.*	54.6	12.3	0.89	52.87	9.55	0.82	10.6	0.77	0.93	65
Barrios S.*	54.0	14.97	0.92	54.11	8.66	0.66	16.1	0.68	0.86	17
Chiew Larn**	-	-	÷	62	21.7	+	15.2	0.83	-	9
luai Saphan lin	48.1	18.9	0.83	52	17.6	0.86	9.9	0.88	0.98	15
Central	44.5	18 3	0.94	47.5	17	0.88	13	0.77	0.89	50

Table 5.1 Summary of Correlations Between Q, RNR and RSR

Central Tunnel

	Geomec	hanic Classification	Q System			
Subsection	Class	Support	Class	Support		
1, 3, 5	III Fair rock RMR = 41-44	5-10 cm shotcrete in crown, 3 cm in sides; systematic grouted bolts (20 mm dia.) spaced 1.5-2 m, length 4 m, with mesh in crown	Very poor rock Q = 0.621- 0.818	5-7.5 cm shotcrete with wiremesh, unten- sioned grouted dewels on grid spacing 1 m		
2, 4, 6	IV Poor rock RMR = 35-37	10-15 cm shotcrete in crown, 10cm in sides; systematic grouted bolts spaced 1-1.5 m, length 4-5 m plus wiremesh; light ribs at 1.5 m where re- quired	Very poor rock Q = 0.367- 0.373	7.5-25 cm with wire- mesh		
7	V Very poor rock' MR = 13	15-20 cm shotcrete in crown, 15 cm in sides and 5 cm on face; systematic grouted bolts spaced 1-1.5m, length 5-6 m plus wiremesh, bolt invert medium to he.vy ribs at 0.75 m with steel logging and fore- poling if required; closed invert	Extre- mely poor rock Q = 0.042	15-25 cm with wire- mesh		

Table 5.2 (Cont'd)

the second s						
Subsection	New Aus	trian Tunneling Method	Rock	Support Interaction Analysis		
	Class	Support	Class	Support		
1, 3, 5	III	12.5 cm shotcrete with mesh ¹ , system- atic grouted bolts 3 m long ² spaced 1.5 x2.0 m, plus ribs H100 spacing 2.0 m	111	Same as NATM's class		
2, 4, 6	IV	15 cm shot rete with mesh, face 5 cm where required; systematic grouted bolts 4 m long, spaced 1.2x1.5 m plus ribs H125 spacing 1.5 m fore- poling occasionally ³	IV	25 cm shotcrete with mesh, systematic grouted bolts 4 J long, spaced 1.2.1.5 m plus ribs H125 spacing 1.5 m		
7	ν-	20 cm shotcrete with mesh, face 5 cm, in- vert 10 cm if re- quired; systematic grouted bolts 5 m long; spaced 1.0x1.0 m plus ribs H150, spacing 1.0 m fore- poling c/c 30 cm	V	65 cm shotcrete (.c = 240 kg/cm ²) wit mesh; systematic grouted bolt: 5 m long, spaced 0.8x0 m plus ribs 1200, spacing 0.8 m		
lotes: 1 2 3	wiremesl groited foi_pol:	<pre></pre>	working	load 10 tons		

Table 5.2 (Cont'd)

Subsection	RS	R Classification	RQD Classification			
Subsection	Class	Support	Class	Support		
1, 3, 5	RSR = 45-47	10 cm shotcrete or systematic rockbolts (25 mm dia.) at 0.8 m or steel ribs 8WF40 at 1.0 m	Fair RQD = 50-66	10 cm or more shot- crete or systematic bolts spaced 0.9-1.5 m or light to medium steel ribs at 1.2 - 1.5 m partial mesh required		
2, 4, 6	RSR = 39-42	12 cm shotcrete or systematic rockbolts at 0.7 m or steel ribs 8WF40 at 0.8 m	Poor RQD = 43-44	15 cm or more shot- crete plus bolts or systematic bolts spaced 0.2-1.2 m or me lium to heavy ribs at 0.6-1.2 m more partial mesh required		
7	RSR = 26	18 cm shotcrete or systematic rockbolts at 0.5 m or steel ribs 10WF49 at 0.65m	Very poor RQD = 15	15 cm or more shot- crete plus medium to heavy ribs or system- atic bolts spaced 0.5 m or heavy circular ribs at 0.6 m mesh requirement 100%.		

Rock Class	Steel Ribs	Shotcrete ¹ .	Rock Bolt ²	Forepoling ³
III (Type C)	H150, spaced 1.5 - 1.8 m	15 cm	3 m, spaced 1.5 x 1.7 m	-
IV (Type B)	H150, spaced 1.2 - 1.5 m	15 cm Face 5 cm if required	4 m, spaced 1.2 x 1.5 m	Occasional if required
V (Type A)	H150, spaced ≤ 1.0 m	20 cm invert 10 cm face 5 cm	5 m, spaced 1.0 x 1.5 m	c/c 30 cm where required

Table 5.3 Actual Supports of the Central Tunnel

Remarks: ¹ The strength of shotcrete after 28 days is 210 kg/cm², and wiremesh of $\phi 6 \times 100 \times 100$ mm is used for each rock class Rock bolt = diameter $\phi 25$ mm, pull resistance 10 tons Forepoling = $\phi 4.2 \times 300$ cm

CONCLUSIONS

 Final ratings : RSR 34-88 RMR 27-87 Q 0.06-57.6
 Supports: RSR Most Expensive RMR Less Expensive Q Least Expensive

Fig. 28. INTERNAL SHELL SHOULD ALSO BE THIN. CONNECTION OF THE FORCES IS USEFUL BUT FRICTIONLESS.

Only in case of cohesive soils the internal shell is used for stabilization in addition to external shell

Fig. 29. STABILIZATION SHOULD BE EFFECTED BY THE EXTERNAL SHELL, INTERNAL SHELL, INCREASES THE SAFETY. IN CASE OF ACCRESIVE WATER THE INTERNAL SHALE

CORRECT ESTIMATION OF THE SPECIFIC FACTOR OF TIME IS IMPORTANT.

FOR THIS LABORATORY TESTS, IN-SITU TESTS, MEASUREMENTS ARE NECESSARY. STAND UP TIME, RATE OF DISPLACEMENT, ROCK CLASSIFICATION SHALL BE USED.

ACCORDING TO STATICAL PRINCIPLES THE TUNNEL IS A TUBE WHICH CONSISTS OF THE ROCK CARRYING RING AND THE SUPPORT, NOT A CONDUIT. Fig. 19

Fig. 20 THEREFORE CLOSURE OF THE RING IS NECESSARY IF NOT CAUSED BY THE BEDROCK. THE EFFECT IS ONLY GIVEN WITHOUT A GAP. 8

FRÜHER

FULL FACE HEADING HELPS TO KEEP ROCK STRENGTH. MANY PARTIAL HEADINGS REDUCE ROCK STRENGTH ACCORDING TO STRESS SUPER-POSITION.

VARIATION OF LENGTH OF A ROUND, 'TIMING OF SUPPORT AND RING CLOSURE, LENGTH OF THE CROWN . AND LINING RESISTANCE ARE USED TO HELD THE DESCENTED OF OF

NEW HEUTE

There corners should be avoided because they create concentration of stresses

.

•

Fig. 24 SMOOTHLY ROUNDED SHAPES HELP TO PREVENT STRESS CONCENTRATIONS.

FIG. 25

FRÜHER

. INTERNAL SHELL SHOULD ALSO BE THIN. CONNECTION OF THE FORCES IS USEFUL BUT FRICTIONLESS.

· STABILIZATION SHOULD BE EFFECTED BY THE EXTERNAL SHELL INTERNAL SHELL INCREASES THE SAFETY. IN CASE OF AGGRESIVE WATER THE INTERNAL SHALE MUST BE CAPABLE OF, STABILIZING THE SYSTEM BY ITSELF. PERMANENT SUPPORT OF ANCHOR IS ONLY GIVEN IF THEY ARE PROTECTED AGAINST CORROSION.

BETONSPANNUNGEN

Fig. 30 CONTROL AND DIMENSIONING OF THE TOTAL CONSTRUCTION WITH THE HELP OF (TANGENTIAL) CONCRETE STRESSES AND (RADIAL) CONTACT STRESSES AS WELL AS DISPLACEMENT MEASUREMENT.

Interval for item	Layer thickness	Fracture Intercept	Un <u>iaxia</u> strengt	l com. h	Angle of	Friction
(2) & (3) in cm			kg/cm ²	Symbol	Degrees	Symbol
(1)	(2)	(3)	(4)	(5)	(6)	(7)
200	L1	· F _l	2000	sl	> 45	. ^A 1
60-200	L_2	F ₂	600-2000	S2	35-45	A2
20-60	L ₃	F ₃	200-600	s ₃	25-35	A3
6-20	L ₄	F4	60-200	S4	15-25	A4
6	L ₅	F ₅	60	S ₅	< 15	A ₅

TABLE V - SYMBOLS FOR BASIC GEOTECHNICAL DESCRIPTION

Quartz L2 F4 53 A2

las ge.N. Z