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Abstract

A new method for computing path mtegrals explicitly 1s developed and applied to problems in non-relativistic quantum mechanics, such as
wave functions, propagators on configuration spaces and on phase space, caustic problems, bound states Path integrals for paths on curved
spaces and for paths on multiply-connected spaces are computed

Introduction

“In 1932 Dirac {125, p 312] laxd the foundation stone of what was destined to become m the hands of Feynman a new
formulation of quantum mechanics  Feynman raised the subject to the rank of a new discipline ”

“A physicist needs that his equations should be mathematically sound ” Dirac [42]

A path integral is often a beautiful answer to a physical problem [e.g. 35] - provided one knows
how to compute it! Admittedly one can extract some information from a path integral without
computing it, but unless one has developed a versatile path integration technology one is severely
restricted in the use of this powerful method.

Path integrals and partial differential equations serve different purposes. Path integrals are more
than solutions of differential equations satisfying given boundary conditions. Their formulation
incorporate global properties of the system and they can give answers which cannot be given by partial
differential equations (see section 3.1).

When functional integration was introduced in physics independently by the work of Wiener on
brownian motion* in 1922 and by Feynman’s formalism of quantum physics [53, 56] in 1942, partial
differential equations were such an omnipotent formulation of physical laws that it was difficult to
appreciate path integrals. Nevertheless they have wormed themselves in, and appear nowadays in
nearly all branches of physics. But because a workable theory of integration on function spaces
cannot be constructed as a formal generalization of integration on R" (see appendix A), path
integration has on the whole remained a rudimentary tool. Note however that even in its rudimentary
form, it has produced an illustrious offspring, the Feynman diagram technique. But the general user
who cannot progress as well as Feynman with crude instruments needs a reliable formulation.

A great example of functional integration is the Wiener integral. Unfortunately despite their
similarities with Wiener integrals, Feynman (path) integrals cannot readily be defined in the same
manner because they cannot be built from bounded measures. Analytic continuation of Wiener
integrals has served well in some problems, in particular in constructive field theory. Albeverio and
Hgegh-Krghn [3] have developed a general theory of oscillatory integrals on real Hilbert spaces and
applied it to the mathematical foundation of Feynman path integrals. Truman [135-137] has carefully
investigated the polygonal definition of Feynman path integrals and its applications. In this monograph
we shall present another approach to Feynman integration- one which does not treat Feynman
integrals as the limit of an integral over R” when p = «.

The possibility of defining path integrals without the “‘lattice approximation” dawned on one of us
while reading the marvelous chapter of Bourbaki [13]** on integration on topological vector spaces:
one could define an object, later called a ‘“prodistribution”, and with it build and compute some
Feynman integrals. The potential of this formulation appealed to the second author who immediately

*There are many books and articles on the subject [e g 117}
*+To those who do not receive instant gratification from such readings, it should be said that it was read under duress, but that 1s another story
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used 1t to obtain, on the back of an envelope, the partition function of an electron 1n a random
potential in closed form [93]. The third author, who likes topology, geometry and physics, found in the
theory of prodistributions a rewarding field of investigations. Together, and several papers later, we
hope to present this formulation of path integration not as a recipe, but as a tool which everyone can
fashion to one’s own needs.*

This tool meshes gears with product integrals (section 2) and a small turn of the crank gives the
path integral representation of the wave function known as the Feynman-Kac formula and the Mgller
wave operators (sections 2.3, 2.4). The Feynman-Kac formula 1s used, in particular, in sections 3.3 and 3.4
to compute wave functions and propagators on curved spaces.

The Gaussian prodistributions built with the Jacobi fields of the system (appendix B) and linear
transformations on the domain of integration (sections 1.4, 1.5) are simple to manipulate and well suited
to solving many problems of quantum physics. In a nutshell, the elementary kernels of the Jacobi
operators make excellent covariances for the gaussian prodistribution of lagrangian and hamiltonian
systems. A natural application is the semiclassical expansion to all orders in # (section 3.4). The method
does not break down on the caustics and gives the phase losses at conjugate points (section 3.5). It can also
be combined with the diagram technique whose primary usefulness is for computing power series in a
coupling constant, so that the coupled perturbation is indeed small (section 3.6).

A useful by-product: The Fredholm determinants of the linear transformations discussed in this
monograph (Volterra equations) can now be computed explicitly via path integrals; 1.e. the Cameron-
Martin formula can be turned around and used to compute Fredholm determinants (section 1.5).

Another aspect of the method 1s the possibility in some cases of associating in a well defined sense a
prodistribution on X C Y to a given prodistribution on Y. For instance given a gaussian on the space
of paths with only one end fixed, one can associate, in the Leray sense, a gaussian on the space of
paths with both ends fixed (sections 1.6 and 3.4).

It has been said that the method presented here is difficult. Different, yes; difficult, “no” say the
users, and depending on one’s background one could even add “obvious”. Moreover, 1t is always
possible to project an infinite dimensional space into a finite one (but not vice versa) and to compare
the new results with the familiar lattice approximation.

Onginally this monograph was to include several other topics which had to be shelved for inclusion
in another monograph. Most prominent among the questions in holding pattern is the problem of paths
“going backward in proper time” and related subjects such as: pair production in classical relativistic
mechanics, causality lost with the existence of paths going backward in time and restored by quantum
mechanics, and the Schwinger effective lagrangian formalism in field theory. When lack of space
forced us to elimmate these questions 1t became natural to focus on nonrelativistic quantum
mechanics and to give the lion’s share to the gaussian method.

This monograph takes up where the book by Feynman and Hibbs [56] and the article by Keller and
McLaughlin [80]** leave off. We hope 1t can be a user’s manual and we have let rehability dictate the
level of mathematical rigor. All expressions are explicitly given, not modulo an unknown (infinite!)
factor. The definition of mathematical terms is included only when needed for computational purposes.
To define terms needed to state a theorem correctly but of no concern to the practicing physicist
would have cluttered this monograph to no benefit.t For instance we do not define ‘“‘Hausdorff”’ but we

*A promeasure 1s a particular case of prodistnbution, and all results derived here apply obviously to Wiener integrals
**On the whole, we do not repeat the discussions found n references [56] and [80)
t1f desired these defimitions can be found in standard mathematical texts We have used basic notation and termmology, as for instance ref
[23], which gathers in a single volume different areas of contemporary mathematics, references are made to this book in order to use only one reference for
different areas of mathematics
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define “‘derivative mapping”. When it can be done without loss of generality, we often give the proof
of a proposition in the context of an application. On the other hand, it would have been cumbersome
In many cases to introduce a theorem by presenting an example. When such is the case, the example
follows right on the heels of the general statement and can be read before the theorem if one 1s so
inclined. For instance if the following paragraphs seem too abstract, go right on to example 1.

Mathematical introduction

1. Prodistributions

1.1. Promeasures

It is easier, even for a user’s manual, to start from the theory of promeasures* (also called cylindrical
measures), and we give a brief introduction** to the subject. The theory of promeasures generalizes
the theory of integration on R" to spaces which are not locally compact.t It is restricted to topological
vector spaces that are Hausdorff and locally convex. Let X, Y, ... be such spaces.tt A promeasure on
X is a family of bounded measures on finite dimensional spaces appropriately related to X, satisfying
some coherence conditions. The family of finite dimensional spaces form a so-called “projective
system of X defined as follows.

Let #(X) be the set of closed subspaces V, W of X of finite codimension,§ partially ordered by the
inclusion relation C. Let p, be the canonical mapping from X into the quotient space X/V. Let
W C V and let p,, be defined by p, = p.. ° p.. The quotient spaces X/V, X/W,... together with the
canonical mappings p,,, : X/W - X/ V... form the projective system of finite dimensional quotient spaces
of X indexed by #(X) - in brief, the projective system of X.

Example 1. Let X be the space of continuous functions f, f', g,... defined on T CR. Let the
functions f, f’ which take the same values at a certain partition 8, ={t,. . . t,} of T be called equivalent, i.e.
f~f & f'=f+g withg(t)=0 for every t, €4,.

The set of functions g which vanish on the set 8, forms a closed subspace V C X of finite codimension v.
. . def
XV is the space of equivalence classes [f] = {f'; f'~ f}.

¥ Pw X/ W

Py X/ ¥
Fig 1

*Introduced by Segal [127] under the name weak canonical distribution.

**For further details see for nstance refs [13, 23]
tSee appendix A

ttX,Y, can be either fimte or infimte dimensional, here they usually are infinite dimensional but not necessarily so
§Also called cofinite space
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The canonical mapping p,: X - X/ Vs given by f, f', . . .— [f]. The space X/ V has dimension v, since
we need only the v quantities {f(t,)} to define (f]. Similarly another partition 6, defines another closed
subspace WC X. If 6, C 0,, then WC V and X/V C X]W.

Definition. A promeasure . on X 1s a family of bounded measures {uy} on X/V with V € %(X)
which satisfies the following coherence conditions:

{ wv(X/V) is independent of V and is noted u(X).
When W C V, uy is the image* under p,,, of u.,.

The projective system {X/V, p,..; V € #(X)} of X on which the promeasure 1s built is determined by
the topological dual X’ of X, i.e. by the set of linear containuous functions** on X: Let x € X and
x' € X' then (x', x)x = x'(x) ER. The space V belongs to #(X) if and only if 1t consists of x € X such
that (x}, x) = 0 for a finite number of x;€ X'. The set V,= {x}} is said to be orthogonal to V.

In example 1, X' is the space of bounded measures on X and V is defined by the finite set
{(8,,8)=28(t)=0:1,€6,}.

The topological dual X' of X is the corner stone of our formulation and we shall make extensive
use of linear mappings and their transposes. Let P: X —>Y be a linear continuous mapping. Its
transpose P maps Y'- X' and is defined by the relationship

(Py', x)x ={y', Px)y.

Example 2. With the notation of example 1, let p,: X >R” by f—=>{f(¢)) ... f(t,)} €R"; the transpose
p.:R*->X'by £={&,... L} ER* > I, £8,. Indeed

(ﬁv§9 f)X = <{§l’ <o fv}v {f(tl) e f(tv)}>R” = Z g]f(t}) .

Because we can identify X/V and R®, this example shows that if p,: X ->X/V, p,:(X|VY-> V,C X'
where V,is orthogonal to V. Itis easy to show that p, is an1somorphism of (X/ V)' into V,. The mapping p,
of the examples 1 and 2 will be used whenever we want to compare our results with results obtained with
the original definition in which a path 1s replaced by v of its values. Many other linear continuous
mappings will be used (see for instance sections 1.2, 1.4, 1.5, 2.3, 3.2, 3.3, 4.4, 4.5). The transpose of an
arbitrary linear continuous mapping from X into R’ is given in the following example.

Example 3. Let X be the space of continuous functions defined on T CR X' is the space of bounded
measures on T. Let P: X ->R" by x> u where u is the v-tuple {u' = (x., x)}. The dual of R” 1s the set
of v-tuples £ ={¢} and (£ u)r- = Z;_, &u'. The transpose P: &> J&x).

Proof:

(PE x)x = (¢ Px)ge = >; E{x, x) =D, (&xi, x). n

*Let AC X/W and B C X/V such that A = p;1(B) then uy 1s the image under p,, of uw If uy(B)=uw(A) One writes py = p.{pw) or
“v = Dowbw
**Also called functionals, or forms We use the word function for any mapping with values in R or C, whether its domain 1s a finite or infinite
dimensional space



C DeWitt-Morette et al , Path integration in non-relatwvistic quantum mechanics 261

Fourier transforms. We recall first some properties of Fourier transforms of tempered distributions
&' based on R".Let & be the space of rapidly decreasing functions ¢ on R", The Fourier transform #T
of T € & is defined by

(T, ¢) = (T, F4)

where

Fo(x') = f exp(—i{x’, x))¢(x) dx.

R"

In particular if T is a vector valued* measure u on R", then

<l"’ ¢)= f d#’a(x)(ba(x) a= 1,...”,

and

(Fu, d) = f dx’ f exp(—Kx, x')) dpa(x)9" (x").

Note that a measure 1s not defined pointwise but setwise, u(U) = [ du(x). Its Fourier transform,
on the other hand, is defined pointwise

Fu(x) = f exp(—i{x’, x)) du(x).

In other words, a measure is a distribution of order zero, i.e. a distribution defined** on the space of
continuous (not necessarlly smooth) functions with compact support. But the Fourier transform of a
measure g on X is a distribution equivalent to the function %u on the dual X’ of X. If X =R" is the

space of n-dimensional contravariant vectors, X'=R" is the space of n-dimensional covariant
vectors.

Image of a Fourier transform under a linear mapping P. Let P:X > Y and P:Y'> X'. Let u be a
measure on X and » its image under P. Then

Fv=Fu-P. (I.1)
The Fourier transform of a promeasure p is defined by the family of Fourier transforms {Fu.;

VE F(X)}.
Let x' be 1n the space V,, orthogonal to V, and let # be in R® and ' in the dual of R”. Then

Fu(x'y= Fuy(u') = f exp(~iu', u)) duv(u), x'€V,.
X/v
Since

X,= U V()

VEF(X)

*Coordinate expressions will be written exphcitly only when desirable
**We say that a distribution 1s defined on a space of test functions of domain R”, or that a distribution 1s based on R" The theory of
distributions on general spaces has been studied by Kree [82] It 1s not simply a formal generalization of distributions on R*
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Fig 2 Fu 1s a function on X’ If v = P(u), then Fv(y')=(Fu o Byy)

this equation defines u on X'. It1s straightforward to show thateq. (1.1)is valid for promeasures. Equation
(1.1) is one of the basic tools in computing path integrals.

1.2. Prodistributions

A promeasure is a family of bounded measures. For instance, the Wiener promeasure* is a family
of gaussian measures. To show why promeasures, and in particular the Wiener measure cannot readily

be used in the case of Feynman integrals we shall contrast real and imaginary gaussian measures on
R*. Let

dy,(x) = Qmr) "*(det A7) exp(= (A7) x'x'[22) dx’ ... dx*

where A = 1 for real gaussians and A =i for imaginary gaussians. Vi= exp(in/4). The real gaussian Y118
a bounded measure**: [- |dy,(x)] < ®. The imaginary gaussian v, 1s not bounded, and we cannot use it
to define an integral in the usual sense. One can define [g dy,(x) as the limit when a = © of [£, dy,(x),
but for v > 1 one cannot define fg- dy,(x) as the limit of an integral over a finite domain. For example

1 if computed in Cartesian coordinates as
the limit of

a b
fdx f dy.
—a —b

1-(limexpia®/2) if computed in polar coordinates as the
limit of

f Q2wi) " exp(i(x® + y)/2) dx dy = 4

a 27

frdr f de.
0

L 4]

One can hardly build a theory of integration where change of variables of integration 1s not allowed,
let alone a theory of integration over infinite dimensional spaces.

Although v, is a measure unsuitable for integration in the sense of set theory, it 1s an excellent
measure in the sense of distribution theory.

*[t can be shown that the Wiener promeasure 1s equivalent to a measure (e g 13, p 87], 1t 1s thus perfectly correct to speak of the Wiener
measure
**When A~ 1s a positive defimite form on R®
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(a) It is a tempered distribution,* y, € &'. Its Fourier transform is the normalized complex gaussian
function of covariance A", variance A"xx;,

Fy.(x")=exp (~% A"x’,x;).

(b) It is in the space of operators on &": both multiplication y,T and convolution y, * T are defined
for every T € &'

Since there is a one-to-one correspondence between the set of promeasures on X and their Fourier
transforms on X', one can define a promeasure by its Fourier transform and state the coherence
conditions as conditions satisfied by the Fourier transforms. At this point we shall remove the
restriction to bounded measures since %y, is defined equally well for A = 1 and for A =1, and we shall
call** “prodistributions” the generalization of promeasures thus obtained

Definition. The Fourier transform %u on X' of a prodistribution ¢ on X is a family {Fuv;
V € #(X)} such that

Fuy(0) is independent of V.
When W C V, g'.ﬂv = g’vnw °ﬁvw.

Fu is coherently defined: If x'€ V°N W° then Fuv(x')= Fuw(x'). It is easy to check that a
promeasure is a prodistribution.
Gaussian prodistributions. A prodistribution w on X is said to be gaussian if

Fw(x') = w(X) exp (—% W', x’)), A=lori

where W is a bilinear function on X’ (positive definite if A = 1). W(x’, x’) is called the variance. The
normalization w(X)is not necessarily equal to one. We are using the letter w for gaussian prodistributions
because its famous prototype, the Wiener measure, is usually called w.

Example 4. Let X_ be the space of continuous paths x on T = [¢,, t,] with values in R" vanishing at
t.. The bilinear function W on X' is of the form

W, n) = [ duatt) [ dugts) G0t 9)

G*®(t, s) is called the covariance of w.

Definition. The Wiener measure on the space X of paths with values in R is the gaussian
prodistribution characterized by A =1, w(X) =1, and

Git,s)=0(t—s)s—t,)+0(s—t)t—t,)=inf(s —t,, £ — t,)

*The space of tempered distributions, labeled ¥, 1s the space of distributions defined on the space & of test functions ¢ such that ¢ has a
Fourter transform It follows that & 1s the space of distnibutions which have Fourier transforms

**Oniginally called pseudomeasures The word “prodistribution” has been suggested by Dieudonné, to describe a projective family of
distributions
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where 6 1s the step function equal to one for positive arguments and zero otherwise. For simplicity we
shall often use the term ‘“Wiener measure” for both the complex and real normalized gaussians of
covariance infinum and label it w* See p 266 for the relationship between the Wiener measure and the
Brownian motion.

Example 5. The space introduced m example 4 1s used extensively in the diffusion problem. A
particle is known to be somewhere at time ¢, : how will 1t diffuse? A different, but similar space 1s used
in quantum physics, namely the space of paths x* T —»R" vanishing at f,. One knows the wave
function at time ¢,, one wants the wave function at t,, hence one sums over all the paths taking the
same value at t,,.

Let X_ be the space introduced in example 4 and X, be the space of paths vanishing at ¢, Let
P:X_- X, by x>y such that y(t) = x(t)~ x(t,). P is a linear mapping. Its transpose P 1s such that

Bu=u - u(T)s, with u(T)= f du(t).
T

Let w_, W_and G - be respectively the Wiener measure on X _, its variance and covariance, and let w,, W,
G. be the corresponding quantities on X.. Then

W, pu) = W_(Py, Pp)= f du(r) f du(s)[0(r — s)(ty — r) + 6(s — r)(t, — s)].

The covariance G, of the Wiener measure on X, is

G.(t,s)=0(t—s)t, =)+ 0(s — t)(t, — s) =1inf(t, — £, t, — 5)

The skill in computing a path integral consists in choosing the covariance and the normahzation
best suited for the problem at hand. We shall give in sections 3 and 4, a method for computing covariances
naturally suited to given lagrangian and hamiltonian systems. The versatility of the path integration
technology based on prodistribution comes in part from the great choice of covariances at our disposal. It
comes also from the fact that we work with the variance W (u, u) rather than the covariance G**(¢, s). For
instance the image under a linear mapping P of a gaussian of variance W is the gaussian of variance
W o P. No such simple relation exists between covariances. Moreover the variance is a coordinate free
expression, and the problems connected with change of coordinate system on the configuration space do
not exist.

Example 4 Example 5
Fig 3
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Gaussian and gaussian induced* prodistributions are the only ones we have been able to use in a
practical way so far. It is not too severe a restriction for quantum physics since the covariance
constructed from the Jacobi fields of the system contains the essence of all quantum effects.
Nevertheless it would be valuable to be able to integrate with respect to other prodistributions.

1.3. Integration

The computation of integrals with respect to a prodistribution w (known by its Fourier transform
Fw) will proceed entirely in terms of %w. But we shall also use the usual notation to write down a path
integral

f F(x)dw(x)E€R.

We shall use the following properties of integration:
a) linearity:

Ia(F(x)+G(x))dw(x)=aIF(x)dw(x)+a f G(x)dw(x);
X X

X

b) change of variable of integration:** Let F = f o P where P : X > Y by x> y. Let Pw be the image of
w under P. Then

fF(x)dw(x)=J'f(u)de(u) (1.2)
p.¢ Y

where
F(Pw)=Fw P, (1.3)

If P is alinear continuous mapping of X into a finite dimensional space, F is called a cylindrical or a tame
function. A cylindrical integral is equal to an integral over a finite dimensional space.
Let w be a normalized gaussian prodistribution of variance W, #w = exp(—iW/2), then

[ Fooawe= [ s dpwiw;
X R®

Pw is a normalized complex gaussian measure of variance
Wp=WoP. (1.4)

The most generalt linear continuous mapping P: X -R”® is defined by x> u ={u',... u"} where
u' =(x;, x) for some x,€ X'. Let £={¢,,... ¢} be in the dual of R", then (see example 3) P(¢) =

*See p 268
**Other notations such as E[F] often used m probability theory are not as convement when performing change of varnables of integration

tv 1s not necessarily fimte See for instance section 3 5
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2-1 &x\ and

We P o= W(Z ex, 3 6x1) = T Wi, x).
[ ]
Set W(x}, x})= W". Pw is a normalized complex gaussian measure on R” of covariance #";

dPw(u) = Qi) "*|det(w"),|"” exp(%(‘W"),,u‘u’)du' ...du”. (1.5)

Example 6. Wiener measure and Brownian motion. The Brownian motion is a random motion such
that, if ¢ > s, x(¢) — x(s) is a random variable with gaussian distribution of mean x(s) and mean square
deviation ¢ — 5. We can readily use eq. (1.5) to compute

I= [ SO0, X000 = X0, xltre) = 50) A ¥,

X-
where wY is the real Wiener measure on X_. Indeed, let
P:ixmu={u*=8,,,-6,x,k=0,...,n},
then
W= W_(8,,,— 8, 81.,,~ 8,)=8,(t.n— 1,)

I= f G, o u Y ), . Ay,

A1
where

dy(u*) = Qa(tar = 1)) exp(— (W V[ 2teer — 1))
Thf: random process* {x(¢); ¢t = 0} defined by the Wiener measure is the Brownian motion.

Example 7. Let P: X ->R” by x> u ={u', u>} where u' = [1g.(t)x*(t) dt, u** = x*(t). Introduc-
ing the Lebesgue measure A defined by

n )= [

and the vector valued Dirac measure 87 of components §35,, we can write
u'=(\g,x), u*=(87,x)
Let § = {fh §2a}a then

pf = o = 6178 + fzpagz
= gl)‘ga + §2a8n

*A random process, 1n probability theory, 1s a family of random variables indexed by time See appendix D
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Wi )= [ dia(®) [ dusts) 60, 9),

and

W(P¢, Pg) = e&W”
11 128
= (§1, &20) (%ﬂ %’“2”)(52)

with ‘W”=fdt fdsga(t)ga(s)G“”(t, s), 'W"a=fdsg,,(s)6“3(s, 1),
T T

T
Wzalzf ds ge(s)G**(t,s), and W>*** =GP (1,1).
T

To complete the calculation of [ge f(u) dPw(u) it remains to invert the covariance %™ and to compute
its determinant. For v small, as is often the case, this not particularly difficult. Large v’s come usually
when u’ = (8,, x) = x(t,); then W(§,, 8,) = G(t, t,). The inverse and the determinant of W" = G(t,, t,)
have been computed [40] in the cases of greatest interest in quantum physics and statistical
mechanics, namely when the covariances are elementary kernels of the Jacobi equation of the system.
(See appendix B.)

Application: The moment integrals and the Feynman diagram technique. Let w be a normalized
gaussian on X of variance W, covariance G; then
def

L = | (8, x){6,, x)dw(x) = AG(r, 5), (1.6)
X

where A =1 for real gaussian and A =i for complex gaussians. More generally, if n is even, the
moment integral

In = f (I‘Ll’ x)(/"b x) Tt (ﬂm x) dW(X) = (A)"IZ 2‘;‘ W(p’m ’J‘Q)W(,"lg’ Mu) e W(f"ln_n ﬂ'x,.)a (17)
D ¢

where the sum is taken over all partitions of {1,...n}. If n is odd the moment integral vanishes.

Proof. The moment integral is a cylindrical integral which can be computed by the method outlined
above. It simplifies the calculation to write first 2(8,, x)8,, x) = (8, + 8, x)* — (8, x)* — (,, x)* and
similar expressions* for I,. By eq. (1.5)

f (8, + &, xY dw(x) = QuAW) ™" f w exp(—u*2AW)du = AW/2
X

R
where W = W(8, + 8,, 8, + &;) = W(8, 8,) +2W (8, §,) + W(8,, 5,) |

*See detais 1n ref, [38] Mizrahi has proved this result using generalized Hermite polynomials {106}
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The moment integral I, 1s the key integral of the Feynman diagram technique. For instance
def « «
K = f Pao oty 5,085, x)- - - (857, x) dw(x)
X

=2 Pa ot )Gty 1) G (E, 0 8,).

part

When P, ,(t1,...t,) =P, (t)... P, (t,) one speaks of vertex functions P,(t) and propagator lines
G*®(r, s). The propagator lines are hooked up to the vertices in all possible ways, and the ., is
represented by 1,3...(p — 1) different diagrams.

We do not develop further the diagram technique which has been extensively studied. Equation (1.7)
shows how the diagram technique can be obtained from path integration.

Although all the examples given here have been worked out with gaussian prodistributions, the
basic equations (1.2) and (1.3) apply to any prodistributions and can be used to integrate any cylindrical
function. Mizrahi [108] often uses gaussian induced prodistributions. For instance, let w be a gaussian
prodistribution and let F be a cylindrical function of the form F(f;x(¢)f(t)dt). One can define a
gaussian induced prodistribution w by the equation [x dw(x) =[x F(J+x(¢)f(t) dt) dw(x).

If F is not a cylindrical function but can be approximated by a sequence of cylindrical functions F", one
defines the sequential path integral

fF(x)dw(x)=limfF"(x)dw(x).

The convergence of a sequential path integral is a difficult subject which is not attempted here.

Albeverio and Hgegh-Krghn [3] consider path integrals [ x F(x) dw(x) where F is the Fourier transform
of a bounded complex measure on X"

F(x)= f exp(—i(x’, x)) dv(x").

'

Thus
fF(x)dw(x)= f dv(x’)fdw(x)exp(—i(x',x))= f dv(x’)exp(—%W(x’,x’)),
X X' X X'

This method does not require the inversion of W, but it does require finding v. It is well defined but
only for integrands which are the Fourier transforms of bounded complex measures on X', and this is
restrictive. Albeverio and Hgegh-Krghn have proved that their definition is equivalent to the one proposed
by It6 [71].
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1.4. Some properties of the Wiener measure

The following mappings establish important and useful properties of the Wiener measure.

Py

4% L2 Y
Fig 4
Let % be the space of real square-integrable functions h on T:
I = [ g.oh(Oh*0) ds
T

Let L' be the Sobolev space of square-integrable functions on T whose first weak* derivatives are
square-integrable. Let L>' C L*' and L' C L*' be the subspaces of L>' of functions vanishing at ¢,
and of functions vanishing at ¢, respectively.

iz = [ ey @y 0d 0= dyide.
T

The action S(f) = [+ L(f(¢), f(t)) dt of the physical systems considered here are mappings S:L*' >R.
Path integrals, on the other hand, are not defined over L*' but over the spaces of continuous
functions, for instance over space Y_ [the space Y.] of continuous functions vanishing at ¢, [at t,].
Fortunately L>' is dense in Y_, 1.e. any path in Y_ is the limit in the L*' topology of a sequence of
paths in L*". Similarly L' 1s dense in Y..

Holder continuous paths. So far when talking about the paths in Y. we have used the word
“continuous” loosely. The precise statement is as follows [e.g. 121, p. 279]. A path f 1s said to be
Holder continuous of order « if |[f(t)— f(s)| < M|t — s|*.

Theorem. Let 0, be the set of Holder continuous paths of order a. Let wv be the Wiener gaussian
on 2, If 0<a<1/2 then w¥(2,)=1.If 12<a <1, then w¥(02,)=0.

Theorem. L%' is contained in 0, if a <1/2 but not if a > 1/2.
Proof.

feL:x = f(t)—f(s)=ff'(u)du

> IfO-fo)F- | f fadu| < f o) du f 1 du <[ffz t - ). .

*Dertvattves m the sense of distribution theory Sobolev’s spaces L?™ are also labelled W, the spaces L2™ are also labelled H™
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Inturtively this theorem says that |y(t)— y(s)|" is of order |t — s|*", a fact worth remembering when
expanding i powers of |¢ — s|.

The primitive mapping maps % onto L' and ¥ inte Y. by

h(t)y— y(t) = f F0.(s — Hh(s)ds

T

where 6, 1s the usual step up function 9 equal to one for positive arguments and to zero otherwise,
and 6_ is the step down function equal to one for negative arguments and zero otherwise. Let
P.:¥—L% and PY: % - Y.; the mappings P. and PY do the same thing but their difference will
show up strikingly below (compare theorems 1 and 2). The inclusion mapping i maps L' into Y by
y+— y. Innocuous it appears, but powerful it will be ... (see theorem 3).

The canonical gaussian on a Hilbert space is the normalized gaussian prodistribution whose
variance is equal to the square of the norm. Thus the variance of the canonical gaussian on ¥ and on
L™ are

Lth b = Vil = [ &7h, (hs(0)

T

Loy y) = Iyl = f 2. (1)) dt.

T

Theorem 1. The Wiener measure on Y. is the image, under the primitive mapping P of the
canonical gaussian on ¥.

Proof: The transpose map P is defined by
(P-tas b= G P}y = [ du(t) [ 602 - 9)his) ds:
T T
thus
P_u(s)= j ot — s)du(t),
T

and the vanance is

[oP_(up)= f ds [ oG- ) duto f o(t' - 5) du(t’) = f du(r) f () inf(t ~ ta, ' 1)
T T T T

T

I-P_=W_, |

A similar calculation gives

IoP(up) = f du(r) f du(t) inf(ty ~ 1, ty — 1.
T T
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Theorem 2. The canonical gaussian on L%' is the image, under the primitive mapping P., of the
canonical gaussian on ¥,

I,21=]p 0 IS:-
The proof proceeds as in the previous theorem.

Theorem 3. The Wiener measure on Y is the image, under the inclusion mapping, of the canonical
gaussian on L*'.

Proof:
PY=i.P,
Wt=Ig(°P"Z=Ig(°P-:°{=ILZtI°i~.
To display how the inclusion mapping works we compute I 2t o i:
v , d - . _
(i, y)r20 = iy)y. = | U ®)y(O)de = | y(£) du(®).
T T
It follows that

L Gurn= [ 00-r duto

Bizte i, ) = [ GO Fo () dr

f du(t) J' du () inf(t - t,, £~ 1,),

Therefore Iy o = W.. )
If y€ L%, then d(in(r)/dr = [r 8(r— t) du(t). It follows that I;210 1= W,. [ ]

Theorem 3 gives the Wiener measure in terms of the space L>' which is of physical interest, theorem
2 shows that the same result is obtained by using the mapping P Y : #- Y. which is usually simpler to
handle. In section 1.5 we shall work with P Y to compute some Fredholm determinants.

1.5. The Cameron—-Martin transformation. Fredholm determinants. Affine transformations

It is easy to compute the image of a gaussian under a linear mapping. It is more difficult but often
necessary to solve the inverse problem: Given two gaussians, w, on Y and wyz on X (with variances
A, B, and covariances G, Gg), what is the linear mapping M : Y - X which transforms one into the
other? For example, in section 3.2 we have to compute the integral

1= [ dwmexp(F [ Vasl0y @y () dt 43 S.ay 1)y (1) (L9
Y4 T
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where w, is the Wiener measure on Y,. Obviously we need to find the hnear mapping which maps w
Into a new gaussian wy “incorporating” the integrand. A similar problem occurs 1 sections 3.2, 3.3,
3.4, 4.6 where, given a lagrangian system or a hamiltonian system, we seek the variable of integration
best adapted to the computation of path integrals. Such problems can be solved by a generahzed
Cameron-Martin formula.*

The Cameron—Martin formula. Consider a normahzed gaussian w, of variance A defined on Y. Its
image under the linear continuous mapping M:Y — X is the normalized gaussian wp of variance
B = Ao M. Although dw,.(y) and dwg(x) cannot be defined for arbitrary prodistributions, their ratio 1s
defined** and given by the Cameron-Martin formula when M has a umique mverse M~

dwp(x)/dwa(x) =Det M~ exp (%(A"(M"x, M 'x)-A7\(x, x))) (1.9)

Proof of the Cameron-Martin formula. Let X' and Y’ be the duals of X and of Y, let £€ X’ In the
finite dimensional case, A(£, &) = A&, 1.e. the covariance G, is the dyadic A”,

dwa() = S e, exp(L A1y
detB'
det A}
The mapping M 1s defined by the matrnix M|,

B'=MMiA*; B,'=AJ/M (M,

det BY/det A¥ = (det M7 )’ (1.10)

The infinite dimensional case is obtained by rewriting the finite dimensional case in terms of linear and
bilinear continuous mappings rather than matrices and dyadics. Inverse bilinear forms are defined
belOW. .

1/2 1 . » .
de(x)=de(x)( ) expi(B - A7) x'x

We prove later on (p. 279) that Det M is the Fredholm determinant of the linear mapping M. Stated
in a terminology valid both for the finite and infinite dimensional case, eq. (1.10) says

Lemma. The determinant of M, squared, is the ratio of the determinants of the covariances of wg
and w,.

This ratio can be evaluated in closed form by the method given 1n appendix B, p. 358.

Inverse bilinear forms. We have to define the “inverse” of a bilinear formT on X'. The inverse, 1n
the sense defined below, of a bilinear form on X' is a bilinear form on X”. Smcett X" is not

*Early in the development of the theory of prodistributions, Mizrahi used the Cameron-Martin mapping to absorb part of the integrand and create
new gaussians See ref [107] for his techniques and their applications
**Gee the proof that the ratio 1s defined in appendix B, p 358
tA fruitful discussion with J Dollard 1s gratefully acknowledged
t1In general X" > X



C DeWitt-Morette et al , Path integration in non-relativistic quantum mechanics 273

necessarily equal to X it is better to work backwards: define a bilinear form on X, compute its inverse
on X', i.e. assume we know A~' on X and compute a bilinear form A on X’ which can legitimately be
called its inverse.

Letx,y,... EX and x',y'... € X". A bilinear form A™'(x, y) defines a linear map A,": X - R for
every y€ X by

AJ'(x)=A"'(x,y).
Hence A,' € X'. Since A" is linear in y it defines a linear map A™": X - X" by
Aly=Aj"
If A~' is a bijection (one-one, onto) then it has an inverse A:X'> X such that
AT(Ax', Ay) = (AT, Ay) = (A7'Ax'YAy) = (v, Ay').
Definition. The bilinear form A on X' is said to be the inverse of the bilinear form A™' on X if
A(x', y')= A7'(Ax', Ay"). (1.11)

Equation (1.11) provides a method for computing A, hence a method for computing A.

Example 1. Let X be the space of L% paths x, y... (defined p. 269). The most general symmetric
bilinear form on X is [+ (a(t)x(8)y(t) + B(t)(X(t)y(t) + x()y(t)) + y(t)x(¢)y(t)) dt. Assume that

A7 w9 = [ G050y de = [ g0 dr

T

and compute A(x’, y'). Equation (1.11) gives
A™'(Ax', Ay") = f dt (V.AX'(t) | V.Ay'(t)) = (x', Ay}
T

The duality in L%' is (x', y) = [+ %.(¢)y*(t) dt. Hence A is the canonical isomorphism X' —> X defined
by the metric on X. And

AW, y)= A7 Ax, Ay) = [ de g 5070
T

This example is possibly too trivial because the space of L%' paths can be identified with its dual.
Example 2. Let X, be the space of continuous paths x, y, ... vanishing at ¢t,. Let i be the inclusion

mapping from the space of L' paths vanishing at ¢, into X,, i:y+~>y. Let A~' be the bilinear form on
X induced by i from the bilinear form A™' on X defined in example 1. The duality in X, is

w, 0= [y dxn
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and an arbitrary mapping A: X’ - X 1s of the form

(Ay) ()= f G (1, 5)dyis)  with Gty $) = 0.
T

Equation (1.11) gives

A7 (Ar, Ay = [ atg ¥ ([ 6709 axio ) ([ 6% ndyin)

- [ axio [ 62,51 avits)

It 1s satisfied if G.(¢, s) 1s the elementary kernel of —V,V, such that dG,(¢,, s)/dt, = 0. Together with
the previous condition G.(t,, s) =0 and the fact that G.(¢, s) = G.(s, ¢) this determines G, umquely.

In conclusion, the inverse of A7'(x, y)= [ (x(¢)| y(t))dt in the space of L*' paths is A(x',y") =
Jr (X'()| y'()) dt; its inverse n the spaces X. of continuous paths vamishing at ¢, [vanishing at #,] 1s
the Wiener vaniance A.(x', y") = [+ dx2(t) [+ dya(s) GZ*(¢, 5).

We have computed the inverse of A~', not the inverse of A. We may occasionally speak
colloquially of A™" as the inverse of A; we may also say that the elementary kernel G, of an operator
D, that satisfies the boundary conditions C, is the inverse of (D,, C,), and vice versa.

We have noted previously that 1t is simpler to work with the variance A than the covarance G,;
similarly it 1s easier to work with the “inverse” variance A~' than with the “inverse” covariance
(D4, C4) Covariances and inverse covariances are introduced in the last stages of the calculation.

Remark. G. are the reproducing kernels in the spaces of L2’ paths vanishing at ¢, [vanishing at ¢,],

(G(s, )| x()) 22 = x(5).

How to use the Cameron—Martin formula for computing or simplifying path integrals. Consider the
integral

1= [dwaexs(3 [ Ve @rde) Fo).

We give first three different methods for simplifying this integral and then proceed to compute an
example.

Method 1. Change of variable M: Y - X
I= fdw,;(x)exp (%lf Vs (DM ' x)* ()M ' x)P(2) dt)F(M"x)
X T

By the Cameron-Martin formula

dwg(x) =dw,(x)Det M~ exp (%(A“(M"'x, M7 'x)- A7 \(x, x))).
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Choose M~' such that
AT M ', M ') - A7 (x, x) - f Vs (OM ') (M ™ 'x)P(t)dt =0
i.e. choose M such that T
A7 (My, My)- A™\(y, y)+f Vag(£)y*(8)y® (1) dt = 0. (1.12)
Then '
I=DetM™' f dwa(x) F(M 'x).
X

Method 2. Change of prodistribution. Since the exponent is quadratic in y, there is a mapping
M™':X > Y such that the image of w, on X is wg on Y satisfying

awa)exp(3 [ Ves(y"(@)y#(e) dr) = Det M dwi(y).
T
Find wg such that B™'(y, y) = A7'(y, y) — [ Vas(8)y*()y®(t) dt, then
[=DetM™ [ dwa(y) F(y).
Y

The second method (change of gaussian) is in general simpler than the first one (change of variable)
because F is usually simpler than F o M~'. The gaussian wy incorporates more information about the
system than w, but it is still a gaussian and as easy to handle as w,.

The second method is used in the application p. 276 and in sections 3.2, 3.3 and 3.4. Obviously both
methods give the same answer:

Det M~! f dwa(x) F(M~'x)=Det M™" f dwg(y) F(y).
X Y
It is pleasing, nevertheless, to check it on an example. For instance if F(y) = f(y(t.)) then
I=Det M~ f du(@mi) (et G(te )" exp 5 4Gk, 1) )fw)
R
Using the first method and assuming M ' to be of the form

M :x—>y by y(t)=x(t)+fk(t,s)x(s)ds
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then

FoM™'(x) =f(x(ta)+ f k(t, s)x(s)ds).

Set u=(6,+v,x)=x(t,)+ f k(t,, s)x(s)ds,
1

then

I=DetM™' f du2mi) *(det Wa(8,, + v, 8, + v))" " exp (%uz/WA(é,a +v,8,+ v))f(u)
R
Wa(d,, + v, 8, +v)= Galt,, 1) +2 f k(ts, $)Ga(s, t,) ds
T

" f ds f A7 k(t, $k(tes )Ga(s, 1) = Ga(lar 12)
T

T

Method 3. Any term in F which is an exponential of a linear or quadratic form in the variable of
integration can be incorporated with w, and give a new gaussian wg. The following example will show the
general procedure for incorporating quadratic forms. See the paragraph (p. 281) on affine transformation
for incorporating linear forms.

Application. Compute the path integral given by eq. (1.8). We shall use the second method. The
problem consists in finding M': X, - Y, such that

A" (My, My)- A"'(y, y)=— f V(DY (£)y® (1) dt + S,py*(t2)y* (t2)

for the case where A 1s the Wiener variance

A(u, v)=fdua(r)fdva(s)6i'f(r, s), (1.13)

with
Gt 5) =g (8(t — 5)(t, — 1)+ O(s — t)(t, — 5)),

g.s being the euclidean metric on R". G,(t, s) is the elementary kernel of D, = —g.s d’/ds® with
boundary conditions C,- GA(t, t,) =0, dG(t, t,)/dt, = 0.

A" is a bilinear form on Y, which is determined by G., and vice versa. For instance if A 1s the
Wiener variance, then

Ao= [IoPa yev. (1.14)

- f ) |y de = (1) | y(ta). (L15)
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We seek G such that
B '(y,y)= A" (My, My)

—f (8apY " (D) + Vg ()Y (£))y2 () dt = (8apy™ (£a) = Sapy® (1))y"(t2) (1.16)

It follows that G(t, 5) is the elementary kernel of Dy = — g, d*/dt* — V,4(t).
In appendix B (p. 357) we give the elementary kernel G of an operator D 1n terms of its solutions
K(r, ta), J(r, t,) and their inverses. Covariances G, of gaussians on Y, are given by

G.(r, s) = 0(s = K (1, t, )N (ta, t,)J (s, $) = 0(r = $)J(r, t,)N(ty, t.)K (£, $).

Let Ka(t,t.) and Kp(t,t,) be the solutions of D, and Dy respectively satisfying the boundary
conditions

Kt t)=g%, dKP(t,1,)ldt,

t=t,

Kt t.) =g,  dKF(t, t,)ldt, = S.p(ta).

t=t,

Let J4(t,t.) and Jg(t,t,) be the solutions of D, and Dg respectively satisfying the same boundary
conditions: J**(t,, t,) = 0, dJ**(¢, t,)/dt,|,—,, = g"°. Let Cy be the corresponding boundary conditions
for Gp. Note that the boundary conditions for G are more complicated than the boundary conditions
for G4 because we chose an application mn which S,5(t,) # 0 for greater generality.

Having determined the covariances G4, Gp as the elementary kernels of (D,, C4) and (Dg, Cg), we
obtain immediately the ratio of their determinants from equation (B.18). Thus the integral I given by eq.
(1.8) can be written

I=DetM' f dwg(x) =Det M~' = (Det G(t, s)/Det G2(4, 5))'”?
X4

= (det K3 (ty, t,)/det KP(t,, )" (1.17)

The problem 1s solved without computing M, without even computing ws. We only know Gy as being
the elementary kernel of (Dp, Cg). The path integral I given by eq. (1.8) appears in section 3.2 as the
solution of a partial differential equation satisfying some Cauchy data; it is computed here in terms of
the determinant of two finite dimensional matrices, themselves obtained by solving ordinary, second
order, linear homogeneous differential equations.

Fredholm determinants. In the previous application we have unobtruswely computed the deter-
mlnant of alinear mapping M~ ': X, - Y. But of which mapping M~ we do not know yet. We know that
M 'is such that the image of the gaussian w, on X, is wg on Y., ; we do not know explicitly w, and wg, we
only know that their covariances are the elementary kernels of D, and Dy satisfying some boundary
conditions C, and Cp respectively. We shall proceed to determine M ™ explicitly on this basis. Since all
our computations can be made only with the second method, we work with M~", not with M.

Problem: Let w, be the Wiener measure on X, let the covaniance Gjp of its image under M ™" be the
elementary kernel of (Dg, Cg). Find M. -
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Answer: Since the Wiener measure w, on X, is the image of the canonical gaussian on ¥ under the
primitive mapping P introduced on p. 270,

t

P¥. %X, by x(t)=—fh(s)ds, (1.18)

we expect the gaussian wg on Y, to be the image of the canonical gaussian on % under the generalized
primitive mapping [94]

ty

P.:¥->Y., byy()= —f F(t, s)h(s) ds (1.19)
where the kernel F is such that F(-, s)a(s) € ¥. The covariance of wy is then

G(r,s)=0(r—s) f Fi(r,t)Fi(s,t)g* dt +6(s—r) f Fa(r,t)F5(s, t)g" dt. (1.20)
F is uniquely determined by the conditions imposed on G and found to be equal to*

F3(r,t)= K5°(r, t.)N g,(tas 1) (1.21)
where Kg(r, t,) as a function of r is the solution of

DBKB(r’ ta) = 09 K;B(ta, ta) = gaﬁ, dK;B(r, t,,)/drl,=,a = Saﬂ(ta), (122)
N(t,, r) is the “inverse” of K(r,t,) in the sense that:

K& (r,t)N g, (t., 1) = 85 (1.23)

Knowing P, and PY, we can easily determine M since
P.=M'oPY.
A straightforward calculation gives M~ ': X, - Y, by

] tp

y(t)=x(t)+fﬂi%ﬂx(s)ds = x(t)+ Kxl(t, ta)fd—N—d-(sth—)x(s)ds (1.24)

t

and the problem is solved. |

Remark. The spaces Y_ and X _ are as important in practice as the spaces Y, and X, and to have
on record the corresponding expressions for them we summarize the procedure for finding M:': X. -
Y. and their determinants for both cases together.

Let P.:¥->Y. by y(t)=% f 0.(s — t)F.(t, s)h(s)ds
T

*No summation over B intended, the labels B are placed in upper or lower position solely for typographical conventence
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where 6. is the usual step up function 8 equal to one for positive arguments and zero otherwise, and
6_ is the step down function 8_(t — s) = 6.(s — t). The image under P. of the canonical gaussian on ¥
is the gaussian of covariance

Ga(r,s)=0.(r—s) f 0.(t — r)F(s, OF.(r,t)g" ' dt + 0.(s — 1) f 0.(t — s)F.(r, )F.(s, t)g " dt.

G5 is the elementary kernel of (Ds, C3) if and only if
F+(t’ S) = KB(t’ ta)NB(tay S), F—(t’ S) = KB(t, tb)NB(tb, S)
where, S, being the matrix in eq. (1.8),

dKB(t’ ta)

DBKB(t, ta) = 0’ KB(ta) tﬂ) = g_l dt =
Since P.=M.'-PY¥, M:':x—yby

3F+(t s)

y(t) = x(t) ] b.(s — )2 E=8) () g,

Set

dKp(r, tp)

(taa r)’ k—(r) = ——d"%—NB(tb’ r)'

k+(l‘) = d—%(-r':’—tq—)NB

Then M:y—x by

x(t)=y)* f 6.(s — k-(s)y(s) ds.

Det M ' = (det Kg(ty, ta)/det Kalts, £.))"”,  Det MZ' = (det K (t,, t,)/det Ka(ta, 1,)) "
Now that M ' has been determined, we can check on this example that Det M ' given by
(Det M™")* = Det Gg(r, s)/Det G4(r, 5)

is the Fredholm determinant of the linear mapping M ~'. One expects this to be so from the analysis of
the finite dimensional case, but saying that the infinite dimensional case is the limit of the finite
dimensional case when the number of dimension goes to infinity is a treacherous procedure, best to be
avoided. We shall thus compute Det M ™' by a procedure which exhibits the Fredholm determinant in its
usual form - or rather we shall compute Det M which is simpler.

M:Y,- X, is given by

L2

() = y(£) + d—(il%(r, LN (L, P)y(r) dr. (1.25)

t

Indeed eq. (1.24) gives

B
N2t 000 - x0) = [ S s)x(5) ds
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Differentiation and simple algebraic manipulation gives (1.25). This derivation shows that M is unique
|

Knowing M, the computation of Det M goes as follows: Set

ka(t,r)=0(r—t)kg(r)=0(r— t)d—I-(%(rr;ti‘—)NfB(ta, r)

and assume that the undefined quantity k(r, r) equals
sk(r*, r)+3k(r™, r)=3k(r).

This assumption, standard 1n theory of Fredholm determinants of Volterra equations, can be justified
here by the fact that both calculations of Det M (eqs. (1.16) and (1.26)) give the same result:

Det M = exp(trlog(l+ k(t,n)) = ZO—’;I—,I dr,.. f dr, Eie)t[()(r, —r)k(r)]
n= . i)
T T

= exp f%trk(t)dt=expj—%trKB(t, t,,)gfi—v;‘i(ta, t)dt
T T

= (det Kp(ty, t.)/det Kp(ta, 1.))'". (1.26)
Since det K%2(t,, t,) = g*° and det Kg(t,, t.) = g°*, the result 1s proved. [ |

The various games we have played in this section have given us two methods for computing the
Fredholm determinants of linear mappings from L%'(T) into L2'(T) of the type defined by eq. (1.24).

1. Take a simple gaussian w, on Y., map Y, into X, by M, and compute the image of w, under
M. Determine the “inverses” (D4, C4) and (Dg, Cg) of the covariances G4, Gz of w, and wjg,

(Det M)2 = det KB(tb, t,,)/det KA(tb, ta)
where

dK (1, 1)

DiKaltt)=0,  K3(to, 1) =g, dr
t=t,

=0
and where K3 is given by a similar equation. The Fredholm determinant of linear mappings from Y_
mto X_ is obtained similarly.

2. It often happens that there are two mappings P.: H > X, and Pg: H > Y., simpler than M, such
that P; = M~'o P,. Take a simple gaussian on H. Let w, and wp be its images under P, and Pj
respectively and then proceed as above.

In this section the key elements have been the coordinate free symmetric bilinear forms A~ on X.
and B~ on Y, (egs. (1.14) and (1.16)), induced by the variances A and B on the duals of X, and Y.
respectively. Y, and X, are L*'(T) spaces, i.e. spaces of L*' functions* on T. So is the action
S(f)= [+ L(f(t), f(t))dt Moreover the second variation of S is, like A™' and B™', a symmetric
bilinear form on L*'(T) and the methods developed here have wide application in physics [e.g. 37, 40).

*A function 1s L2 1f 1t 1s square integrable as well as its first order weak derivatives (derivatives in the sense of distnbutions)
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Affine transformations. The linear Cameron-Martin transformations were introduced to simplify
the computation of integrals of type (1.8) with quadratic terms. In this section we study the image of a
gaussian under an affine mapping and develop a method for computing or simplifying integrals with
linear terms in the exponent.
Recall the finite dimensional case with x, y, / €R". Under the affine transformation x = y + /, the
gaussian w on R" of variance % becomes a shifted gaussian w, whose Fourier transform is
Fwi(x’) = exp(—1xl') exp(— 2 W x'x}).

Let M:Y.> Y, by M(y)=y+1 Let w be the gaussian of variance W on Y,, let w, be its image
under the affine mapping M. Then

Fwi(u) = exp(— 1w, [)) exp(—2i W (w, w)).

Again dw and dw, are not defined but their ratio is defined:
dw,(x)=dw(x)exp{%f||1(t)||2dt~if(l(t)[dx(t))}.
T T

The affine mapping, like the linear mapping (see p. 274) can be used in two different ways
depending on whether one prefers to integrate the original integrant with respect to w, or to integrate
the shifted integrand with respect to w. Consider the integral

I= f dW(y)exp{i J (a(t) | dy(t))}F(y).
Y, T
Under the affine change of variable M : Y, - X, the integral becomes
I= f dw,(x)exp(i f (a(t)ld(M"x)(t)))F(M"x).
X4 T
Choose M ' such that
i f @I de i f (1) | dx (@) +i f (a() | dM'x)(t) =0
T T T
i.e. choose M such that M~'x = x — | with a(t)= [(¢), I(t)= —f ’ a(s)ds. Then

I= exp(—% f ||f(t)||2dt) f dw(x) F(x - I). (1.27)
T X
Note that under the mapping M ~': X, > Y, the image of w on X, is w._,, on Y, satisfying

dwen(n) = dw(y)exp (5 [ NP de+i [ @) | dvop)
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ty

Then, if /(1) = —f a(s)ds,

I= exp(—% f li@r dt) f dw n(MF(y) (128)

and we have obtained another expression for computing I.

If I(t,)#0, then M: Y.~ Y. where Y. 1s not a vector space unless one defines addition by the
prescription given p. 291. The formulae given in this section are still valid. Note that the dual of Y, 1s
slightly different from the dual of Y,.

1.6. Space of paths with both ends fixed

A path integral is often over a space of paths with both ends fixed. A space of paths x such that
x(t,)=a, x(t,)=b is a vector space only if a = b =0. Indeed x,y € X imphes x +y € X only 1f
(x + y)(t.) = x(t,) = y(t,) which in turn implies a = b = 0. Let X be the space of continuous paths x on
T such that x(t,) = x(t,) = 0. X can be treated equally well as a subspace of X, or X_. Say X C X_.
Given a prodistribution w_ on X_, one can define a prodistribution w on X associated to w_ as follows.

Recall first the finite dimensional case: Given a measure on R", the measure of an n — 1 dimensional
surface S CR" is zero. Nevertheless there is a natural and convenient way to introduce a measure on
S associated to the measure on R”, namely the Leray form: Let S be a subset of R" of codimension
one* defined by the irreducible equation S(#) = C, u €R". The Leray form » on S associated to the
measure y on R" 1s defined by the equation

dS rndw =dy. (1.29)
For example the Leray form on the plane u, = C associated to the gaussian y on R’
dy(uy, u) = 2ma)”"*Qub)""? exp(—uil2a — u3/2b) du, du,

18
dw(u) = Qma) '"*(27b) ' exp(— u*/2a - C*2b) du.

Note that w is not the normalized gaussian on R.
The Leray form » on S associated to the Lebesgue measure on R” defines the Dirac measure §s on
S by

(3, ¥) = f 4 do. (1.30)
S

The space X of paths with both ends fixed 1s a subset of X_ of codimension one and we can
generalize the notion of Leray forms to define a prodistribution w on X associated in the Leray sense
to a given prodistribution w_ on X_. A prodistribution is by definition a family of distributions on a
projective system of finite dimensional spaces. To each finite dimensional space X_/V_ of the

*I e the dimension of S 1s n — 1 The more general terminology 1s introduced here to prepare the infinite dimensional case
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projective system of X_ corresponds a finite dimensional space X/V of the projective system of X
such that V is defined by one more equation than V_, namely (§,,, x) = 0.

Definition. Let V€ X_, and let V be defined by (5, x) =0 and by the equations defining V_. A
prodistribution w on X is said to be associated in the Leray sense to the prodistribution w_ on X_ if the
distribution on X/V 1s Leray related to the distribution on X_/V_.

Leray associated gaussians. Let y be the characteristic function* of X C X_. Let w_ be a gaussian
on X_ with vaniance W_ and covariance G_. It follows from the definition that the prodistribution w on X,
Leray related to w_ on X_, is the gaussian normalized to

wX)= [ x0dw o) (131)
X-
of covariance (see eq. (1.6))

iG(r, s) = f XX )8y, x X8, x) dw_(x)/w(X). (1.32)

X-
These cylindrical integrals are readily computed. Let

P:X_~>R" by x> {u® =(81,, x) = x°(t,)}, then (1.33)

w(X) = f du'...du"5u"). .. 8"y 2mi) " ldet Gty 1,) " exp(%u"u”(G_(t,,, t,,));,!,)
= 2m1)"?|det G=A(t,, t,)|"”. (1.34)

The covariance G(r, s) can be computed by the same method.

Prodistributions on L*' spaces.** The covariances G. on spaces of L' paths vanishing either at ¢,
or t, are elementary kernels of a second order linear differential operator D. It follows from the
definitiont that the covariance G of the prodistribution w on X Leray associated to either w_ or w,
is the elementary kernel of the same operator D such that

G(r,s)=0 for r or s equal to ¢, or t,.

The covariance G is the Green’s function of the operator D in the strict sense of the term, namely G
is the elementary kernel of a positive second order linear differential operator that vanishes on the
boundary and that is C™ except on the diagonal. When D is the Jacobi operator (alias the operator for
small disturbances) G is known as the Feynman~Green function.

Example. The gaussian w™ on X associated in the Leray sense to the Wiener gaussian w¥ on X_
is the gaussian normalized to

w¥ (X) = Q7i(t, — t,))""*(det g,g)'"?,

*x(x) =1 for every x € X and zero otherwise
**See footnote, p 280
tUse the definition together with the expression given p 272 for dwa(y) on fimte dimensional spaces and note that A ' 1s the same for w. and w
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1ts covariance 1s

GY(t, 5) = —g"P(0(s — )t — t)(ta — 1s) '(ts = $)+ O(t = )t = )ty — ta)” ' (ta — 5)). (1.35)
Lemma.
jF(x)dw+(x)6(x(ta))= f F(x)dw_(x)Sx(t,,)=fF(x)dw(x). (1.36)

Proof. 1t is sufficient to prove that this equation 1s true for cylindrical functions, F(x) = f° P(x).
Without loss of generality we shall prove it with P :x+—> u'=(u,x).

I= ff o P(x) dw.(x)8(x(t.)) = 2mi)”'(det W.,) " f f(u")s(u®) du' du’ expzuu(W "y

X4

where
. - (W+(u, p) Wi, 5:‘,)\).
W.(d,,n)  W.(s,,6.)
On the other hand

J= j fo P(x) dw(x) = Qi) "AG (1 1)) Qi) W f f(u) du exp 3™

—1

where # = W(u, ). The integrals I and J are equal if (W Hn=W"1e.

WG (L, t,)=det W, (1.37)
If u = 8, for an arbitrary t, then eq. (1.37) follows from eq. (B17). The proof for arbitrary wx can be
checked on specific examples. ]

2. Product integrals

Introduced by Volterra [140] m 1896, product integrals are a simple and rigorous vehicle for
Feynman’s operator calculus [55]: They yield results quickly and provide explicit error estimates.
Product integration has been developed recently by Dollard and Friedman [44] who have used it, in
particular, to obtain the asymptotic behavior of positive energy solutions of the Schrodinger equation.
As an immediate application of their theorems they prove the non-existence of positive energy bound
states for some classes of potentials and the possible existence of such states for others. For example
they show that E =1 1s the only positive energy for which the Wigner-Von Neumann potential
[141, 130] can have a positive-energy bound state.

Interesting applications of product integrals to Brownian motions on a Lie group have been
developed by McKean [99, p. 115 and references quoted therein].

After a brief introduction to product integrals, we shall use them to obtain a path integral solution
of the Schrodinger equation, known as the Feynman-Kac formula, or the Trotter-Kato-Nelson [117]
product formula.
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2.1. Definition and properties of product integrals

There is a strong formal analogy between the theory of product integration and the usual theory of
Riemann imtegration; product integration is to products what Riemann integration 1s to sums. The
additive neutral element 0 becomes the multiplicative neutral element 1 (the 1dentity matrix), the
additive mverse —A becomes the multiplicative inverse A™', etc.

A Riemann integral f(t) = [, g(s)ds can be introduced as the solution of the differential equation
df(t)/dt = g(t) such that f(t,) = 0. Simlarly a product integral

U(t) =[] exp(A(s) ds)U(t.)

can be introduced as the solution of the differential equation

% =AU(1), equal to U(t,) att=t,. 2.1

Let C, be the set of n x 1 matrices with complex entries, and C ., be the set of n X n matrices with
complex entries. The norms are defined as follows. Let o' be the entries of & € C,, and let B € C s,

Jol = (3 1)

where the supremum is over all a in C, such that ||| = 1. Throughout this section A, B are continuous
functions from [t,, t,] into C,x, and V 1s a differentiable function from [t,, t,] into C,.

/2
’

|81l = supl|Ba]

An approximate solution of eq. (2.1) can be obtained by making a partition* 8,., = {t,, s1,..., Sox1 =t}
of [t t] with As,=s,—s,_,. Let u(8,,,) denote the mesh of 4,.,, i.e. the length of its longest sub-
interval. Then**

v+1

U(t) = {[1 exp(A(s,)As,)}U(ta). (2.2)

Volterra has shown [140] the existence of the limit of this product when u(6,.,) goes to zero; it 1s thus
possible to define a product integral as follows.

Definition. Let A:[t,, ts]— C,<.. The product integral of A over [t,,¢t,] is defined by

v+l

[Texp(A(t)dt) = lim [ exp(A(t)A4t).

T n(Bpr)=0 =1
Some of the properties of product integrals are well known by physicists who have done similar
manipulations. The notation of product integrals allows a swift presentation of these properties and of
others. It makes possible concise statements of rigorous results which otherwise would be cum-
bersome. We shall begin by a property which simplifies many other statements.

Property 0. Let A:[t,, t,]1> C,xn, then I1; exp(A(r)) dr is non-singular, in the sense that the mapping
I1; exp(A(r) dr): C, - C, has a non-vanishing determinant.

*The partitions of a time nterval [t,, 1,) are chosen throughout so that ¢, = to, &, = t,., for later convenience 1n going from X. to X
**exp(B) =270 B"In'
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Proof. Use the definition and the determinant trace relationship,
det H exp(A(r)dr)=exp f trA(r)dr#0.

Property 0 allows the following definitions, analogous to that in the ordinary theory of integration

f] exp(A(r)dr) =1,

K t -1

[T exp(A(r)dr) = {H exp(A(r) dr)} :

t s
This definition removes 1n many statements the necessity of ordering the limits of integration. In the
following properties, several proofs are obvious for s <t and generalized to arbitrary s and ¢ by this
definition.

Property 1

;f;l'l exp(A(r) dr) = A(t) [ exp(A(r) dr), Ed; [T exp(A(r) dr) = - [] exp(A(r) dr)A(s).

Property 2

ﬁ exp(A(u)du) = ﬁ exp(A(u) du) ]_rl exp(A(u) du).

Property 3. Let {A(r); r € [t., t,1} be a commutative family, then

ﬁ exp(A(r)dr)=exp I A(r)dr.

Property 4 (The sum rule). Let P(t, s) =1I; exp(A(r) dr), then one can write either
n exp(A(r)dr+ B(r)dr) = P(t, s) n exp(P(s, r)B(r)P(r,s)dr)
or

ﬁ exp(A(r)dr+ B(r)dr)= ﬁ exp{P(t, r)B(r)P(r, t)dr}P(t, s).

Proof. If F(t, s) denotes either side of these equations, compute dF (¢, s)/ds to prove the second.

Property 5 (The similarity rule). Suppose that T :[t., t,]1- C.x. has a continuous derivative T' and
suppose that T(t) is non-singular for all t €[t,, t,], then

T7'(t) ]'[ exp{A(r)dr}T(s) = II exp{T '(NA(NT(r)dr - T '(r)T'(r) dr}.
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The proof is similar to the previous one after multiplying both sides on the left by T(¢).

The following properties give error estimates and make possible the definition of improper product
integrals when one of the limits of integration goes to infinity.

Property 6. Let s <t, then

ﬁ exp(A(r)dr)

<exp [ LA dr.

Property 7. Let s <t, then

[T explAGe) do - 1] <ex f lAwar) - 1.

Proof. Because of property 1
[ exp(A(rydry=1+ f dr A(r) [ exp(Au) du).

Using Property 6
"]j exp(A(r)dr) - 1“ s[drllA(r)ﬂ exp{f |(A(u)||du}=exp{f [ ACu)| du} -1

Improper product integrals. Provided the indicated himit exists, we define the improper product
integral

o tp

[1exp(A(0) dt) = lim [] exp(A(r) do).

ta th= t,

An improper integral can be singular. For nstance, let A(t)=—1 for all ¢ then
ty

lim [] exp(—1ds) = lim exp(=1(t, — .)) = 0.

==t tp=co
Since we are interested in product integrals as solutions of eq. (2.1) we need to determine the
conditions under which the improper integral of A over [t,,®) exists and is nonsingular. When it is
singular det U(t) has a zero limit for t = «, for nonzero U(t,).

The following properties have been used to determine the possible existence of positive-energy
bound states, and to study cases of “anomalous” behavior of the wave-function (43). They give
existence theorems for the Feynman-Kac formula (see section 2.3).

Property 8. Let A:[t,, ©)— Coxn be in L'(t,, ®), ve.

f lA@)| dt <, then []exp(A(t)dt) exists and is nonsingular.

ta
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Corollary. Let A and B :[t., ®)—> C,..; suppose that I1;. exp(A(t) dt) exists and is non-singular and
suppose that B is in L'(t,, %) (A 1s not necessarily i L'(t., =)), then

H exp{A(r)dr+ B(r)dr} exists and 1s non-singular

Property 9. Suppose that the unproper integral H(t,)=imp [;, A(s)ds =lim,,_.. [[* A(s)ds exists.
Suppose also that HA € L'(t,,®) (A 1s not necessarily in L'(t,,«)), then II7 exp(A(t)) dt exists and s
non-singular

2.2. Asymptotic solutions of the Schrodinger equation for large positive energies

For simplicity consider the one dimensional dimensionless Schrodinger equation

—d*yldx’* + V(x)¢ = Ei.
Set

r=(8). =y D) e

Its solution expressed as a product integral 1s
YO\ _ 1 (x,)
<¢,I(x)> l:ol eXp(Al()’) dy)(d,r(xo))
Set
k(x)=+VE - V(x).

The matrix A,(x) can be diagonalized:

_ ~1 _ (1k(x) 0 _ I 1
A =MEA0M 0. a@=("" f) M= (0 )

The similarity rule (property 5) now yields
[Texo MW A(Y)IM ™' (y) dy = M(x) [T exp{A(y) dy - M~ (»)M'(y) dy}M " (x,).

Property 4 gives

1K (x)

[Texp4()dy =M MM = () ko) [Texp Ay dy,

VO (e )

K(x)= j k(y)dy, Axy)= V) - B)\e? ™ 4
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Combining these results we get

1

2ik(xo) #(xo)

1 (‘/”(xo))'
21k(xo)

<$'(();))) - (ik:x) —ili(x))<e“(()m e—-?((x)) Ii[eprz(y)dy

I — DI —

Using the inequality on the norm of product integrals (property 7), it is easily estimated that

[T exp Ax(y)dy = 1+ R(x, x,, E) where

IR (x, xo, E)|| < exp {% fx M} 1

E-V(y)

By matrix multiplication we find

P(x, E) = ¢(x,) cos (f (E- V(y)'"? dy) + (—ET:%TZ sin(f (E-V(y)'"”? dy) +r(x, xoE).

2.3. Feynman operator calculus and the Feynman-Kac formulae

The Feynman operator calculus, colloquially called the disentangling of non-commutating operators,
starts with the remark that the order of two operators, say A and B, need not be given by their
position, say AB, but by an ordering label A(s,) B(s,). Once the ordering labels have been attached to
the operators, they can be manipulated nearly as if they commuted and their order restored only when
needed.

Example 2. Let Hy = p*/2m = —h> A,/2m. The solution of the Schrodinger equation
3¢t = — (il How

with Cauchy data ¢(t,, x) = ¢(x) can be written
bt )= exp(~ Holty = 1)) 60 = exp(~5 [ Holt)de) 6x) = [T exp (- 4 Ho0) de ) 60x)

Although it seems hardly interesting to have attached an ordering label to H,, we shall see that it leads
to a path integral representation of (t,, x) which is convenient for deriving the Feynman-Kac
formula. Indeed: Let # be the space of square integrable functions # on T, and let w. be the canonical
gaussian on # of variance I:

I(h, h) = f 2 h. ()hs(t) dt.
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We shall prove that

Uo(ts, ta)=exp(—% f Ho(t)dt) = exp (—iﬁ f g"“pa(t)pa(t)dt)
T T

f dwc(h)exp<—i %% f h“(t)pa(t)dt> 23)

fdwc(h)eXp(—’—L%ﬁa fh“(t)dt), with . = V. (2.4)

To prove eq. (2.3) compute the path integral by the method given p. 265. Let P:# >R by
h—=u=(1/um) [rp.(t)h*(t)dt = (p/um, h)s. The image of w. under P is the gaussian Pw_on R of
variance

E1(plum, plum) = £um)” [ gp.(0p.(0) dr

T
hence

dPw.(u) = du{2mil(p/pwm,plpm)y " exp{iu®/21(p/um, p/um)}
and

f dwc(h)exp{—;fm- f h"(t)pa(t)dt} = f exp(—1u) dPw(u) = exp{—1l(p/um, p/um)/[2}. [
* T

R

Equation (2.4) reexpresses eq. (2.3) in terms of the operator p. The operator p enters the path integral
representation of Uy(t, t,) linearly.

The Feynman-Kac formula. The solution of the Schrodinger equation
oot = 5 (Hy+ V(x)y(t, x)
with Cauchy data ¥(t,, x) = ¢(x) can be written*

it 1) = [T exp(~ 4 (Halt) + V0 de ) 60
= [ awa Tl exp( (=P (k)= § Vo) ) dt) o),
¥

On using property 4 (the sum rule) of the product integrals we get

*The equation ¥(f,, x) = exp{— (1/A) [+ (Ho(t) + V(1)) dt} $(x) 1s not correct without additional prescription because the family {Ho(f) + V(t)} 1s
not a commuting family
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t
i i, o
W(tn,x)= | dwe(h) [T exp (- exp “amPa | B ds g Vx()
H t

xexp{+;‘7n-ﬁa fh“(s)ds}]dt}exp{—“imﬁa fh"(s)ds}q&(x).

Use exp(iap) V(x) = V(x + ha) to get

'l’(tb,x)=fdwc(h)exp (—ﬁlf V(x(t)—p fh(s)ds)dt)-q&(x—y, J' h(s)ds).

T

This path integral representation of ¢(t,, x) is readily simplified by the primitive mapping P, : #-> Y,
defined by

P.r(t)y=y(t) = —f h(s)ds.
The image of w. under P, is the Wiener measure w’ (see p. 271),

st 0= [ dw¥rrexn(—3 [ Vet uyn de) oG + st 2.9
Y. T

The Kac formula is often written by probabilists as an integral over Y_. The probabilists’ formula can
be obtained from the physicists’ formula by the mapping y — z such that z(¢) = y(t, + 1, — t), i.e. y and
z are the same path traversed in opposite directions. This mapping gives

U(ty, x)= f dw¥(z) exp <—% f Vix+ uz(t) dt) o (x + uz(ty)). (2.6)
Y- T

Note that in the Kac formula all the paths are at x at time ¢,, whereas in the Feynman formula all the
paths are at x at time t,. Thus the Kac formula runs the movie backwards, it gives the final wave
function at the origin of the paths in terms of the initial wave function evaluated at the end points of
the paths.*

The domains of integration Y. are vector spaces, as it should be since prodistributions are defined
on vector spaces. The space of paths f such that f(t,) = x is not a vector space unless x = 0. Indeed f,
and f, being in a vector space such that f,(t,) = f2(t,) implies (f; + f2)(t») = f1(ts) = f2(t,) which in turn
implies f,(t,) = 0.

Usually no sum of paths is needed: The “sum over all paths” is not a sum of paths but a sum of
functions of paths, for example expi [r V(f(¢)) dt. If however one needs to “add” f, and f, so that
(f1 “4+” f2)(t) = f1(ty) = f2(tp) = ¢, one can define the “sum” to be

H*+’ f=(hi-o+(f—-o)+c

*See note I added in proof
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Remark. The fact that in the integrand y appears multiplied by & = V' #/m is not a novelty [e.g. 80,
p. 459]. Here, however, 1t has not been put in “by hand” but follows naturally from the derivation of
the Feynman-Kac formula. In the next chapter we shall expand the integrand in powers of u —not in
powers of # - and obtain the semiclassical expansion (eq 3.20)

Remark. There is another form of the Feynman-Kac formula [117, 121 p. 279, 3] based on the
Trotter product formula valid for potentials V € L*(R") + L*(R"). We shall give later (Remark p. 315) a
class of potentials for which our results are valid.

2.4. The Mpller wave operators

Let H = Hy+ V be the Hamiltonian operator of a system S, with H, = p*/2m. The Mgller wave
operators W. defined formally by

W.=1lim W., WL =exp(+itH/h) exp(=itHo/h)

t=Fx

play an important role in scattering theory.* Albeverio and Hgegh-Krghn [3, p. 32-41] have obtained a
path integral representation of the Mgller wave operators using their theory of oscillatory integrals.
Their formula is readily obtained from the Feynman-Kac formula by linear mappings on the spaces
Y_ and Y, of paths with one end fixed. Let the initial wave function be

d(x)= f exp(ipx/h)a(p) dp, then

exp(—1tHo/h) o (x) = fexp(—lpzt/th) exp(ipx/h)a(p) dp.

Let Y. be the space of paths y defined on [¢,0] such that y(0) =0. The path integral representation
of Wi¢ 1s, according to the Feynman-Kac formula,

(Wid)x)= I dw+(y)exp{——f Vix + py(s)) ds}fexp( 1p*t[2mh)

x expl{ip(x + wy(t))/h}ta(p) dp.
Let P:Y,.—> Y. by y—z such that
2(8) = y(s)— ups/h.

It follows from the Cameron-Martin formula that
0

(Wi¢)(x)=Jdpa(p) f dwiv(y)exp{if(sz’ +“";(s)>ds}

t
V]

2 2 .
xexp{—%f V(x +p.z(s)+—’%§—) ds} exp(—g:n;)exp{%p <x+uz(t £ pt)}_

t

*There 15 an abundant hiterature on scattering theory For the operator formalism of scattering theory [e g 36), for the mathematical scattering
theory [e g 77, 89] Also [149, pp 210-212} and [151}
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The oscillatory terms cancel. The limit of Wi¢ when = - is
(Wid)(x) = f dp W.(x, p) exp(ipx/h)a(p),
R

where

W.(x,p)= f dwiv(z)exp{—%f V(x+;¢z(s)+ps/m)ds}. 2.7

Y+

A similar calculation gives W_¢(x) = [ dp W_(x, p) exp(ipx/f)a(p) where

W_(x,p)= f dw¥'(2) exp{% f V(x+uz(s)+ps/m)ds}. (2.8)
Y- (1]

The path integral representations of W, and W* are over the space of paths defined on (—x, 0] and
[0, + ), respectively, vanishing at 0.
The scattering operator S is defined by S = W*W... Its matrix elements are (see note Il added in proof)

(p:|Slp.) = f W*(x, pe) exp(—i(ps — p)x/h)W.(x, p)) dx.

R

Non Relativistic Quantum Mechanics

Consider a dynamical system whose state at time ¢ is represented by a point f(¢) of its configuration
space M. As t varies from ¢, to t,, f(t) defines a path f: T - M. The Feynman formalism of quantum
physics begins with the identification of the space of all the possible, non-equivalent, paths f
satisfying some appropriate boundary conditions. Thus a path integral “‘probes’ the whole configura-
tion space and reflects its global features (see for instance section 3.1). In this respect, a path integral 1s
not just a solution of a differential equation satisfying some chosen boundary conditions: A
differential equation is an excellent way of presenting a whole class of functions. It states a local law
satisfied by a class of physical systems. The boundary conditions are then chosen to answer specific
questions. These two parts, on the one hand finding the differential equation (equation of motion), and
on the other hand choosing the boundary conditions and global characteristic which determine the
solution may not be independent [67]. A path integral is a statement which incorporates these two
parts organically, and insures that they are compatible.

The configuration space of a system, even the most trivial one, is rarely R": A pendulum, a system
of indistinguishable particles, a rigid body with one fixed point, etc. have configuration spaces which
are Riemannian multiply-connected manifolds.

We begin with systems whose configuration spaces are multiply-connected in order to show how to
use path integrals to obtain global features of a system without actually computing the path integrals.
Computing path integrals is the purpose of the other sections in this chapter. The following cases are
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treated: In section 3 the paths x, y, h, X, Y, .. map a fimte time interval T =[¢,,¢,] mnto the
configuration space M of the system; 1n section 4 they map T into its phase space T*M. Path integrals
of quantum mechanics can further be classified by the boundary conditions imposed on the paths:

1. The path integral representation of the wave function, known as the Feynman-Kac formula, 1s
an integral over the space X, of paths which vanish at ¢, and which are arbitrary at ¢, In section
3.2 the Feynman-Kac path integral is computed to the WKB approximation. This calculation serves
three purposes:

a. It displays the use of prodistribution on a simple example.

b. It gives a precise meaning to the statement “‘quantum mechanics goes to classical mechanics

when h goes to zero because of destructive interference of the amplitudes attached to neighboring

paths.”

c. It sets up the stage for calculating the wave functions of systems whose configuration space 1s a

riemannian manifold.

2. The path integral representation of the probability amplitude K (b, t,; a, t,) that a system known
to be 1n the state a € M at ¢, be found in the state b € M at ¢, is a path integral over the space X of
paths vamishing at ¢, and ¢, (sections 3.4, 3.5, 3.6)

At this point, physicists may immediately object to the nature of the space of paths X considered:
Feynman expressed K(b,t,;a,t,) as the “sum” over all possible paths f, such that f(¢,)=a and
f(t,)=b, of expiS(f)/h with S(f)=[rL(f(t), f(t))dt-not as the sum over all possible paths
vanishing at ¢, and ¢,. The reason one works with integrals over X is that functional integration has
been defined only on vector spaces. Paths f,, f, satisfying Feynman boundary conditions form a
vector space only if @ = b =0 (see p. 291). In practice one first makes the transformations necessary
for the Feynman path integral to be an integral over a vector space: For instance an affine
transformation (see p. 281), or a semiclassical expansion as in section 3 Mizrah1 has developed
techniques for integration in function spaces which are not necessarily vector spaces and has given
practical expressions [108] for such integrals.

In section 3.4 the theory of prodistribution 1s used to give a workable method for computing the
semiclassical expansion of K(b, t,; a, t,) n principle to any desired order in #. This method does not
break down ‘‘on the caustics” and the caustic problem 1s treated in section 3.5. The semiclassical
expansion is combined with perturbative methods in section 3.6.

The game in both sections 3 and 4 is to find the prodistribution best suited to the problem at hand,
i.e. the prodistribution which makes it possible to express the given integrals as cylindrical integrals or
as series of cylindrical integrals.

3. Path integration on configuration space

3.1. Multiply connected configuration spaces

Leta,a’,b .€EMandletA=(a,t.), A =(a',t.), B=(b,t,) characterize the imtial and final states
of a system. Starting from an analysis of quantum effects, Feynman showed that the probability
amplitude K (B, A) of a transition A — B is the sum of the probability amplitudes associated with all
possible paths from A to B. If all the paths are not homotopically equivalent, the Feynman theory
says only that K(B; A) is a linear combination of the partial probability amplitudes {K®(B; A)} where
K%(B; A)1s obtained by summing over all paths from A to B in the homotopy class a:

|
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K(B; A)= g x(@)K4(B; A). 3.1)

The coeflicients y(a) are so far undetermined. We expect them to be related to the fundamental
group 7 of the configuration space M: The elements {a,} of 7 are the homotopy classes of closed
loops at a point ¢ € M, together with the multiplication law a,a, = a,, Where a, is the homotopy class
of closed loops obtained by linking a path in a, with a path in a,. It can be shown [e g. 131] that there is
an isomorphism between the fundamental groups based at two different points ¢ and ¢’ but there is no
canonical (i.e. no preferred) isomorphism between them. By connecting ¢ and ¢’, a closed loop at ¢’
becomes a closed loop at c, but there 1s no umque way of connecting ¢ and c'.

By the same token, there is no unique way of labeling the homotopy classes a of paths from a to b
by the elements of the fundamental group. The coeflicients {y(a); « € 7} cannot be paired with the
partial amplitudes K* in a unique fashion and eq. (3.1) 1s meaningless

There are two equivalent ways of giving meaning to eq. (3.1). We give here the one [84] which does not
require auxiliary concepts; the other one [45] proceeds via the universal covering of M.

1. Choose an “homotopy mesh”, i.e. choose an arbitrary point ¢ € M, and arbitrary paths C(a) and

C(b) from ¢ to a and c to b respectively. This homotopy mesh associates a unique closed loop cabc to

any given path ab.

2. Require that the quantity of physical interest K(B; A) be independent of the chosen homotopy

mesh. No other condition is necessary to determine the set {y(a)}.

Let us for simplicity speak of a loop a, or a path &, from a to b, instead of a loop [a path] in the
homotopy class a [class a].
Q b

Cla) (b)

[
Fig 5

Let us choose two different paths C(b) and C(b) from c to b. In the C mesh the path & is part of the
loop a = ¢”'(b)ac(a). In the C mesh it is part of

a=C'(b)aC(a)= C'(b)C(b)C '(b)aC(a) = Ba, with B =C'(b)C(b).
In the C mesh

K=Y x(a)K*

aEm

In the C mesh

K= x(@K®=3 x(Ba)K®

aEem aEn

Physical results are independent of the mesh if and only if

& {x(a); a € 7} is a unitary representation of .
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Proof. 1f {x(a); a € m} 1s a unitary representation of the fundamental group, x(Be) = x(B)x(a) and
x(B)x"(B)=1. It follows that |K|=|K| Conversely, it can be shown [338] that {K*;a E 7} 15 a
linearly independent set. Hence |K| = |K| implies that

x(Ba) = exp(i&(B))x ().
If @ = e 15 the unit element of =, then x(B) = exp(ié(B))x(e) and

x(Ba) = x(B)x(@x@)",  x(B)x"(B)=|x(e).

Without loss of generality one can set y(e) = 1. |
In conclusion.

Theorem. The probability amplitude K(B; A) is a linear combination of the probability amplitudes
K®(B; A) whose coeflicients {x(a)} form a one dimensional unitary representation of the fundamental
group.

There are as many answers for K(B; A) as there are one dimensional unitary representations
of 7. These different answers correspond to different systems, and because of the orthogonality
theorem of representations, there is no transition between these different systems.

Example. Systems of indistinguishable particles [84]. The configuration space of a system of p
indistinguishable particles in R" for n=3 1s multiply-connected. Its fundamental group is the
permutation group S, which has two and only two one-dimensional unitary representations. The two
possible expressions for the probability amplitude correspond to systems of bosons and systems of
fermons:

K?= 3 x®(@)K®  with x®(a)=1 for every a,

a€S)p

K= xT(@K*  with x"(a)==*1.
a €S,
K* is determined modulo a minus sign.

This example shows how the dynamical symmetries of a system can be obtamned, via path
integration, from the symmetries of its configuration space, i.e. from the symmetries of its states: If a
system is invariant under a group of transformation R, all the points in the configuration space M
which are R-related must be identified in order that M be in a one-to-one correspondence with the
states of the system. As a general rule, M will then be multiply-connected. Its fundamental group 1s
determined by R. The fundamental group in turn determines the propagator K, hence its invariance
group, say T. The example treated here shows that a system of n indistinguishable particles
(invariance group R) can be propagated only by totally symmetric and totally antisymmetric pro-
pagators (invariance group T).

R may or may not be identical with T. The phenomena observed when R 1s not identical with T
have been given different names such as symmetry rearrangements, broken symmetries, etc.*

Other multiply-connected spaces occuring in physics include SO(3) (e.g. a spherical top [123]), the 2
torus (e.g. electrons in a lattice [124]). SO(3) 1s doubly connected, 1ts fundamental group is Z> The

*For an analysis of these phenomena in terms of R and T see refs [97] and [139]
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two possible expressions for the probability amplitudes which can be constructed [123] for the
spherical top correspond to half integer spins if one uses the trivial representation y(a) =1 for every
a, and to integer spins if one uses the representation y(a) = *1

Path integrals have been used to extract information about a physical system, without computing
the integral, in situations other than multiply-connected configuration spaces. For example, the
existence of ghost particles in gauge fields [52], and the black hole radiance [66], to name a few of
current interest.

The computation of path integrals remains nevertheless a primary task and will be treated in the
remaining part of this section 3.

3.2. WKB approximation of the wave function in flat space

Consider a system S whose action is
s= [ Lgo,. foyae= [ {Fuor-viw)a,

T=[t,t), f:T->R" O =F®) | f(1) = guaf “ )2 (1)

Let ¢ be the wave function of the system S whose initial wave function ¢ at time ¢, is known.
Following Truman’s method [136]* we shall compute the WKB approximation of ¢ starting from its
path integral representation, known as the Feynman-Kac formula (p. 290). Set (4/m)"* = p, and ¢ = 1.
Let wY be the Wiener gaussian on the space Y. of paths vanishing at #,. Then the Feynman-Kac
formula states that

Wnb.w)= [ awio)exof =zt [ V6 + ey ar) oo+ uyie 62)
Y+ T

The dependence of the wave function on u is explicitly stated since all quantities will be expanded in
powers of u.

We could assume that the initial wave function is a plane wave of momentum p,, or a wave packet
which in the limit # =0 describes a particle of momentum p, at t.. In order to generalize easily the
calculation in flat space to the case where the configuration space is a riemannian space we shall
assume the same initial wave function as Truman (136], namely

d(a) = exp(iSo(a)/)T(a).

T is an arbitrary well behaved function on R" whose support determines the localization of the
system. S, is the initial value of the solution of the Hamilton-Jacobi equation for the system S. Thus
the initial probability density p = ¢*¢ is p(a) = |To(a)*, and the limit when # = 0 of the initial current
density

i=#(@d*Ve — (VP)*d)/2im
is

1,,13 j(a) = p(a)VSy(a)/m.

*See p 312 for precise comparison with Truman’s method A formal dervation can be found i ref [80, p 460)
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We could choose VSo(a) = p° at every pointa ER".1e. So(a) = paa”, it1s sufficient however to choose S,

such that

VSo(q(ta)) = p° (3.3)
where ¢ is the classical path, solution of

Mgasq® () + V. V(@) =0,  mq(t.)=p°,  qlt)=b

I.e. the surface So(a) = 0 need not be a plane, it 1s only required that 1t be orthogonal to p, at g(t,) Since
limy—o— 1AV (a) = VSo(a)d (a), we sometimes say, loosely, that,inthe hmit i = 0, ¢ is an eigenstate of the
momentum operator p = —1AV with eigenvalue po(a) =VSo(a).

The semiclassical expansion of ¢ is conveniently obtained by expanding about the classical path g the
mtegrand of the Feynman-Kac formula (3.1). Make the change of variable of integration y > x such that

b+py)=q(t)+ px(1).

The new variable of integration* x is the deviation of an arbitrary path from the classical path. Under this
change of vanable, the Cameron-Martin formula (p. 274) gives**

st b= [ awt@exs i [ (zla@P-—3m viaw +uxenar) +i [ 2w | axon}
Y+ T

T

€ |—

X ¢(q(ts) + ux(ta)). (34)

Integrate by parts the stochastic integral**.

f (@) | dx(8) = — (a(ta) | x(t.) - f (q(0) | x() dr:

expand V(q(t)+ ux(t)), So(q(t.)+ ux(t,)) and T(q(t.)+ ux(t,)) in powers of u;and use the classical
equation of motion to obtain = Ywgp(1+ O(h)) where Ywki is the WKB approximation:

buxlt b, )= exp {35 0)} [ awo exp{E [ x99, V(a0
Y.

2m
T

b )T} T 6S)

where S(t,, b) is the general solution [e.g. 23, p. 260] of the Hamilton-Jacob1 equation of the system
with Cauchy data S, at ¢,.

St b) = So(at) + [ {Fla(F - Viaen .

T

*For simplicity we give the same label to the vector field x along g and to the path x T —>R” such that x(¢) 1s equal to x(¢) at q(¢t), we also
dentify under the label Y, the space of vector fields x along g vamishing at g(#,) with the space of paths x T —>R" vanishing at ¢,
**See appendix D
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Here q(t,) is a function of q(t,), i.e. a function of (¢,, b).
The path integral (3.5) has already been computed (eq. 1.17):

braltn b, ) = (det Rt )/det Rt 1) exp {3 50t )} Tia(0.)

where K(t, t,) is the solution of the differential equation
2

m R0, 1)+ VT,V (qU)RE(, 1) =0

such that
Ki(ta ta) =65  and  (dKE/AE)E = 1o, 1) = Vo VSo(q(t,)).

Since the classical path has been defined by its initial momentum and its final position, g(t,) is
understood as a function of the initial momentum and the equation of motion can be written

mg.sq” (t, VSo(q(ta)), b) + V. V{q(t, VSu(q(1.)), b)} = 0.
Differentiating with respect to g(t,) and interchanging the order of differentiation shows that
K5t 1.) = 4q°(1]9q° (t.)
satisfies the required conditions. In conclusion
Ywks(ts, b, ) = (det [9g" (£.)/9g° (t,)))'"™ expliS(t,, b)/ A} T (q(t.)). (3.6)

We gtve in appendix B practical methods for computing the WKB approximation.

Physical interpretation of the WKB approximation. The localization of the system at time ¢, on its
configuration space M is the support* of its wave function, here Supp T. Consider a flow of classical
paths surrounding the classical path q defined above by q(t,) = b and mq(t,) = p°. More specifically
consider the flow {G(t, a, p.); a € N} where N is a neighborhood of a, = g(t,) and where the initial
momenta p, = VSy(a). Note §(t, ao, p°) = q(¢). This flow generates a group of transformations {€,; t €
T}, each transformation

(gtiM—)M by a")(i(t9a)pa)°

Let dw, be the volume element at a,. Under the transformation %,, the volume element dw becomes
dw, = det|aq*(¢)/3q®(t,)| dw,. We shall say that the determinant of dq°(t)/3q®(t,) gives the rate at
which the flow {G(¢, a, p.); a € N} diverges or converges around q. Equation (3.6) says that in the limit
k=0,

f (2, b, ) do, = f |¢(a) dwo.

<i'n

In the classical limit, the probability of finding in £ at time ¢ a system known to be in €;'{2 at time ¢,
1s unity. The case when det|dq*(¢)/3q”(t,)| = 0 is studied in section 3.5.

*The support of T.M >R 1s the set of points a € M such that T(a) # 0 together with their imits The hmit points are included so that, for
nstance if T(a) vamshes at 1solated ponts, these points belong nevertheless to Supp T
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3.3. WKB approximation of the wave function in curved spaces

What 1s the Schrodinger equation for a system whose configuration space 1s a riemannian manmfold?
How does one compute a path integral over the space of paths X:T—> M where M 1s an n-
dimensional riemannian manifold? These questions have been discussed since Pauli remarked [118] in
1952 that the Feynman propagator for a short time mterval does not quite obey the Schrodinger
equation. It “misses” 1t by a term proportional to #° which vanishes in simple cases but does not
generally vanish on curved spaces. Alternatively one can ask what 1s the short time interval
propagator which obeys the Schrodinger equation 143.(¢t, x) = —#> Ay(t, x)[2m + V(x)y(t, x) on cur-
ved spaces? Or what 1s the path integral representation of a wave function which satisfies this
Schrodinger equation?

Recently the works of Elworthy on Wiener integrals on curved spaces and the work of Truman on
the classical limit of the solutions of the Schrodinger equation have provided a method for computing
the semiclassical approximation of the wave function on curved spaces. The key element for
extending the results of section 3.2 to curved spaces 1s the development mapping as used by Eells and
Elworthy [46—49]

The development mapping was first introduced in differential geometry for describing the rolling of
a riemannian manifold on a plane. It has been used by Yosida [145] in describing browman motion on
a 2 sphere and has appeared more or less explicitly in later papers* on brownian motion on manifolds.
It 1s defined as follows.

Let T,M be the tangent space to the configuration space M at b. The development mapping 1s a
bijection between the space of L*' paths** on T,M which vanish at ¢, and the space of L*' paths on M
which are at b at ¢,. It is defined as follows:

Considert a path z on T,M. A path Dev z on M is said to be the development of z if its denvative at ¢,

o

TpM

b
(Dev 2)'(1)?

Fig 6 z(t) 1s equal to (Dev z)(f) parallel transported along Dev z to b The development mapping 1s a mapping from the space of L' paths on
T,M mto the space of L2' paths on M It 1s not a mapping from T,M nto M

*See references quoted n refs [46] and [49)
**Defined p 280
+As usual one identifies T,M and R” The metric on T,M and R" 1s g(b)
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parallel transported to b, is equal to z(t), when 1t exists. When z(¢t") # z(¢”), then (Dev z)'(t*) and
(Dev z)'(t") parallel transported to b are equal respectively to z(¢t*) and z(¢7)
It follows immediately from the definition that
1 The development mapping maps a straight line on T,M into a geodesic on M such that
(Dev z)'(tp) = z(1,).
2. The development mapping preserves angles
3. Closed loops on T, M are not developed into closed loops on M: a mapping from the space of paths
on T,M 1nto the space of paths on M cannot both map closed loops into closed loops and conserve
angles. A closed loop is a particular case of paths with both ends fixed. Hence a family of paths with
both ends fixed is not developed into a family with both ends fixed.*

The space of L' paths on T,M vanishing at the origin 1s dense In the space Y, of continuous paths on
T,M vanishing at the origin; the space of L*' paths on M going through b at t, 1s dense in the space €,(M)
of continuous paths on M going through b at t,. The development mapping determines [49] a measurable
map between the space of continuous paths on T,M which vamish at t, and the space of continuous paths
on M which are at b and t,. To simplify the notation we may sometimes use the same label for the
development mapping and the mapping it determines on the space of continuous paths, and write

Dev: Y. - %,(M) by zr—Devz

but 1t should remembered that by so doing we create a treacherous legerdemain.**

Since paths are variables of integration, we shall consider a path X on M as a mapping from T x Y,
into M:
X(t, z) = (Dev z)(¢).

The theory of prodistributions makes it possible to extend to the Schrodinger equation the results
obtained by Elworthyt for the heat equation; the solution of the Schrodinger equation

ih0(t, x) = —H*AY(L, X)[2m + V(X)p(t, x),  Plta, x) = $(x)

1s then

bt bo) = [ w0 exp {2 [ VX b+ ) dt (X (0 b+ iy 6.)
Y. T

This 1s also the equation one would have written if asked to generalize formally eq. (3.1) to curved
spaces As before assume

¢(a) = exp(iSo(a)/h)T(a).

In the previous section V and ¢ have been expanded about the classical path defined by a given initial
velocity and a given final pomt. Here consider the classical path X(-, q) such that q(t,) = v, and
X (ty, q) = b. In practice it may be difficult to find g such that its development is a classical path but ¢
1s not needed 1n the final expression. It is sufficient that it exist and be unique.

*See section 3 4

**Having, mn a first draft, excused this notation with the conventional “By a convenient abuse of language” our mentor (K D E ) wrote back.
“That ‘convenient abuse of language’ phrase 1s almost as strong an abuse of the word ‘convenient’ as the Mafia could ever have made! since 1t

knocks out one of the major mathematical difficulties” See p 313, the effect of the inclusion mapping 1 L?'-> Y*
tReference [49] and private communication
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Set X (-, q) = Z(-) and call v(¢)v, the parallel transport of v, from Z(t,) to Z(t) along Z. Then
mg.pZ° () +V V(Z(t) =0, Z(t)=v(t.)va  Z(t,)=b.

Z(t,) is a complicated function of v,. In this section the time interval [¢,, t,] 1s assumed sufficiently
short so that there 1s a unique classical path between Z(t,) and Z(t,). This restriction is removed in
section 3.5.

Returning to the initial wave function, assume that

V.So(Z(ta)) = mgag(Z(t.)ZE (1),

Here as in the previous section, the surface So(a) =0 is assumed to be perpendicular to the classical
path at Z(¢,).

The development mapping is not linear, it 1s not even given explicitly but via an mtegro-differential
equation and computing the wave function given by eq. (3.7) seems a formidable task. It is however
possible to compute its semiclassical expansion. As before make the change of variable of integration
defined by

qtux=>b+uy
where ¢ is now the path such that Dev g = Z. Set
Y(t, x, u) = X(t, q + ux) = Dev(q + ux)(?).

In the following p is a variable u € U = [0, (#/m)""*] which defines a one-parameter* family of paths
{Y(C,x,n); w€ U} Y(tx, ) defines a surface on M parametrized by ¢ and u. Let V, be the
covariant derivative along the curve Y (¢ = constant, x, ). The expansion of V(Y (¢, x, u)) about Z(¢)
reads

VYt x, 1) = V(Z(0) + pV V(Z(4)SY (1, x) + 307V, Vs V(Z(1)8Y (8, x)8Y A (1, x)
+3u*V V(Z)8 Y (t, x)+ -+ (3 8)
where

8Y(t,x)=0,.Y(t, x, p) and 8°Y(t,x)=V,0,Y(t,x pn)
“ M

=0 =0

8Y (-, x) is a vector field** along Z generated by varying u in Dev(q + ux). Let T-M be the space of
vector fieldst along Z The following lemma shows that the mapping from Y, into T;M by
x> 8Y (-, x) is linear; it will then be easy to reexpress the integral (3.7) as an integral over the space of
vector fields along Z via the linear mappings y—>x—>6Y (-, x).

Formal Lemma. The mapping 8Y (-,-):x+>8Y (-, x) is the derivativett of the development mapping
at the path q.

Proof.
Dev:Y.-> ¢ .M.

*Look up appendix B for the use of one parameter variations and the use of covanant derivatives in Taylor expansions
**This notation gives the erroneous feeling that §Y (¢, x) 1s a small ncrement, 1t is used nevertheless for its obvious convenience
tStrictly speaking 1t should be called T7(%,(M))
11The derivative mappimng f(x) of a mapping f R">R"” by x>y 1s the hnear mapping f'(x) T.R" > T,R" by f'(x)v=w such that
(af*(x)/ox®)v® = w® In general the derivative mappmg of f X->Y 1s a limear mappmg f{x) T.X~>T,Y such that f(x)=
flxg) + f'(xo)(x = x0) + O(lx ~ xol)
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In particular
Dev(q + ux) = Y (-, x, u).
By definition
Dev'(q): T,Y.— Tz(%,(M)), also called T:M, by

3, Dev(qg+pux)] =Devi(g)x=24,Y(,x,u)
=0

w=

) =8Y(-, x). [

=

The lemma and its proof are only formal because the development mapping is only measurable so
does not really have a derivative. Elworthy* has derived essentially the same result via the
Girsanov-Cameron-Martin formula.

Note that Dev'(q) is a linear mapping x+—8Y(-,x) but that there is no linear mapping
x(t)y—> 8Y (¢, x).

Lemma. Let V=0. Let h be a Jacobi field along q defined by l;(t,,) and h(ty). Then 8Y(-, h) is a
Jacobi field along Z defined by 8Y (t,, h) = h(t,), V.8Y (t = t,, h) = h(ty).

_ Proof. When V =0, q(f) = constant, the development of g is the geodesic Z on M such that
Z(ty) = q(t). We shall compute V,V,8Y(t, x) for an arbitrary vector field x along q and show that, if x
is a Jacobi field vanishing at t,, 8Y (-, x) is a Jacobi field along Z,

VY (1) =YYt xu)| .
w=0

By definition of the development map, 4,Y(¢, x, ) is equal to §(¢)+ ux(¢) parallel propagated along
Y(t, x, u). Parallel propagation can be expressed in terms of orthogonal frames. A frame v(t, x, ) at
Y(t, x, ) is a mapping from R" into T y,.,M. Indeed, an n-tuple and a frame determine a unique
vector whose components in the given frame is the given n-tuple. Then

3 Y (t x, )= v(t, x, u)q(t) + ux(t)) (3.9
and

VoY (t,x)=V,08,Y(t,x, 1) = v(t)x() +V,0(t, x, u)q(t)

n=0 w=0

where v(t) = v(t, x,0) is the parallel transport along Z from Z(t,) to Z(t). Since V,v(t,x, x) =0 and
q()=0,

V.V.8Y (¢, x) = v(t)i(t) + R(Z(t), 8Y (¢, x)) Z(t).
If x is a Jacobi field along g, x(t) =0 and 8Y (-, x) satisfies the equation of geodetic deviation. [ |

8Y (-, x) is not the only vector field along Z which enters the calculation; so does the vector field vx

obtained by parallel transporting x(¢) along Z from b to Z(t). Note that
8Y(t, x) # v(t)x(t).

*Private communication
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In other words developing a family of paths {g + ux} and then making a one-parameter variation 1s not
equivalent to making a one-parameter variation of {q + ux} and then parallel propagating x along
Dev g. Set

Y (t,x)=8Y(t, x)— v(t)x(1).

T, M

Qtux

x(1

8Y(e,x) =vz

Fig 7

X\.

AN
X@gacer)

a+uX 1 q

Dev(q)

(vx)(t)
Dev(g)t)

Dev ()(2¢t)

Fig 8 Constder a sphere and 1ts tangent space at the north pole The two lines ¢ and g+ px develop nto two geodesics The vector field vx
along Dev(Q) 1s such that v»x(t) 1s obtained by parallel propagating x{t) from the north pole to Dev(g)(t) The vector field Dev'(q)x along Dev(g) 13
obtamed by making a one-parameter vanation of the famuly of paths {Dev(g + ux), 0= u <(h/m)"} Tts value at Dev(gXt) 15 Dev'(g)x)(¢)
abbreviated on the picture as Dev'(x)(f)
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The marvelous thing is that §Y (-, x) is differentiable [49],* of class C?, although 8Y(-, x) and vx are
not differentiable. Indeed, the differentiability of 8Y (-, x) follows from

ty

@Y, x)| Z(1) = j %v V(Z(5))5Y (s, x) ds. (3.10)

Proof of eq. (3.10). Compute 4, [Y(¢t, x, u)J’ at x =0 in two different ways. On the one hand

3.(Y(t,x, ) |Y (8, x, )

= 20,0Y (1, x) | Z0)+ ZVV(Z()SY (1, ).
0

m=

On the other hand, since the frames are orthogonal, eq. (3.9) gives

Vx| =20050)] 200 = 20,6050 20) + £ TVZE) | o(0x(0) .

w=

After this long but necessary and fruitful digression on 8Y, return to the calculation of eq. (3.7).
The change of variable y+— x defined by b + uy = q + ux proceeds as before. The Cameron-Martin
formula gives, after the usual integration by parts,

awx) = W expif [ dr (2‘:7"20)"2 -1z vxen) - L2 ot (e}

Replace V, S, and T by their expansion (3.8) about Z. The terms proportional to #~" are independent
of x and combine to give as before the general solution S(¢,, b) of the Hamilton-Jacobi equation with
Cauchy data S, at t,. The terms proportional to #~"* cancel, not readily as before, but by virtue of eq.
(3.10), giving

bty by 1) = exp {25, )} [ dw¥(x)exp{-5 [ dr[V.V,V(Z()sY*(t, 0)8Y*(t, x)
h 2m
Y+ T

+V V(Z()8*Y (¢, x)]
+ il;[va VeSo(Z(£.))8Y *(ta, X)8Y (2o, X) + VuSo( Z(£:))8° Y (1., x)]} T(Z(t). (.11

Following Elworthy we show that

ty

82Y(t,x)| Z(t)) - f (82Y(r.x),%VV(Z(r)))dr= f (R(3Y, Z(r)8Y | Z(r)) dr

t

¥ f dr(v,8Y (r, ) - [x(OP).  (3.12)

For t = t,, the left hand side of eq. (3.12) is precisely the combination which enters eq. (3.11). The
quadratic term in §Y combines with the other quadratic terms in eq. (3.11) and enters the calculation
*Earlier calculations of path mntegrals had introduced apparently miraculous cancellation between factors of the undefined quantity 8(0), [B S

DeWitt, private communication] The 8(0) terms are introduced by the time denivatives of 8Y(, x) and vx, they cancel because the integrand 1s
not a function of 8Y(, x) and vx but of their difference
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of the wave function on curved spaces (3.11) in a straightforward generalization of the calculation in
flat space. The remaining terms are eliminated by the change of variable x > 8Y (-, x).

Proof of equation (3.12). Compute V,.3,[3,Y (¢, x, u)|* at u =0 in two different ways. On the one
hand
V.00, Y (1 x, )P = 2V, V.9, x, 0) | 9.Y (1, x, p) +2(Y.8, Y (1, x, ) | V.8, Y (£, x, 1))

V.o, l8.Y(t, x, W) =2V,8°Y(t, x)| Z(£)) + 2R(8Y, Z(t)8Y | Z(t)) + 2|V, 8|}

n=0

where the argument of 8Y is (¢, x). On the other hand, since the frames are orthogonal, (3 9) gives

VadaYxwf| = 2kp

n=

Equation (3.12) follows. | |

Insert (3.12) mto the wave equation (3.11) and map x~>8Y(,x) by the derivative of the
development mapping at g. Let w be the image under Dev'(q) of the Wiener gaussian w" on Y,. Then
according to the Cameron-Martin formula

dw(8Y)=dw"™(8Y)(Det Dev'(q)) ' exp {% f (Ix(OIF - V. 8Y (D)) dt}

where we have simplified the notation and written Dev'(q)x = 8Y. In the §Y-variable, the wave
function (3.11) reads

wxoltn b, 1) = exp (5 5(t, b)) Det Dev(@) T2 313
where
w —1 1 a 8 7
I= J’ dw"(8Y) exp{—i-J’ [—r;’-V(,VBV(Z(t))SY (YY" (1) - (R(Z(1), 8Y(¢) Z(t))ISY(t))] dt
T-M T
# 3=V TaSuZ )Y " (1)SY (1)}

The computation of the path integral I is straightforward and proceeds as in the flat case.
I' = (det K(t,, t.)/det R(ty, t.))"
where K(t, t.) 1s the solution of the Jacobi equation such that
K*®(t,, 1) = g°*(Z(t.)) and mV.K™® (1 = 1,,1,) = V"VESL(Z(t.))
Let V, € T 2. ,M, and H(t) =K(t,t,)V. € T 2»M, then
mV,VH(t)+VV V(ZA)H(t)+ R, "H () Z°() Z*(t) = 0.
We prove that
K3 (ty, 1a) = Z° (1) 0Z° (L),
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Z{1q Z{tp)
Fig 9

Indeed consider an n parameter flow of classical paths {A(t, u; ... u,) = A(t, u)} originating in a
neighborhood of a = Z(t,) such that A(t,0) = Z(t) and mA*(t,, u) = V°Se(A(t,, u)).
Consider the group of transformations % generated by this flow:

€:TxM-M

in such a way that (¢,, A(t,, u))— A(ty, u). Its derivative €'(t, Z(t,)) maps a vector V, € Tz, M into a
vector in V(t) € Tz, M such that

V()= (3Z*(013Z°(t)) V5.
V(t) is a Jacobi field which can be obtained by a variation through the family {A(t, u)} such that

auA(ta, ll) = Va.
u=0
Its covanant derivative along Z(t) is V°(t)=(DZ°(t)/dZ?(t.))V5 and at the origin V()=
VsVSo(Z(t,))/m. Hence

V(ty=H(t)= K(t, t,) V.. n

Thus the integral I in eq. (3.11) is given by
I* = det(0Z° (1) 0Z* (1))

It gives the rate at which a flow of classical paths originating in a neighborhood N(a) of So(Z(t,))
diverges or converges. It reflects both the choice of the initial wave function and the dynamical
properties of the system.

If we choose VzV*Si(Z(t.)) = 0, i.e. if N(a) has first order contact with its tangent space at Z(t,),
the matrix K§(t,, t,) 1s equal to K5(t,,t,) defined in appendix B. The matrix K3(f,, ,) is not the
apparently similar matrix (called D™') constructed by B.S. DeWitt [37, p. 150] from the geodetic
interval (alias the world function), nor the matrix (called A) used by Hawking and Ellis [67, p. 96] to
define the vorticity, shear and expansion of a family of geodesics. Their matrix satisfies also the
equation of geodetic deviation but with the boundary conditions defining the matrix called here
J5(t,, t,). The determinant of Jg(t,, t,) gives the rate at which geodesics emanating from a fixed point
diverge faster or slower than straight lines emanating from a fixed point.

The determinant of K gives the rate at which a flow of geodesics originating in a neighborhood of
b C M diverges or converges. More precisely, let V, € T,M and H(t) = K(¢, t,) Vs, then H is a Jacobi
field along Z such that H(t,) = Vs, H(t,) = 0. This Jacobi field can be generated by a variation through
geodesics originating in a neighborhood N (k) of b such that N(b) C M and

{N (b) has first order contact with its tangent space at b:
the flow of geodesics is orthogonal to N(b).
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Inflat space for V =0, K5(ts, t) = K 5 (1. t,) = 85. In curved space, det K 5(t,, ,) gives the rate at which
geodesics diverge faster or slower than parallel lines orthogonal to the tangent space to N(b) at b.
In conclusion, the WKB approximation of the wave function in curved space is

busltn, b, ) = exp {504, ) }det 021,142 1)) "(Det Dev'(@)) " T(Z(2,). (.14

It remains to compute Det Dev'(q). First some general properties of Dev'(q).

1. The mapping Dev'(q):Y.—» T-M by x—>8Y(-,x) can be decomposed into two mappings:
Dev'(q)=voP where P:Y,> Y, by x>z=0""6Y(-,x). P is the essence of the development
mapping. It maps a vector x(t) € T,M which parallel transported from b to Z(t) is equal to 8Y (¢, x):

v(t)z(t) = 8Y (¢, x) = Dev'(q)x(t).
The mapping P induces a mapping P,

P,.TM->TM by wvx—>8Y(:,x).
Since parallel transport 1s norm preserving,

Det Dev'(q) = Det P = Det P,. (3.15)

2. We have previously measured the difference 8Y (-, x) — vx by §Y (-, x):
P,=1 & &§Y(,x)=0
DetP,#1 < DetDev'(q)#1
DetDevi(q)#1 = 8Y(-,x)#0 but not vice versa.

It follows that a family of paths with both ends fixed in T,M does not develop into a family of paths
in M with both ends fixed. Indeed, the vector fields generated by a family of paths with both ends
fixed vanishes at ¢, and t,. If x(¢,)=0, then v(t,)x(¢t,)=0. But o(¢,)x(¢,)=0 does not imply
8Y(t,, x) = 0: it implies 8Y(t,, x) = 8Y (t,, x). See p. 313 under which conditions a family of paths on
T,M develops into a family on M with both ends fixed.

Lemma. When q develops into a classical path, Det Dev'(q) = 1. (3.16)

Proof. We shall prove the result first when V =0, i.e. when g is a straight line.
Det Dev'(q) = Det P (eq. 3.15) where P : x>z with
20— x()=v7' Y (4, x),  V,VEY(t,x)= R(Z(t), 8Y (¢, x)Z(¢).

Hence, since x(t,) = z(t,) = 0 and x(t,) = y(t),
x(t)=z(t) - f 8(s — t)(s — HR(Z(s), z(s))Z(t) ds,

where the integral is assumed to be written in Fermi coordinates so that the Rieman tensor can be
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contracted with vectors at different points.* This linear mapping is of the form
th
x(t)=z(t)— f k(t, s)z(s) ds.
t

Since k(t, s) vanishes on the diagonal, it is continuous on T X T and its determinant 1s simply

DetP'= exp(——il f tr(k(s, 5)) ds) =1.

t

When V# 0, the following relationship** can be used to prove the result by an argument similar to
the previous one:

V. (o(t, x, n)q(t))

== f R(Z(r), 8Y(r)Z(t)dr (3.17)

where v(t, x, u)q(t) 15 the parallel transport of g(t) along q(¢) + ux(t) and where the right hand side is
assumed to be written in Fermi coordinates.* |

The WKB approximation of the wave function for a particle in curved space is
bualtn, b) = (et 27 (1102 ()" exp {3 56, b) | (200 G.18)

The method developed here can be used to go beyond the WKB approximation. Terms such as
8™Y enter the calculation and have to be expressed by recurrence formulae in terms of 8Y (see eq.
3.12). The so-called “two-loop” approximation is being investigated.

3.4. The semiclassical expansion of the propagator ¥(B; A)

The probability amplitude #(B; A) that the system which is known to be in the state a € M at ¢, be
found in the state b € M at ¢, can be obtained from the Feynman-Kac formula (3.1), by choosing the
initial wave function ¢(b + uy(t,)) = 8(b + uy(t,)— a). This choice makes the computation of the
Feynman-Kac formula simple in principle to any order in u and we shall show that

#(8; 4)= [ ¥y exp — [ v+ pyenaefso +uyen - @ (3.19)
Y+ T
= Hwro(B: A) (1 + 5:, (ih)w,,), (3.20)

where &, are finite dimensional integrals. The right hand side of eq. (3.20) is known as the
semiclassical expansion of ¥ (B; A).

*If one wishes not to use Ferm: coordinates one can parallel transport vectors along Z back and forth to Z(t,), and the equation reads
x(t)=Z(t)~ 6/ (s - OR(Z(s), z(s))v(s)v™"(1)Z(t) ds where §/* means v(t) [ v7'(s) ds
**Reference [(49] and Elworthy private communication
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To compute (3.20), proceed as in section 3.2:
1. Change of variable b + uy = q + ux such that g is the classical path

mq()+VV(q(t)=0, q(t.)=a, q(t,)=b. (3.21)

In this section the end points of the classical path g(¢,) = a and q(t,) = b are within focal distance of
each other. This restriction is removed in the following section.

2. Integrate [r (4(¢) | x(t)) dt by parts and use the equation of motion.

3. Expand V(q(t)+ ux(t)) in powers of u:

V(q(t) + px () = V(q(D) + px= (V. V(g(0) + 35 °x " ()xP (V. V5 V(q(t) + n*Q(g(1), ux(t))

] (3.22)
p*Q(q(t), px(1) = I§|: 1"V, V(q(0))(x(t)"In!
where n is a multi index.* Then
H(B; A) = exp(1S(B; A)/h) f dw‘f(x)exp{—# f dtGGV. V. V(g()x*(1)x* (1)
Y, T
+ 0(q(0), wx(1)} 3(ux(2,) (3.23)

where §(B; A) = S(q).
We can again use the Cameron-Martin formula to find a new gaussian w, which “incorporates” the
exponent:
Let G.(t, s) be the elementary kernel of the Jacobi equation
2
—d%zG‘iB(t, §)— %V“VVV(q(t))Gl"(t, $)=368,  G.t,s5)=0, 3G (t,, 8)dt. = 0. (3.24)

It has been shown in section 1.5 that the gaussian w, of covariance G, satisfies the equation
dw.(x)/dw? (x) = (det K(t,, t,)/det K(t., t.))""* exp {2:”[7 f V.V V(g(t)x*()xP(t) dt} (3.25)
T
where K(t,t,) 1s the solution of the homogeneous Jacobi equation corresponding to eq. (3.24), such
that K*(t,, t.) = g* and such that its derivative vanishes at ¢ = t,. Hence

H(B: A) = exp{iS(B; A)/h}det K(t,, t.)/det K(t,, t.)" I (326)

where

1= [ aw.omstuxte) exp(3 [ dr0tate), wxe)

I can be reexpressed as an integral over the space X of paths vamshing both at ¢, and t,. Let w be

*nisamultmdex n={n, n}lnl=m+ +n,n'=n' n),=D"iagUN" (3@, x() = (XA (xH()”
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the gaussian on X, Leray related to w, on X,. The gaussian w is normalized to (see p. 283):

w(X)= f dw.(x)8(x(t,)) = i) " |det G(t,, t.)| "> (3.27)

X+

Its covariance G is the elementary kernel of the Jacobi equation (3.24) vanishing on the boundary
and is known as the Feynman-Green function. Since &(ux(t,)) = p "8(x(¢,)),

I=u™" f dw(x)exp{_;ifdt.(l(q(t), ,ux(t))}.
X T

The WKB approximation consists in setting £ = 0. Using eq. (3.27) and the expression for G, given in
appendix B together with the fact that (J(¢,, £,))"' is the Van Vleck matrix (off diagonal block of the
hessian of the action function, eq. B9) we obtain*

Hwis(B; A) = exp{iS(B; A)/A}2wik) "*|det 6°S(B; A)/ab"3a®|"?, (3.28)

3(B; 4) = Hors(B; A) [ dwix)exp{ [ dttato), wxten} /).
X T

To compute this path integral, expand the exponential and regroup the terms i powers of
u = (h/m)"”. A typical term is of the following form

[ awew [ arv.viaener . f ds Vi V(g())x(s))- (3.29)

If we can interchange the order of integration then the problem is reduced to computing cylindrical
integrals

J' dw(x) F, g(t,...9)x%(@t)...x5(s)

i.e. finite dimensional integrals. The integral of an odd polynomial in x vanishes and the expansion of
(3.28) is an expansion in powers of u°, i.e. an expansion in powers of #. Its terms have been computed
in section 1.3 (eq. 1.7). The integration of the Feynman-Kac formula (3.19) gives the semiclassical
expansion (3.20). Equation (3.20) is known to be a solution of the Schrodinger equation [56, also 108].

The lattice approximation of ¥(B; A). We shall relate eq. (3.28) to the path integral definition
proposed by Feynman. Equation (3.28) has been obtained from the Feynman-Kac formula for the
system whose action is

S(f)= f [ﬁ"z—llf(t)uz— V(f(t))]dt, f:T->R" with f(t.)=a, f(t)=b.

T

*Since eq (3 28) has been computed from first principles, the normalization comes in automatically and we are spared the comphcated
arguments used 1n 1ts previous dertvations
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Let g be the classical path, f = g + ux,
S = S(@) +38" @ - * [ DG, xe)
T

Let t,=t,<t;- <t < - -t,.,=t. Without loss of generality we assume f.,—1t =
(t, —t)l(p+ 1) =€ and to avoid unwieldy notations we assume the system to be one dimensional,
f T-R. Replace [ 2(q(t), x(t)) dt by its lattice approximation

j Kq(1), x(1) dt =~ € kzp Mq". x*). where ¢" = q(tu), x* = x(t).
=0
T

Equation (3.28) becomes a cylindrical integral which can immediately (eq. 1.5) be expressed as an
ntegral over R”*' under the mapping P :x —{x°, ..x"}, namely

i

K(B: A) = Hwxu(B; A) f 8(ux)2m) " (det ‘W;']”Zexp{2

Rp+l
e o0k k
xexpi— kZ()(l(q , x5

where W = W($,,8,) = G(t,t,). The mverse and the determmant of % has been computed in a
previous paper [40, p. 391-392].* Set f* = g* + ux*. It has been shown [40] that

‘W;'x'x’}dx" oodx?

S(a,. .f*...b)=S8(B,A)+33, W,'x'x' —eu” Y, 0(q", x").
k=0

In the limit € = 0 the determinant of %", takes a simple form (eqs B17, B18)
det W,' =€ """det M(ty, t,)
Since dx* = df*/u

H(B: A) = f exp{%g(a,... f",...b)}&(q“—a)k[jo(df"(m/27rihe)”2).

Rp+l

Feynman’s original path integral representation is
H(B; A)=lim H(B; A).
po

Semiclassical expansion, quasiclassical representation, asymptotic expansion. The first steps in the
calculation of ¥(B; A) follow the method introduced by Truman [135, 136] in his derivation of the
solution of the diffusion equation, with initial value given by eq. (3.2). which he called the quasi-
classical representation. Adjusting for the different initial value of the wave function, eq. (3.23) is the
quasiclassical representation of the Schrodinger equation. The calculation leading from eq. (3.23) to
the final result (eq. 3.28) shows how the semiclassical expansion can be obtained from the quasiclassical

*See eq (B20) for det ¥,
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representation. Truman has given the conditions under which the quasiclassical representation is valid
as well as the WKB approximation of the solution of the Schrodinger equation and we refer to his
papers for a precise discussion of these matters.

Gervais and Sakita [63]* have developed an improved WK B method where the potential i1s not assumed
to vary slowly in all directions of the configuration space.

The WKB approximation of the propagator on curved spaces. With the notation of section 3.3, p.
301, the propagator ¥ can be written on curved spaces as

H(B; A) = f dWW(Y)eXp{;_z':; f VXt b+ )t} 5K (10 b+ uy) = )

It can be computed as before; the interesting point is that the expansion in powers of u leads to
8(Y(ta X, ) —a)=8(udY (ts, x) +3u°8°Y (s X)+ - ),

and the term
exp {E(Z(ta) I U(ta)X(ta))}a([.L8Y(ta, x) +%ll’262 Y(ta’ x) T -)

combines precisely with the terms arising from the change of variables y—> x> 8Y to give, after a
calculation similar to the one leading from equation (3.19) to (3.28),

Hwie(B; A) = exp{iS(B; A)/h}Q2mik) "?|det 3’S(B; A)/ab"sa®|'? (3.30)

where now S(B; A) = S(Z) where Z is the classical path on M such that Z(t,) = a, Z(t,) = b.
Equation (3.30) shows that the WKB approximation of #(B; A) is equal to the limit of ¥(B: A)
when t, —t, goes to zero [114].

Remark. It has already been noted that the development of a closed loop is not a closed loop, or
that the development of a family of paths with both ends fixed is not a family of paths with both ends
fixed. We can now complete the statement made on p. 301.

1. Given a family of paths on T,M with both ends fixed, it develops into a family of paths on M
such that 8Y (t,, x) = §Y (t,, x).

2. Given a family of paths on M with both ends fixed, it 1s obtained from a family {q + ux} of paths
on T,M such that

Dev'(q)x(ts) = 118 Y (ts, x) + O(u”). (3.31)

3.5. On and beyond the caustics

The results derived in sections 3.2-3.4 are valid only when ¢, — ¢, is sufficiently small for the end
points a and b of the classical path to be within focal distance of each other. We examine now
situations in which q(t,) and q(t,) are conjugate** along g, or in which there are conjugate points g(t,)
for t, <to < tp.

*This method has been applied to barrier penetration problems and to instantons [34]
**See appendix B for the definiion and properties of caustics and conjugate potnts
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On the caustic. Consider first the case in which q(¢,) and g(t,) are conjugate but there is no other
conjugate point along g between g(t,) and g(t,). Notice that if g(t,) is on the caustic of g(t,) formed
by the family of classical paths with common origin, then* det J(t,, t,) = 0, its inverse det M(t,, t,) 15
infinite and the WKB approximation of #(B; A) is not defined. Similarly if g(t,) 1s on the caustic of
q(t,) formed by the family of classical paths with equal initial velocities,** then det K(t,, t,) = 0 and
the WKB approximation of the wave function (¢, b) is not defined. These results could have been
anticipated: geometrical optics is not a good approximation of wave optics in the neighborhood of a
caustic [e.g. 86, p. 146; 16, p. 60].

To computet ¥(B; A) when a and b are conjugate along q we need to go beyond the WKB
approximation. Following an idea of Schulman [5, p. 152] we shall make a change of variable of integration
which diagonalizes the variance. This procedure is often useful [56] and we present it in a more general
context.

Diagonalization of the variance. Let X be the space of continuous paths x: T »R" vanishing on
the boundary x(t.)= x(t,) =0. Consider an integral over X with respect to a gaussian w whose
covariance G is the elementary kernel of a differential operator D, that vanishes on the boundary:

D.G(t,s)=8(t— ), G(t,s)=0 for t or s equal to ¢, or ¢,.

Let {1} be a complete orthogonal set of eigenfunctions of D

DU =adi(®), W) =) =0, [ W] pendi= s, (3.32)
Expand x and G in the basis {¢1; k=1,.. =} '

eO=Zuvin, = [l (3.33)

G (t,5)= 3w (3.34)

U = f dt f ds $X(OWL()G (L, 5). (3.35)

The change of variable x> {u*; k = 1,...} is a linear change of variable which can be treated by the
methods developed in section 1.3. Let P: X - R” by x—u = {u*}, and let £ = {£&} be in the dual of
R”.

Lemma. The image wp of w under P is a gaussian of covariance 8"a’'. Its normalization is the
same as that of w.

Proof. The image of w under P is a gaussian of variance

UEo=3aé [ ar [ asvr@ va6a.s) (3.36)
=3 gEu" (3.37)

*See appendix B for the defimition and properties of caustics and conjugate ponts
**See p 353 for the meaning to be given to this condition on a curved space
tWe can also compute the wave function when b 1s on the caustics formed by the family of classical paths with equal imtial velocities
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The inverse of U, in the sense defined 1n section 1.5, is a bilinear form on R”
U 'u,u)=2, utwuy  with X u"uy' =8

It can be obtained from the inverse of the vanance of w. Indeed
W '(x,x)= f (Dx(t) | x(t) dt =Y, u v oudy = U™\ (u, u).
T

Hence u;, = a8y, and the first part of the lemma is proved. A linear mapping always preserves the
normalization. Indeed

Fw® (0) = Fw o P(0) = Fw(0).
We mention explicitly the normalization of w” because w, in contrast to w., is not normalized to

unity.* m

It follows from eq. (3.34) that
G*(t, 8) =, ai W (t)Pi(s). (3.38)

Similar results can be derived for G. by choosing appropriately the boundary conditions of the basis

{¥n}.

Remark. The diagonalization of the variance shows that the gaussian method is defined for space
of paths X and potentials V such that #(q) is a Sturm-Liouville operator on X.

Returning to the study of ¥(B; A) near the caustics, we compute ¥(B'; A’) where B' = (b, t,) and
A'=(a',t,), but expand all quantities around the classical path g such that q(t,)=a, q(t,)=b.
According to the Feynman-Kac formula

s )= | aw'(y) exp {7~ [ v+ wywyarf s+ wye - a0
Y+ T

Since in the basis {4} we can expand only functions which vanish at ¢, and ¢,, we have to choose a’
and b’ such that a’—a = b’ b. Set
a—a=b'-b=pud
and make the change of vanable y — x such that
b'+ py(t) = q(t) + p(x(t) + 4).
Then

X(B'; A) = exp{hi S(B; A) —;i';A" f V.V(q(t)) dt + O(Az)}y._"(l +0(4%, %) (3.39)

*See Leray associated gaussians, p 283
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with*

L
2m

I= f dwvf(x)exp{—

Y+

f [VC.VBV<q(t»(x“<t>me+2x"(r)A">
T

+ %vavﬁvyv;c“xﬂx*] dt} 8(x(t,)).

To compute I we have the choice of two routes:

(a) Proceed as 1n section 3.4. Use the Cameron-Martin formula to introduce a new gaussian w.,
which incorporates the terms quadratic in x. Then rewrite I as an integral over the space Y of paths
which vanish at both ends, using the gaussian w associated in the Leray sense to w.. Or, vice versa.

(b) Rewrite I as an integral over Y, using the gaussian w" Leray related to w', then introduce a
new gaussian w which incorporates the terms quadratic in x. The results can be shown to be identical
although w(Y) # w(Y).

We shall follow the second route which is simpler in this case. The essential steps are:

f dw¥ ()8(x(t,))F(x) = f dw™(x)F(x)
Y Y

where the Wiener gaussian w™ on Y (p. 283) is normalized to

w¥(Y) = 2mi) "(det G¥ (L, ta) "> = Qi) "(det M¥(t, )"
= 27ty — t,)) " det gop

Use the Cameron-Martin formula, together with the ratio of the covariances G and G" eq. (B.18), to
incorporate the quadratic terms

dw(x)=dw%(x)exp {—2—:; J’ V. VaV(qg(t)x*(1)x5(t) dt}

x (det M¥(t,, t,)/det M(t,, £,))".

Make the change of variable x> 1 which diagonalizes the variance. With 4 defined p. 315, set

2 [ 9,9 Va0 dt = 4°V.

[ V.99 vaosoviono = v,

Then
I = (det M(t,, t.)/det M¥(¢,, t.)"? f dwp(u) exp {%A"Vaku" ~ é% Vk,,u"u’u'}
where « ) .
dwp(u) = 27i)""*(det M¥(ty, t,)'"? exp{%z aku"u"} H (aif271)"? du®, (3.40)

*Some arguments not written explicitly are obvious



C DeWitt-Morette et al , Path integration in non-relatiistic quantum mechanics 317

The integration over u#* when all a;#0 is straightforward; in the limit 4 =0 and p =0, I=
(27ri) "(det M(t,, t.))".

Consider now the case where one and only one eigenvalue, say a,, is zero; then 7 (¢) is a non zero
Jacobi field vanishing on the boundary, g(t,) and q(¢,) are conjugate, det J(f,, £,) =0 and we have to
compute the apparently undefined quantity a, det M(#5, t,) = a;/det J (¢, t,). Each column of J3(¢, ¢,)
consists of the components of a Jacobi field hs)(t) = J5(t, t.) such that his(f,) =0 and h,(t,) = 85.
After a similarity transformation which does not change the determmnant we can assume that
det J(t, t.) = 0 implies J{(t,, t,) = 0. Since we have assumed only one vanishing eigenvalue, there is
only one non zero Jacobi field vanishing on the boundary. This one field is also a column of J3(¢, t,)
again possibly after a similarity transformation. The three fields ¢,(¢), J,(¢, t,) and J(t, t,) satisfy the
same equation and the same boundary conditions:

‘lll(t) = ]l(t9 ta) = Jl(t’ tb)

Choose the system of coordinates such that J§ « 8%, i.e. the 1-axis is perpendicular to the caustics.
Near the caustics Ji(,, t.) = €, then M,,(ty, t.) =€ ', M1o(t, t.) =0 and

lim G*(t, ) = 0(s = DI *'(t, ta) My (ta, t5)T E (85, 5) = 6(t = $)T“'(t, 1) M1(ty, ta)T (2, 5).
e=0
On the other hand when a; tends to zero, eq. (3.38) gives

lim G**(t, 5) = a7 " ¥T ()Y (s).
a1=0
Hence M, =a;' and «a;det M(t, t,) = cofactor My,. The integral over u; is an Airy function. Set
1
u =ulu;

v=~V,ul2h, c=-2"-b)V,/Viu, and Iy, c)= f du exp ivGu® — cu).
R

Then

.?[(?’;AA(')) = exp {% S(B: A)}(m/Znih)‘””’zcofactor M, I(v, c) (3.41)
in the system of coordinates where the 1-axis is perpendicular to the caustic. A similar analysis gives
the value of ¥(B’; A’) when there is more than one zero eigenvalue. Since there can be at most n
nonzero Jacobi fields vanishing on the boundary, the zero eigenvalue is at most n-degenerate. When
there are k nonzero Jacobi fields vanishing on the boundary, b is said to be a conjugate point of
multiplicity k. The behavior of ¥ near the caustics had been obtained by Schulman [5, p. 152], largely
from qualitative arguments. Equation (3.41) confirms his results and gives all the factors explicitly.

The Airy regime of the propagator near the caustics has an immediate physical interpretation. When 4
tends to zero, the leading contribution to I(», ¢) is found by making the argument of the exponential

stationary, i.e. by solving
u*-c=0.

The sign of c, i.e. the sign (b’ — b)*V,,, has a dramatic effect or as we shall see a catastrophic effect in
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the technical sense of the term: Asymptotically

1/2)1/2 3/2

(mhwe expCGive') + (—mhwe'™)'? exp(—3vc®®)  for ¢ >0

I(v,¢)~
(alv]c]"*)'"? exp(—3v|c[”?) for ¢ <0. (3.42)

For ¢ <0 we are mn the “shadow” region of exponential decay, while for ¢ >0 we are n the
illuminated region.

Classically, it has been shown* that the caustics are the projections of the catastrophe sets on the
control space of system: here a state of the system is a particular solution of the Hamilton-Jacobi
equation S(B: A), the control space 1s the space of points B € M X T. Given B there may be 0,1, ..n
stationary paths from A to B. If there is one and only one, A and B are within focal distance of each other
If there is none, B is in the shadow region of A:1f there is more than one B is in the illuminated region. The
boundaries between regions with different illuminations are the caustics. If there are k stationary paths
from A to B, the caustics relative to A is an n — k dimensional surface.

Set Si(B: A) the value of the action function computed along the stationary path g,. Let 3 be the set of
ponts {B, Si(B; A)}forall B € M x T. The catastrophe set of the system 1s the set of points ¢ € I where
the projection IT1: 3 > M x T is singular, 1.e. the set of points where IT'(0): T, - Ty (M X T) is not
one-one. This means that {o} is also the set of points where T, is “vertical”’, hence the set of points where
an “upper” and a “lower” sheet of X coalesce. This occurs precisely at the points B where two stationary
paths coalesce. The caustics are indeed the projections of the sets {o}. We see that quantum mechanics
softens the boundaries between regions of different illuminations

Beyond the caustics. In 1890 Gouy** observed and explained the phase gained by a wave as 1t goes
through a focus. Similar phase shifts occur in the wave function of quantum systems; they have been
derived by Keller [79] from the single valuedness of the wave function and by Gutzwiller [64] who
established their relationship with the Morse index of the corresponding classical trajectory. A recent
careful analysis [26] of the path integral solutions of the harmonic oscillator display the inner
workings of these phase shifts.

The Morset index. Once again we begin at the second variation $"(q)xx from which all blessings
flow. Here q is a stationary path defined by its end points q(t,) = a, q(t,) = b and X is the space of
vector fields x along g vanishing at the end points x(t,) = x(¢,) =0,

S"(q)xx = f S@O)x() | x() dt

where #(q(t))h(t) = Dh(t)=0 is the Jacob1 equation.tt
S"(q)xx >0 for every x EX < a and b within focal distance of each other.
S"(@)hh =0 for some h€X & a and b are conjugate along g.

*DeWitt-Morette mn ref [133], see also appendix B
*+“Les ondes en traversant le foyer prennent une avance d’une demi ondulation ™ See also ref {16] p 60
tMaslov [96] has obtained the Morse index by an entirely different approach For the precise relationship between the Maslov index and
the Morse index see refs [4] and {95]
$tSee appendix B
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The Morse index A of the hessian S”(q) is defined to be the maximum dimension of a subspace of X
on which S"(q) is negative definite.

Morse theorem. The index A of S"(q) is equal to the number of points q(t), witht, < t < t,, such that q(t)
is conjugate to q(t,) along q; each conjugate point being counted with its multiplicity. This index A is
always finite.

Proof.* Let {4} be a complete orthogonal set of eigenfunctions of D vanishing on the
boundary and let {a,} be the corresponding eigenvalues. Set x*(t) = Z w’/(t), then

S"(q)xx =Y a,(u'y. (3.43)
a and b within focal distance of each other & a,>0 for every j
a and b conjugate along g with multiplicity k & a, = 0 for k values of j,
say,j=1,...k

We shall prove that

weighted number of conjugate points between a and b equal to A & a, <0 for A values of j.

Assume that there is one conjugate point between a and b with multiplicity k, then A = k. Let » be
a unit vector perpendicular to the caustic at b and set Ji(ts, t.) = vaJ%(ts, t2). It has been shown that
near the caustic

Jic(ty, ta) = a. (3.44)

It suffices to prove that V,,Ji(t,, t,) # 0. Indeed, if V,,J i(ts, t.) = 0, the Jacobi field Ji(¢, t,) vanishes at
t, as well as its first derivative, hence is identically zero (cf. for instance eq. B20) which contradicts
eq. (3.44). |

We shall show that the propagator %(B; A) loses a phase equal to ikw/2 when B goes through a
conjugate point of multiplicity k. Indeed, according to eqs. (3.39) and (3.40)

H(B; A) f . f .- exp {%1 2 ak(uk)z} I::I ((laxlf27) exp(im/4))"* du*, a > 0. (3.45)

Set B* = (q(t3), t3) where q(t,) is conjugate to a with multiplicity k. Then
X(B*; A)= ¥ (B~; A) exp(—ik=/2),
since [ exp(zila|u’/2) du = exp(in/4)2nl|a))'”.
In conclusion if B is not on the caustic of A
Hwie(B; A) =, exp {%5,(3: A)}(detIM,(t,,, t.))"*(2mh) ™ exp(—inm/4 — iA,m[2) (3.46)
]

the sum being performed over all stationary paths g, such that g,(t,) = b and g,(t,) = a.

The case “B on a caustic with conjugate points between q(#,) and q(,)” is obtained by combining
in a straightforward fashion the two previous cases.

*By diagonalizing $”(g)xx the proof given by Milnor [105, p 83] 1s shortened
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Levit and Smilansky [90] have constructed a semiclassical uniform approximation for path integrals
which approaches both the WKB approximation at and away from conjugate points. It is based on the
results given by Connor [28] for the uniform asymptotic evaluation of finite dimensional integrals.

3.6. Perturbation and gaussian methods combined

The two techniques which have been developed so far for computing path integrals are the
Feynman diagram technique (p. 267) and the gaussian method. They can easily and fruitfully be
combined. The gaussian method is based on the assumption that one can solve the Euler-Lagrange
equation of the system S'(g)=0. If this is not possible one can decompose the action

S=S5+S,

so that the equation Sy(qgo) = 0 1s soluble and treat S, as a perturbation of the Sy-system. We shall
show on a simple example but without loss of generality how to proceed when the action has been
decomposed into an unperturbed plus a perturbed action.

The forced harmonic oscillator

SUVZI[%M“Wd‘*%ﬂW0W+&UV%n]m.

T

This case can obviously be computed without decomposing the action, since, for a quadratic action,
the propagator is equal to its WKB approximation:

H(B; A) = (2mh) " exp{iS(B; A)/h}|det 3>°S(B; A)/ob*3a®|"” (3.47)
where S(B; A) = S(q) with
—-q(t)-0’q()+g()=0, q(t)=a, q(t)=b. (3.48)

We shall now compute #(B; A) by decomposing S = S¢+ S, where

&m=[wmmM=f&Mme. (3.49)

T

Proceed as in section 3.4 but make the change of variable b+ uy = go+ nx where q, is the classical
path

—Go() - w’qo(t) =0,  qolta)=a,  qolty) = b. (3.50)

Let Kt t,) be the solution of D, = —d*/dt> — w* such that K§#(t,, t.) = g°°, V.Ko(t = t,, t.) = 0. Let G,
and G, be the elementary kernels of D, such that

GO+(tb, s) = 0’ aGO+(tav s)/ata = 0’ GO+(t’ s) = GO+(s, t) (3-51)
Go(t,s)=10 for t or s equal to £, or t,.
Let wo be the gaussian of covariance* G, normalized to

wo(X) = 2m1) "?|det Go.(ta, t)|"2,

*See appendix B
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then
1= 1 W 12 —n
%(B;A)=exp{gso(B;A)—5 [ vl(qo(t»dt}(detK (s, £.)/det Kofty, £))u "I (3.52)
T

where

I= f dwo(x)exp{—;%fVaVl(qo(t))x"(t)dt}.
X T

I is a cylindrical integral which can be computed by mapping x> u = —(1/um) [ V. V,(qo(t))x*(¢) dt.
The image of w, under this mapping is a gaussian with the same normalization as w,. Its covariance is

Wi [ dt [ ds V. V\(qo(t)VaVi(@o(s)GE (1, 5)

IIwo(X) = Quiw)™ ' f du exp(iu) exp (%u"W") = exp(-iW]2)
R

and
H(B; A) = Qmik) " exp {% Su(B; A) —% f Vi(qo(t)) dt — % w} det 6Sy(B; A)lob%3a®|">  (3.53)
T

One recognizes the propagator [56, eq. 3.66, p. 64} which has played a key role in the Feynman
formulation of Quantum Electrodynamics. In general this expression would not be the propagator but
its WKB approximation. The subsequent terms would be integrals with respect to the gaussian w.
Although one knows that both calculations (egs. (3.47) and (3.53)) must give the same result for
H(B; A), it is gratifying to check it for the chosen example.
Here qo(t) = q(t) + [+ g(5)Go(t, s) ds and a simple calculation gives

5@ =S~ [ @] alt)de -3 f dt [ dsg. (08,163, 9)

T

The hessian of S is equal to the hessian of S, and the equivalence of both methods is proved.
Obviously the first one is the simplest; the more information is put in the gaussian the simpler is the
integral. In the case of the forced harmonic oscillator the covariance of the gaussian which enters the
first calculation is an elementary kernel of —d*/d¢* — w® + g(t) whereas the covariance of the gaussian

which enters the second calculation is an elementary kernel of —d*/d¢* — .

Remark: In some cases the gaussian method can give results where a perturbation method is
meaningless. For instance consider the anharmonic oscillator S(f) = [ [3f7(t) — 10°f(t) + Af*(£)] d¢;
one is tempted, and many have succumbed to the temptation of decomposing the action S = S,+ S,
and treating Si(f)=A [+f*(t)dt as a perturbation. It is a disaster because the propagator is not
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analytic in A. The semi-classical expansion on the contrary gives a meaningful expansion {108] in
powers of .

4. Path integration in phase space

4.1. Introduction

Path integrals on the configuration space of a system are not the only path integrals of interest in
quantum physics. The arena of nonrelativistic quantum mechanics 1s phase space; indeed the
uncertainty principle 1s a relation between measurements of position and momentum. The statement
“sum over all paths g such that g(¢,) = a and q(t,) = b which implies infinite precision of position
measurements at ¢, and ¢, should imply total uncertainty on the measurement of the momentum at ¢,
and t,. How does it? Moreover finite precision of position measurement is not always the best
assumption and we need a formulation of quantum physics with greater flexibility. Since the early
days of the Feynman path integral formalism of quantum physics, the potential and the challenges of
phase space path integration have come up many times. To mention only a few landmarks in the
subject we recall the following remarks.

1. Feynman has noted [54, p. 376] that the normalization of the short time interval propagator 1s the
square root of “the density in coordinate space of particles uniformly distributed in momentum
space.” A similar remark has been made by Garrod [58]: for a free particle, the normalization factors
needed in path integrals over g can be obtained by formulating path integrals over (g, p) using the
product of Liouville measures II(dg*(¢,) dp.(t,)/h); indeed, setting q(t,) = ¢q', p(t,)=p, and t,,,— ¢, =
¢, we have for a one dimensional system

dp 1 m \?
qu ‘eXph( ,q'—z—mp?)=qu’<m;) exp(— m/4)eXp (q )e.

R

2. Clutton-Brock [25] derived interesting properties of path integrals by means of canonical
transformations. But Gervais and Jevicki [62] have shown that the use of canonical transformations in
path integrals is not without pitfalls. Their example, however, points out more to the pitfalls of the
lattice approximation of path integration than to the shortcomings of canonical transformations.
Indeed, their canonical transformation q —» Q(q) introduces a kinetic energy term g,,(Q)Q“Q” which
cannot be treated by the lattice approximation and must be handled by methods suitable for stochastic
variables on curved spaces.

3. Faddeev [51] has shown that the phase space formulation of Feynman integrals is very
appropriate for systems with constraints. In a recent paper [41]) we have developed a method for path
integration on phase spaces similar to the method presented in sections 3.2 to 3.6 for path integration
on configuration spaces. We present here the main results, as well as new ones, and give an improved
discussion of the normalization of the prodistributions. Since in this monograph all equations have
been derived from first principles there is no more looseness in determining the normalizations. Path
integration in phase space will be used in section 5 for the computation of energy levels and decay
rate of bound systems.
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The computation of the propagator #(B; A) in flat space started with the Feynman-Kac formula
which, after the change of variable y+> x such that b + uy = g + ux, is a path integral with respect to
the Wiener gaussian w% on the space X. of vector fields x along g vanishing at #,. It is then
reexpressed with respect to a new gaussian w, on X, which absorbs all quadratic terms in x. Finally it
is stated in terms of the gaussian w on X, Leray-related to w, on X, (eq. 1.31). The gaussians w. and
w are elementary kernels of the Jacobi equation. It is possible to express #(B; A) as a path integral in
phase space 1n terms of gaussians whose covariances are elementary kernels of the Jacobi equation in
phase space.

4.2. The Jacobi equation in phase space*

The action

S(q,p)= f[(p(t),d(t))—H(p(t),Q(t))] dt 4.1

can be expanded around the solution (g, p) of the Hamilton equations by a two parameter variation
method similar to the one parameter variation method used in the lagrangian case. Let the configura-
tion space M be an n dimensional riemannian manifold with metric g. The paths (q, p) map T in the
cotangent bundle** T*M. Let U be the interval [0, 1], let u, v € U and let {y(u, v)} be a two parameter
family of paths:
{d(u):T—»M a(0) = g, a(ly=¢q
y(u,v): T>T*M by 3_ - _
Blu,v): T->T*M B(0,0)=p, B, 1)=p.

Set a(u)(t)=a(u,t) and B(u, v)(t)=B(u,v,t)E Tk oM. (4.2)

We consider first only variations a(«) keeping the end points fixed. a(u, t,) = a, a(u, t,) = b for every
u € U. Set

9% =01 = B0 p=01=
U =00=x(t) and  Z5(0,0=0,1)=y(. 43)

(x, y) is a vector field, henceforth called z, along (g, p) such that x(t,) = x(t,) = 0.

When M is R”, B(u, v) does not depend on u; position and momentum are varied independently.
But when M is a riemannian manifold, changing ¥ means changing the fiber T%.,M and the
momentum B(u, v, t) has to be parallel transported accordingly. To define the parallel transport of
B(u, v, t) when u alone varies we have to choose the path a(-, t): u+~> a(u, t). A natural choice 1s for
a(-,t) to be the geodesic generated by exponentiating x(t). Given B(0, v,t), B(u, v, t) is uniquely
defined by the equation

V.8=0. 4.4)
*In configuration space the letter ¢ was reserved for a solution of the Euler-Lagrange equation, a letter such as f designating an arbitrary path

For simplicity here (g, p) 1s an arbitrary path, (g, ) 1s a solution of the Hamilton equation
**Set of cotangent spaces TxM for all m € M See for instance ref [23] for the defimition of bundles
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Since TX..,M 1s a linear space, the dependence of B(u, v,t) on v can be chosen to be linear:

B(u, v, t)=B(u,0,t)+ vipu, v, t)/ dv 4.5)
v=0
The Taylor expansion of the action (4.1) around the classical path can be expressed as an ordinary
Taylor expansion with respect to (u, v) € R*

o

Sey(,D=2 —(S 7)™(0,0). (4.6)

n=0

The first variation vanishes for paths satisfying the Hamilton equations. The second variation
(S < ¥)"(0,0) can, after an integration by parts, be written

(az(So?)”&(S N 6(S v))

Y ua 0,0)= f (@, p)=(1) | 20y dt “n

where z is the 2n dimensional vector (n contravariant, n covariant components)

X

and #(g,p) is a 2n X 2n first order linear operator, henceforth called the Jacobi operator in phase
space.

The second variation is a bilinear form on the space Z of vector fields z and, once again, 1t can be
used to define a gaussian w on Z. Note that Z 1s the space of vector fields z such that x(¢,) = x(t,) = 0,
no condition on y(t,) or y(t,). No conditions were imposed on y because no integration by parts were
performed on p since S does not depend on p. The uncertainty principle could not have been
formulated if the action had been a function of p!

The dual Z’ of Z is the space of 2n dimensional vector valued measure p = (u, »):

0.2)= [ duato+ [ dr o

The variance W of w is the inverse, in the sense defined 1n section 1.5, of the second variation. The
covariance G of w is the elementary kernel of #(g, p) with the appropriate boundary conditions for W
to be the inverse of (S ° ¥)"(0, 0) (see below). It is sometimes convenient to write

. [GT G5
W(p, p) = (s v*) | ) [He
G Gus) \W*

where it is understood that

waGPup = f fdua(t) dus(s)G#(t, 5), etc..

T T

We shall show that G, 1s the covariance defined by the second variation of the lagrangian action
S(q) = [+ L(q(t), q(t)) dt and that G,, G*, G* are completely determined by G,. Hence the boundary
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conditions of G are the boundary conditions of G, a result which can be anticipated from the fact
that the boundary values of y do not enter eq. (4.7). It 1s more illuminating to prove these properties
first on an example. We shall sketch the general case afterwards.

Example: A free particle on a curved space

s@p)= [ [#0.a0) 5560 [p0)] a.

T

The bracket ( , ) 1s used for the duality between T,,,M and T %,,M and the parentheses (| ) are used for
the scalar product on T%,,M defined by the metric g~'. Using the properties of covariant derivatives
given in appendix B we obtain readily

(az(S°i)+az(So~7) 3%(S > 7)

2 -
o L9 (S°%)

v du ou dv ov*

)0

= [at[ - RO+ 0,70 - @ -0 0] @

T

and the Jacobi equation*

1 €S a5 b4 Y
—ERiﬁvgﬂ DePs -6V, h ()

I
e

F(q, pk(t) = (4.9)

a 1 a
85V, —8 || W
This system of coupled equations is readily shown to be equivalent to the equation of geodetic
deviation:
Vih* + R ,q°h"¢° = 0. (4.10)

The components G,, G,, G’, G* of the elementary kernel G satisfy two systems of two coupled vector
valued equations:

F£:(q, p)G(r, 5) = 16, (4.11)
By elimination and substitution these equations can be reexpressed as follows:

—m*V.G(r, 5)= 887 R e, ppsGT™(1, 5) = mg™"8,(r),

GX(r,s)=mg,,V,GT'(r,s),  G3.(r,s)=mg, V.G, s), (4.12)

Gonll, ) = M*8ar80sV, VG121, §) — mg,.,.8,(r).

Thus G, is an elementary kernel of the equation of geodetic deviation and the three other functions
G’, G,, G* are fully determined** by and readily obtained from G,. For instance let G, be the

*As before we give a distinctive label to a Jacobi field, here k = (h, J)

**Note that for a free particle in flat space G,q(r, 5)=0 and Gg(r, s) 1s not uniquely determined by G*¥ from the first set of equations It is
uniquely determmed if one treats the flat space solutions as the hmut of the curved space solutions, or iIf one uses the symmetry properties of the
covariance Gg(r, )= Gi(s, r)
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covartance over the space X of vector fields x vanishing on the boundary (eq. B14), then, abbreviating
g(g(r)) to g(r), we obtain
G*(r, 5) = mg(r)(8(s = NK(r, t. )M (ta, ts)J (ty, 5) = 0(r = )K(r, o) M(tp, )] (£, ).
G, is obtained from G* by the symmetry relation G2(r, s) = G5(s, r).
GU(r, s) = m*g(r)(8(s - NK(r, t.)M (1, t,)K (8, 5)
= 0(r — $)K(r, t,)M(ty, t.)K(t,, 5))g(s) — mg(r)d(r — s).

Example. Wiener covariances in phase space. The Wiener covariances 1n phase space are the Green
functions of the Jacobi operator

san=(y )

$(q,p), like #(G), is obtained from the action of a free particle of mass 1. We record below the
covariances for the action of a free particle of mass m. One must remember to set m = 1 when using
the Wiener covariances.

(s — r)(r—t,)(t. — 1) '(ty — §) —m(8(s — r)(r—t)(t. — tp) "'
—0(r—s)(r—ty)(ts — 1) '(ta — 5) —0(r—s)(t—t,)(t, — 1)1
G(r,s)= 4.13)
m(0(s ~ r)(t, — )" (6, — 5) m*(ty — )" ’
- O(r— s)(tb - ta)_l(ta - S))
(0(s — )ty — )+ 0(r—s)ts— 1) —mb(s— r))

G+(r’ S) = ’

—mo(r—s) 0
G(r.5) = (O(S -, =+ 0(r—s)t.—s) —mé(r— s)>. 4.14)

—ml(s—r) 0

We now return to the calculation of the second variation in the general case. It remains simple if
one uses covariant derivatives throughout. The hamiltonian H is a function of scalars. Since V,8 =0,
V.V.a =0 and 4°B/dv* = 0, the variations of H come automatically in their desired form as multilinear
forms of x and y. 3H/du is a linear form of da/du, and 3H/dv is a linear form of 3B/dv which we shall
write

oH/ou = (DH|da, dafdu), and dH/dv ={aB/dv, DH|/IB)

These expressions define uniquely DH/da and DH/aB. It is convenient to define similarly D*H/da?,
D’H/adp, etc. . .. by

2 2 2 2 D*H/da* D*Hljad dafdu
%+6H+6H+a——f§=(aa/au,aﬁlav)( foa MB).( )

dvou  uov v D’H/3Béa D*HJap*> ) \aBlov

When the Legendre matrix A.g(t) = 32L/3q°(t)3¢°(t) is nonsingular, > H/apap = A~\(¢).
Set R(p) the matrix defined by R.s(p) = R2,s8”Peps. The covariance is given by the coupled
equations

(—R(p) - D*H/ 3paq)(r)Gi(r, s) — (V, + D*H| aqap Xr)G>(r, s) = 8,(r) (4.152)
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(V, — D?H|apag)(r)G,(r, s)— (8°H| 3pap)(r)G*(r, s) = 0 (4.15b)
(=R(p)— D*H/3qaq)(r)Gx(r, s)— (V, + D*H/dqap Xr)G*(r, s) =0 (4.15¢)
(V. — D’H|apaq)(r)Gur, s)— (8*H|apap)(r)G*(r, s) = 8,(r). (4.15d)

Equation (4.15b) can be solved for G* in terms of G,. Then this expression for G is substituted into
(4.15a) giving a differential equation for G, which can be shown to be the Jacobi equation of the
Lagrangian formulation. The symmetry property G*(r, s) = Gy(s, r) is used to determine G, in terms of
G,. Finally one uses eq (4.15d) to obtain G* in terms of G,.

We shall label G., G the covariances of the gaussians on the spaces Z., Z of paths z=(x, y)
defined by the following conditions:

Z.: x(t,)=0 no restrictions on x(¢,), y(t,), y(¢)
Z_: x(t,)=0 no restrictions on x(£,), y(t,), y(&)
Z: x(t,)=x(t)=0 no restrictions on y(t.), y(t,).

The fact that the set of eqs. (4.15) define covariances whose G, component is the covariance in
configuration space has been proved by Bryce DeWitt for the covariances G on Z (Feynman-Green
function) using a different approach. Mizrahi [109] has worked out the covariances of the gaussian
prodistributions for arbitrary time dependent quadratic hamiltonians.

4.3. Normalization in phase space

Let w, on Z, be the normalized gaussian of covariance G., the Leray-related gaussian w on Z is
normalized to

w(Z) = f 5(ux(£.)) dw. (2).
Z;

w(Z) is a cylindrical integral and can be expressed as an integral over R*” where 7 is the dimension of
the configuration space. Indeed let P:Z, >R by u®=(85,x), v, = (8, y) for an arbitrary t# t,,
then

w(Z) = f w"8(u) du doQai) "(det W) expGiW ' (u, v)(u, v))
R2n
where %' is the inverse of
Gl+(ta9 ta) GZ+(ta’ 0)
Gii(e, ta) Giaﬁ(oy 0)

and % '(u, v)(u, v) the bilinear form constructed with %' Since

8(u) exp3i W '(u, v)(u, v)} = (u) exp{HiGT2(ts, 1.)v.v/det W}

we obtain

w(Z) = Qumip®) "*(det G(t,, 1)) (4.16)
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Lemma. The normalization® of w on Z is equal to the normalization of the corresponding gaussian
on X (i.e. gaussian on X Leray-related to the gaussian on X, of covariance G,,)

Note that the integrations on p-space and g-space cannot be performed independently of one
another. Here the integrand did not depend on y, nevertheless we had to integrate with respect to y
and this was accomplished via the matrix %' which couples the x and the y integration. In the papers
on phase space path integration based on Feynman’s original definition, one often reads the prescription
“perform the ‘p’ integration before the ‘q’ integration”. This procedure introduces undefined terms
proportional to 8(0) which are erther discarded or shown to cancel other undefined terms.

4.4. Physical interpretation of the covariance in phase space
Proceeding as in the previous section, we can show that

w’ f x(£)x(s) dw(z)/w(Z) =14G(t, s)Im

z

w’ f x(1)y(s) dw(2)w(Z) = ihG(t, s)|m =ihG (s, )| m.

w? [ y(s) dwi2m(2) = 6, s)im.

Note that G, and G’ are discontinuous at f=s Theirr discontinuity is a manifestation of the
uncertainty principle. For instance let S be a free particle: then

f [q°(s)pa(s) — 4 (s Ipa()] dw(2)/w(Z) = 1hS%

G* is continuous at r = s. For a free particle Gaa(r. 5) = g.6/(t» — t.): it does not depend on r or s.

4.5. The Liouville measure

It has often been conjectured that the “measure” for phase space path integration is an ‘“infimte
dimensional Liouville measure”. We shall compute the propagator ¥(B; A) for a free particle 1n flat
space and give a precise meaning to this conjecture:

H(B; A)=exp{iS(q, p)/h}H]

I= f dw . (2)8(ux(t.))

*In ref [41) the gaussians on X. are not normalized to 1, the normalization of w(Z) 1s modified accordingly At one time, 1t had seemed
simpler to choose the normalization of the gaussians on X. such that 1t absorbs the determinants introduced by the Cameron-Martin formula The
derivations presented here start from first principles and lead via product integrals and the Feynman-~Kac formula to gaussians on X.. normalized

to umty
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where w, is the gaussian on Z, of covariance G, given by eq. (4.14).
Let us consider a particle at rest at the origin, g(t) = 0, p(¢) = 0, then S(q, p) =0, ux = q and puy = p.
Lett,=to<t,+ <ty =t, and t, < O < t,.,. Let P:Z, >R***" by

= (uk x) = (8 8 X) = Xt — x(B) =x*" = x
with x{t,) arbitrary and x(¢,) = 0. Let
U = <Vk’ Y) = <60v y) = y(ak) = Yk.

Since p is discontinuous at the partition times f,, 8, has been chosen so that p is evaluated at points 6,
where it is continuous. Regardless of how fine the division is, there will always be a point 6, between
two points #., and f,. Under the mapping P,

I= f 8(ux®) [T (@)™ du* dog)det W) exp (W (u, v)(u, )}
2p+1 k=0

where

_ Wl([.l,',l.bj) WZ(FL" V})
W= (W3(V,, p)y Wi, V,))

WI(“k, #’k) = tk+1 - tk’ WZ(,‘L"’ Vk) = W3(Vk’ M’k) =m.

All the other components vanish and the matrix is easy to invert:

Lj=1,...p+1

- 1, ks
7w 0w, 0) = B = XY= 5t~ 0
=1 2" - gpe = Qm) (b — 1P,

k[[ (Qmi) ™" du* do)(det W)= kﬂo dq" dpu/h
=0 =

and*

1= | @ [ " ok expy B (@ - a0~ gyt~ 09D

Note that dg* dp, = dq(t) dp(6:) with t, < 6. dg* dpi/h is a “directed” Liouville measure when #
tends to 6 from below. If we had worked with the space Z_ of vector fields characterized by
x(t,) = 0, no other restrictions, we would have been led to a directed Liouville measure which tends to
the Liouville measure when ¢, tends to 6, from above [e.g. 41]. In conclusion, the propagator for a
free particle at rest at the origin is

¥(B: A)= ll)li‘lg]e j 8(g% kH (dg* dp/h) exp%z (g - q")pw ‘%n—(tk-n - L)pD) = j dw(z).
R2P+D =0 P

4.17)

*In the previous line 1 from the determinant combine with 1 explicitly written to give a real quantity
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We have established

Proposition. The “infinite directed Liouville measure from below”

14
=°°kl:[ (dq* dp«/h) multiplied by expy f (pq mP )dt

is the normalized prodistribution w, on Z. of covariance G, (eq. 4.14) obtained from the Wiener
prodistribution w,. on X, (example 5, p. 264). A similar proposition holds for the directed Liouville
measure ‘“‘from above”.

4.6. Path integration in phase space

We shall proceed* as in sections 3.2 and 3.4, and treat only the flat case. Now the Feynman-Kac
formula reads

X(B; A)= j dw¥(z) exp {;;l; f V(b + ux(t), muy(t)) dt}S(b + ux(t,)— a).

Let (g, p) be the classical path such that

3*()=g"pa(t)Im + aVIap™(t),  pult)=-3VI3q"(t), G(t.)=a, q(t,)=b
Make the change of variable

b+ux=q+upX, muy=p+muY,

Then (y, x)—(y | y)/2 becomes (5, §)— (5 | )I2m)/h + (plmu, X)+ n (Y, aVIap) +(Y, X)— (Y | Y).
The first two terms will contribute to the classical action, the last two terms will be “included” in the
new gaussian w%(Z) where Z = (X, Y). Integrate by parts:

[ taimu, %)t =~ e imu, X0 +;‘; [ wviaun, xwpar

Expand V(G + uX,p+ muY) in powers of u:
V(G +pX, p +muY) = V(g §)+ p(aVIdg)X + um(3VI9p)Y + p*V (G, P)ZZ + u’Q(§, uX)

where
v v v , *V
V(q, p)2Z = 330 X*Xf+ — XY+ Y. X?+ —Y,Ys.
@) 7 " 93" ops " p.0a"° ™ Speop, Lo Ye

It is assumed that the third derivatives of V(q, p) do not depend on p. Then

*A munor change of notation 1s introduced, whereas in section 3 2 the first step 1s a change of variable b + uy—> g + ux here the first step 1s a
change of variable (b + ux—> g+ uX, muy>p+muY)
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#(B; 4) = exofis(@ o} [ awr@exo{ - [ arnviaw, przizo
Z: r

+0(q(1), uX(t))]}B(MX(ta))-

By an argument similar to the one developed in section 1.5 one can make a linear change of variable
of integration such that the covariance of the new gaussian w, is the Green function of the Jacobi
operator satisfying the boundary conditions appropriate to Z,. This change of variable of integration
introduces a determinant which can be shown to be equal to (det K(t,t,)/det K(t,,t,))""” as
before (eq. 1.17). Finally one can introduce the gaussian w on Z, Leray related to w, on Z,. Its
normalization has been computed in section 4.3 and found equal to the normalization of the
corresponding gaussian in configuration space. Then

H(B; A) = Honcs(B; ) [ exp {72 [ 000, uX(0) 8t} aw2iw(2)
z T

Hwin(B; A) = exp{iS(q, p) AN m/2mih)"*(det M(t,, 1.))'"”.

It has been shown in sections 4.3 and 4.5 how to carry on integrals over Z. Here nothing has been
gained by working in phase space. We shall see in the next section, however, that, for bound systems,
it is preferable to work in phase space than in configuration space.

5. Bound states, stable and unstable

5.1. Introduction

Some insight in the path integral formalism is gained by examining it in the broader context of
dynamical systems. Indeed the role played by classical paths in the study of quantum systems is
analogous to the role played by equilibrium points in the study of classical dynamical systems:
Consider a classical dynamical system dx(¢)/d¢ = f(x(¢)), for example

{dq(t)/dt = p(t) q:T-M
do(t)/dt = —grad V(q(t)).

An equilibrium point x, of the system is a particular “motion” of the system which satisfies f(x,) = 0.
The nature of an equilibrium point is determined by the longtime behavior of the nearby motions.
This, in turn, is determined to a great extent* by the nature of the eigenvalues of the derivative f'(xo)
of f at the equilibrium point x,, complex or real with positive or negative real parts [e.g. 68, p. 92-97]. In the
given example the equilibrium point (go€ M, v, is a critical point of the potential function V,
grad V(qo) = 0. Its nature and the longtime behavior of nearby motions are determined by the hessian
- 93°V]aq5dqs of V at g, € M.

The path integral formalism of quantum physics has brought out a similar pattern. Consider the
quantum dynamical system

p(x, t)/at = ~iHy(x, t)[h 5.2)

5.1

*See for instance ref [143) p 412, the effects of the higher order dertvatives
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corresponding to the classical system given above. Consider the classical flow €,: M —> M given by
ar— q(t, a, v,). It has been shown (p. 299) that in the limit # = 0 the probability of finding in 2 C M at
time ¢ the system, known to be in €' at time f,, is unity. Thus in the limit 4 = 0, the probability of
finding the system at b € M at time ¢, is peaked along the classical path q(t, a, v,) such that
q(ty, a, v,) = b. The classical path q can be considered as an “equilibrium point” in the space of paths
going from (a, t,) to (b, t,), reached by the system when S(f)/A tends to infinity. g is the critical point
of the action S’(q)=0 and the qualitative features of the quantum system whose limit is q are
determined by the second variation of the action S"(q)xx.

In this section we shall investigate the quantum systems whose limit q is a periodic orbit. The
presence and the qualitative features of other classical periodic and quasi-periodic orbits in the
neighborhood of a chosen periodic orbit 1s felt by the quantum system and many of its properties can
be obtained from the properties of the neighboring families of classical orbits.

The relation between the periodic orbits of a classical system and the energy levels of the
corresponding quantum system was first discovered [e.g. 147, p. 6, 7] by Einstein, Bohr and Sommer-
feld. The extent to which the ““Old Quantum Theory” was successful is magnificently preserved by Born’s
book, the Mechanics of the Atom, whose preface to the German edition begins by these words: “The title
Atommechanik given to these lectures which I delivered in Gottingen during the session 1923-24 was
chosen to correspond to the designation Himmelsmechanik . . . I have called the present book ‘Vol. I’; the
second volume is to contain a closer approximation to the ‘final’ mechanics of the atom. I know that the
promise of such a second volume is bold, for at present we have only a few hazy indications as to the
departures which must be made from the classical mechanics to explain atomic phenomena.” The year
was 1924. When the second volume [12] appeared the birth of Quantum Mechanics had relegated the
Mechanics of the Atom to a work of historical interest.

Much later Keller (1958) [79] obtained a generalization of the Bohr-Sommerfeld quantum condition
by requiring the wave function to be single valued, and Gutzwiller (1971) in trail blazing articles [64;
65, p. 351] introduced the Morse index and the characteristic exponents of celestial mechanics in the
WKB quantizations. But he made some unwarranted simplifications and his final expression 1s not
correct. Voros [142] obtained the correct result by an entirely different approach using geometric
quantization and the Maslov method. Miller [104] showed how the Gutzwiller procedure should be
corrected to obtain the right formula for systems with classical periodic orbits.

The path integral formalism of quantum mechanics incorporates naturally the characteristic
exponents and the Morse index in the determination of the bound state energy spectrum and provides
a simple proof of the Gutzwiller-Voros result. Dashen, Hasslacher and Neveu [33] derived similar
formulae in model field theories. Conjectures they made for systems with n degrees of freedom
are justified and factors left undetermined in their expressions are obtained explicitly.

We first turn to Poincaré to learn the properties of families of stationary paths (i.e. solutions of
Hamilton’s equations) in the neighborhood of a periodic orbit. Some new results (lemmas 1,2, 3 and 4)
of interest for path integration are direct applications of Poincaré’s work.

5.2. Characteristic exponents, alias stability angles

The Jacobi fields along periodic orbits have been analyzed by Poincaré in a beautiful chapter* of
“Les Méthodes Nouvelles de la Mécanique Céleste”. The Jacobi equation defined by equations (4.7),

*“Les exposants caractéristiques” {120, p 176] See also ref [143] p 397 and ref [103]
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(4.9) and (4.15)

—-3*Hl3G°G"®  —V,— 3°H|3G%op,\ (h*(t)
f(é,ﬁ)k(t)=( o ‘*)( >=0 (5.3)

V.- 3*H|op.0G®  —3’H|3p.ops Js(2)

is written by Poincaré 1n the following form

. (v, 0 N ~0>H|9p.0p® —0°H|3p.ops (h‘“(t)
(Vil = (G, p)k(1) = 0 Vv, 3*H[33°0q®  9°HI3@3ps ) \Js(2) =0 G4

which defines #(4, p).

Let G be the Green functions of #(g, p) and Gy be the Green functions of (V.1 — (g, p)), then

G = 1 G?. _ Gz _Gl
- 3Gt © Gx= G -G° ) (53)

The systems (5.3) or (5.4) of 2n first order linear coupled differential equations with periodic
coefficients of period = admits mn general [120, p. 67] 2n linearly independent solutions of the form

ke (1) = explant)Si(t), k==x1,...%n (5.6)

where the functions {Sc(f)} are periodic in ¢ with period 7 and the o, are 2n constants called the
characteristic exponents or the stability angles.

If two characteristic exponents are equal, say a, = a_,, then
ki(t) = exp(a£)Si(t)

k_,(t) = exp(a.,t)(tS,(t) + T(¢)), S, and T periodic of period 7, ¢.7)

are solutions of the Jacobi equation. Similarly if n exponents are equal the corresponding solutions of
the Jacobi equation are of the form exp(at) multiplied by polynomials in ¢ with periodic coefficients.
k, 1s called a fundamental solution of first kind, the polynomial solutions such as k_, are called
fundamental solutions of second kind.

Poincaré called stable a solution (g, ) such that all its Jacobi fields are bounded [[k(¢)| <. The
Poincaré stability is also called linear stability because equations (5.3) or (5.4) are the equations of a
linear flow.

Poincaré Stability Lemma. A solution is linearly stable if and only if all its characteristic exponents
are purely imaginary.

If some a, have a real part ||k(¢)| tends to infinity for either ¢t =+ or t=—. Future [past]
stability is possible only if Re o, <0 [if Re ax =0]. We shall see later that characteristic exponents
come in pairs (a, and its complex conjugate &) and (a, —a). It follows that the future and the past
stability conditions become identical, namely a solution is stable if and only if {Re o, = O0forall k}. [ ]

Under a small perturbation, a stable periodic orbit becomes quasiperiodic, its characteristic
exponents being the normal modes of oscillation about the periodic orbit.
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The Poincaré map, also called the fundamental matrix, 1s the 2n X 2n matrix R(7) defined by
k(t+1)=R(D)k(®). 5.8
It gives the deviation from a periodic orbit (g, p) after a period has elapsed.
Lemma. The eigenvalues of the Poincaré map are {exp ayr:k ==+1,. .,+n}. The fundamental
solutions of first kind of the Jacobi equation are eigenfunctions of the Poincaré map.
Proof. The fundamental solutions of first kind satisfy the equation
ki(t + 1) = expla;7)ki(t). [
The eigenvalues of the Poincaré map are often called the characteristic roots or the characteristic
multipliers of the solution (g, p). Note that fundamental solutions of second kind are not eigenfunctions.

Lemma The Poincaré map is volume preserving.

Proof. Since R(r) is real, the characteristic exponents come in pairs (ay, @;). Poincaré has proved
(120, p. 193] that for a hamiltonian system they come also in pairs (a, —ax). This property follows
after some arguments from the fact that 2,_; h%(£)ji.(?) — jua ()R (t) = constant « exp(ay + ay)t.
2 o, =0 implies det R(7) = 1, hence the Poincaré map 1s volume preserving. |

Remark. When « vanishes, a pair of characteristic exponents vanish and one (only one) of the two
corresponding fundamental solutions 1s periodic.

Lemma 1. The eigenvalues of [, #(d(s), p(s)) ds are {a.7} where {a\} are the characteristic exponents
of the solution (g, p).

Proof. Tt follows from eq. (5.4) and from the definition of the Poincaré map that

ta+t

k(t +t,) = [ exp{#(d(s), p(s)) ds}k(t.) (5.9)
R(r) = I;Iexp #(d(s), 5(s)) ds (5.10)
V.R(r) = #(d(r), F)R(), G5.11)

Let all the exponents be distinct, then (g, p) can be dlagonallzed by a similarity transformation.
Set# the diagonal form of ¥ and R(r) the product integral of %,

R(r)=exp f H(d(s), p(s)) ds. 5 12)

The proof when all the exponents are not distinct is more elaborate. ]
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Lemma* 2. The eigenfunctions and eigenvalues of V,1- ¥(g, p) are

Ui, (1) = ki (t) exp(—apt + 2mivt[r), k==*1,...%n, v==1,%2,...

A = —ap +27iv/T

(5.13)

where k, are the fundamental solutions of (V.1 — #(q, p))ki(t) = 0 and ay are the characteristic exponents.

The null subspace of the Jacobi operator. We recall that the null subspace of the Jacobi operator
F(q) where q is a stationary path from (a, t,) to (b, t,) is spanned by the nonvanishing Jacobi fields
such that h(t,) = h(t,) = 0. The number of such linearly independent Jacobi fields is called the nullity
of the Jacobi operator. It is equal to the multiplicity of the conjugate points a and b along g - the
multiplicity being zero if a and b are not conjugate. The null subspace of the Jacobi operator
V.1 - #(q, p) where (g, p) is a periodic orbit of period r will play the same role in the study of bound
states as the null subspace of #(§) in scattering states. The periodic orbits, like the conjugate points,
are not generic. But their importances far outweigh their numbers: Without conjugate points, many
optical instruments could not be built, and without periodic orbits many bound states would not exist.

Lemma 3. The nullity of V.1- ¥(q,p) and of $(q,p) is equal to the number of periodic Jacobi
fields.

Proof. The equations (V,1- (g, p))¢n.(t)=0 and $(q, p).(t)=0 have the same solutions,
namely t,(t) = ki(t) where k() are the fundamental solutions which correspond to zero charac-
teristic exponents since A, = 0 implies a,r = 27iv. [ ]

Properties of the characteristic exponents for systems which possess constants of integration**

F(g(t), p(t) = constant, j=1,...p<2n

Theorem. If a system admits p constants of integration and if all Poisson brackets [F,, F,] =0, then
either 2p characteristic exponents vanish
or the (p X 2n) matrix (3F,/3q°(t), dF,/ap.(t)) is of rank less than p.

Proof: First a quick proof for time independent hamiltonians. If (§(t), p(¢)) is a solution so is
(4(t + to), p(t+1to)), hence (h(t) = 3q(t + to)ato, j(t) = p(t + to)]3ty) is a Jacobi field. Since (g, p) is
periodic so is its derivative (h, j). The Jacobi field (h, j) is a fundamental solution corresponding to a
zero characteristic exponent.

The general proof rests on the fact that if there is a constant of integration for a hamiltonisn system,
there is a corresponding constant of integration for its Jacobi fields, namely

oF, 0F, . _
6q(t)h(t)+aﬁ(t)](t) constant .

*These eigenfunctions were obtained in ref [33], p 3440, by requiring 4, (t) to be periodic

**Poincaré labels the constants of integration (intégrales du mouvement) as follows no label for the hamiltonan, 1=1, p~1 for the
remaining ones
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Hence
h(t)=aF]ap(t),  j(t)=—-3aF/3q(t) (5.14)

is a Jacobi field. It is a periodic Jacobi field, hence a, =0 There are np linearly independent pairs
(h5, j,«) solution of the system (5.14) unless the p X 2n matrix

(8F/8q°(t), aF/ap.(1))

1s of rank less than p. [ ]
See Poincaré for a discussion of the case in which all the Poisson brackets [F,, Fi] do not vanish.
Since constants of integration express conservation laws, and since conservation laws are related
via Noether’s theorem to invariance of the system under group of transformations, 1.e. to symmetries
of the system, this theorm is of great practical value as will be seen for instance (p. 342) when the
hamiltonian is a constant of the motion.

Consider a family of periodic orbits Z(¢, zo(A)) which can be parametrized by their periods 7(A) Let
Z(t + 1(A), zo(A)) = Z(t, zo(A))
2(0, zo(1)) = zo(A)
2(-, 2o(0)) = (4, p).

There is an interesting relationship, given by the following lemma, between the variation of the mitial
point dzo(A)/d7(A)|,-0 and the velocity along the basic orbit at the mitial time.

Broucke Lemma*

(1 - R(r(0) dzo(A)/dr(A) | = 9z(t, 2o(0))/ 3t (5.15)

t=0

Proof. Expand Z(t + 7(X), zo(A)) in powers 7(A) — 7(0) and 24(A) — zo(0), set £ = 0:

2(7(A), 20(A)) = Z(7(0), zo(0)) + (r(A) — 7(0))Z] 61| +(2o(A) — 26(0)) 92/ 8zo(0) + -

Since {92°/3z5(0); B fixed, a = 1,...2n} is a Jacobi field along (g, p) and since R 1s a matrix whose
columns are the Jacobi fields along (g, p),

(26(A) = 2o(0))1 - R) = ((A) — 7(0))azt/at| o

Take the limit A =0 and the lemma is proved. n

The operator 1 ~ R(7) appears in the density of energy states (eqs. 5.37 and 5.46).

There is at least one periodic Jacobi field along a periodic orbit and the determinant of R —1
vanishes. This corresponds to the fact that any point along an orbit can be used as the mitial point z,.
Let the characteristic exponents be (0,0, a.,,...a.,), then 1 - R is either of rank 2n -1 or 2n -2
according to whether the Jordan canonical form of 1— R is nondiagonal or diagonal. It is in general
nondiagonal and there 1s a one-parameter family of periodic orbits in the neighborhood of (g, p)

*R Broucke, unpublished Lecture Notes, Department of Aerospace Science and Engineering Mechanics, University of Texas at Austin
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If there is more than one pair of vanishing characteristic exponents there is in general more than
one one-parameter family of periodic orbits. Thus the characteristic exponents of a periodic solution are
important because they give information not only on the stability of the orbit but also on the structure
of the manifold of periodic solutions. Broucke has made numerical experiments with eq. (5.15) and
has discovered bifurcation points for the families of solutions of the spring-pendulum system.

Other properties of the characteristic exponents and their explicit calculation for the three body
problem have been developed by Poincaré and can be found in treatises of Celestial Mechanics and
Analytical Dynamics.*

The characteristic exponents have been called “the dynamical generalization of the normal mode
frequencies” [104, p. 998]. Indeed, the role played by classical closed periodic orbits is analogous to
the role played by equilibrium points in the study of classical dynamical systems.** Consider a
classical dynamical system whose time evolution is governed by the dynamical equation dX(¢t)/dt =
f(X(¢)). For example

dq(e)/dt = v(1), dov(r)/dt = —grad V(q(?).

An equilibrium point X = (qq, vo) of the system is a particular “motion” which satisfies the equation
dX/dt = f(X)=0. The small displacements x(t)=q(t)— g, from equilibrium are obtained from a
lagrangian L = 33(mqgx"%* — k,ex“x®) whose diagonal form L =33(Q%- w2Q?2) is called the normal
form.t The normal coordinates Q, execute simple periodic motions Q,(¢) = exp(*iw,t). The normal
mode frequencies w, are the solutions of the equation det|k,s — w’m.g| = 0.

A similar pattern appears in the study of classical paths around a closed orbit (§o, po). Let (g, p) be
a nearby classical orbit; the small deviation (g — qo, P — po) is a Jacobi field. The 2n Jacobi fields along
(go, Po) form the column of the matrix R(t) whose value for ¢ = 7 is the Poincaré map (eq. (5.11)). The
diagonal form of R(¢) is obtained from eq. (5.12):

R(t)= exp [ #(als), pls) ds.

% is the diagonal form of ¥ which in the case of a particle of mass m in a potential V readstt

o 0 ~5%m "
%(Q(s), P(s)) - (3,,33V(q(s)) 0 )

If the closed orbit reduces to an equilibrium pomt (o, Po), the periodic function ¥ reduces to a
constant, and the elements of the diagonal matrix R(f) are Ry (t) = exp axt where the eigenvalues {a}
of ¥ are the solutions of the equation det|d,dsV + a’mé,s|=0. Thus when ¥ is constant, the
characteristic exponents are precisely§ the normal mode frequencies. The reader may enjoy the
portraits of families of classical paths drawn by Hirsch and Smale [68] when # is constant.
*In particular refs [143), [129] and [115]
**On page 331 we discuss the role of the classical paths in the study of quantum systems Here we discuss the role of a closed orbit in a family
of classical quasiperiodic orbits
tSee for instance ref [85) p 66, the normal mode analysis of small oscillations around an equilibrium pomnt

+1The argument applies also to a many particle system
§Modulo a factor 1 depending on conventions Here a = *1w
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5.3. Density of energy states
To set up the stage we recall [e.g. 10] briefly how the density of energy states of a bound system
p(E)= % 8(E-E,)

can be obtained from the trace of the propagator ¥(b,t,;a,t,). Consider a time independent*
hamiltonian whose discrete eigenstates can be used to form a complete** orthogonal basis for the wave
functions:

H0) = Ea®), [ $300n0dx =iy T 4u(0050) = 83 - y)

, (5.16)
$(x, 1) =2, ¢, eXp (%Et) ba().
Feynman {56, p. 88] has shown that
H(b, ty;a,t.) = 0(t) D, du(b)o%(a) exp(—iE tih)  with t=t,—t,
Assuming that it exists, let tr ¥ be the function of ¢ defined by
tr X(t) = f daH(a,ty;a,t)=0(1) E exp(—iE,t/h), S.17
M n
and let ¥ be the function of E defined by the Fourier transformt # tr ¥ of tr % as follows
Y(E) = (ih)"(F tr X)(—E[h) = (ih)"’ 2 (F6)(E. — E)/h). (5.18)

%(E) is often written formally
9(E) =@ [ d6) S expr(E - Eilh
R

This equation is meaningless because the Fourier transform of the step function cannot be defined in
the sense of function but only in the sense of distribution. If one treats %6 as a function one is forced
to introduce *ie to give meaning to otherwise meaningless expressions; if one treats %6 as a
distribution all factors are automatically and unambiguously determined. Let P stand for principal
value

9(E)=Y (P(E-E,) ' —in8(E - E,)). (5.19)

It 1s convenient sometimes to write

*To analyze the case of time dependent hamiltonians, start for instance with Poincaré [120] or with Whittaker [143) pp 386-399
**n may be a multi-index
tSee appendix C for the normalization convention To see quickly how different conventions for the Fourier transform change %@ see for
mstance the dertvation of %6 in ref [23]p 452
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YE)=S (E-E, +ie)" = (ih)" [ dt exp (E— E, +ie). (5.20)
; f

The density of energy states can thus be obtained from %(E),
p(E)="3 8(E-E,)= iw"‘((g(E)—z P(E—En)“). (5.21)

Alternatively if we introduce another function 9, defined by 4.(E +ie) =2, (E — E, +i€)”' we can
write

p(E) = (-2im) "(9.(E + ie) — Y.(E —i€)). (5.22)

If the operation Fourier transform and trace commute, then it is convenient to compute first the
Fourier transform of (b, t, +t; a, t,). Formally*

Wb, a, E) = (i) f dt expGEHR)H(b, 1, +1; a, 1), (5.23)
R

The WKB approximation of 4(b, a, E) is

bwia(b, a, E) = (ih)™ f dt exp(iEt/R)(2mih)™™?
R

x S |det 425/ab"a"| " exp%(g,(b, t.+1;a,t,)— haJd) (5.24)
]

where the sum over j is the sum over all stationary paths g, from (a, t,) to (b, ¢, + t), A, is the Morse
index of G, S,(b,t. +¢;a,t,) is the integral of the lagrangian for . It is consistent with the WKB
approximation to compute (5.24) by the stationary phase method. Let r be the value of ¢ that
minimizes the exponent in (5.24), i.e. let 7 be the function of b, a and E solution of

aS(b, t, +t; a,1,)dt _+E=0 (5.25)
then

Ywkn(b, a, E) = 2xQ2wih) """ ¥ |Dw (b, a, E)|'"* exp%(W,(b, a, E)- h(A, +p,)/4) (5.26)
where '

Wi(b, 4, E) = §(b, 1.+ (b, 0, E); 0, t)+ Bi(b, 0, B) = [ p(a(s), B dg°(s) (527)

9
the integral being evaluated along the classical path ¢ from a to b traversed in time 7(b, g, E),

2Wlda*ob® a’W/w"aE)

Dw(b,a,E)= det(a (5.28)

9*W/sEsb  3°W/oE>
p, are the number of “turning points” [e.g. 87, p. 158] or “libration points” [147, p. 49] defined below.

*The correct meaning 1s as given by eq (5 18)
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Proof of eq. (5.26). Since (5.26) 1s the stationary phase value of (5.25)

Dy/(b, a, E) = det(3’S(b, t, +t; a, 1) 3b*3a"}(3*S(b, t, + t; a, t.)] o) ! v (5.29)
It follows from egs. (5.27) and (5.25) that

dWIIE = ((65/37)+ E) 97/0E + T

dW(b, a, E)/3E = 7(b, a, E).
It follows from eqs. (5.30) and (5.25) that 8> W/aE” = 37/3E and (9°S/87%)37/0E + 1 = 0, hence

3°S(b, 1.+ 7(b, a, E); a, 1)/ 97" = —(3°W(b, a, E)|9E") " (5.31)

Let b’ be a point on § between a and b, %wxs(b', a, E) loses a phase equal to 17/2 each time
a*W(b',a, E)JdE* changes sign (p. 319). a’W(b',a,E)/3E’> changes sign each time
(8°W(b, a, E)/dE*)"" vanishes, i.e. at the so-called turning points or libration points. For example, [e.g.
87, p. 142], let the system be a particle of mass m in a potential V

(5.30)

Wb, a, E) =+ j @m(E - V(@(s)) " daes)|

(QzW/aEZ)_l vanishes when V(g(s)) = E. Finally we have to compute the other second derivatives of
W(b, a, E) using eqgs. (527) and (5.25):

’W _ S °Sar_ S S 9S /4°S

dbda aboa  dtéadb obda d7dadbar/ I’

’W _Set W _ 'S a7

dEda 97dadE’ dEab 47ab dE’

Hence

PSS _W_3W W JIW
dbda ~ dbda 0Eda dEab/ OE°

and 1t follows, after some easy algebraic manipulations, that eq. (5.29) 1s equal to (5.28). m

Equation (5.26) suggests that there exists a path integral representation of 4(b, a, E). We shall
return to this point in section 5.5.

A deeper insight into the phase gain of the action at a turning point can be obtained by examining
[83] the following example: Consider the reflection of a particle of mass m by the potential
V(x) = E(xo/x)*. The equation of motion of the particle is x(¢) = (x; + 2Et*/m)"*. The particle reaches
a minimum distance x, from the origin at time ¢ = 0. Its total energy 1s E. The action along the path
from a to b which bounces off the potential barrier is

S(b, ty;a,t.)=m(b+a)(t,—t.) ' —2E f A+ @’ 'de, At =x,2m/E)"”

ta
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As the potential is made increasingly more abrupt, the action tends to

li"h S(b, t,;a,t,)=m(b+a)(t, —t,)"' — nEAt.

Xo=

At can be considered as the ‘‘time of interaction’ and according to the uncertainty principle EAt > h.
Roughly speaking the action is equal to the sum of the action of a free particle from a to x, =0, then
from x, to b, plus a contribution at the turning point due to the fact that we cannot measure
simultaneously with infinite precision the energy of the system and the time of interaction. This
argument should of course be taken with a grain of salt since the Einstein relation AE = h4v, together
with the purely classical relation Av At « 1, 1s not a Heisenberg uncertainty relation [e.g. 18].

To complete the calculation of the density of states, we need to compute

YE)= f 4b=a,a,E)da (5.32)

whose WKB approximation can be evaluated like (5.24) by the stationary phase approximation. Let
a* be the value of a that minimizes the exponent in eq. (5.26):

*

0=(dW(b, a, E)|da + aW(b, a, E)/ab) __=—pula* E)+ pai(a*, E) (5.33)

=a

pw and pg, are the initial and final momenta of the stationary path which starts at a* and ends up at
a*. A closed stationary path which satisfies eq. (5.33) is a periodic orbit. Hence periodic orbits if they
exist are the only closed stationary paths which contribute to 4wxe(E).

5.4. Systems with classical periodic orbits

The calculation of $wxg(E) requires the evaluation of the action W(E) = W(a*, a*, E) and of the
hessian of the action W(b, a, E) at a = b = a* which 1s related to the Poincaré map R(7) by some
pretty formulae: The Jacob: fields k = (h, j) can be obtained by varation through stationary paths,
thus to first order in (A, )

p(ta) +j(t)=~aW(b + h(ty), a + h(t,), E)éa
p(ty) + j(t) = IW (b + h(ty), a + h(t.), E)/ab

hence
oo FW e W Lo W L, W 4
]a(ta)_ abaaaah (tb) aaaaaah (ta)’ .’a(tb)'_ abﬁabah (tb)+aaBabah (ta)- (5-34)

If now a = b = a*, the system (5.34) of 2n linear equations can be rewritten in the form

h*(t, + he(t,
PN R () (5.39)
Ja(ta +17) Ja(ta)

If (5.34) were invertible, comparison of (5.34) and (5.35) would yield

— det(3*W/ab*3a®)

=detR(r)=1 (5.36)

a=b=a*
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3b°9b° * 3b3a® | 3a"3b° ' 9a° 9a® = det(R(r) ~1) (5.37)
Equations (5.36) and (5.37) are easily checked in one dimension, the proof is a more involved piece of
linear algebra for systems with more than one degree of freedom. We shall show that (5.34) 1s not
invertible, but the hessian of the action can be block diagonalized into a vanishing matrix and a
non-vanishing matrix and equations (5.36) and (5.37) become

d (aZW W FXa % aZW)
et

a=b=a*

—det 3>W/9b9a" =det R(r)= 1 (5.38)

a=b=a*

~( ’W P>wW P>w *>wW
+ +

det(ab“ab? 3b°9a® " saab® | aa“aaﬁ)

= det(R(r) - 1) (5.39)

a=b=a*

where det means the determinant of the nonvanishing matrix.
Equation (5.34) is not invertible because the system has at least one constant of the motion, namely
the hamiltonian. Indeed take the derivatives of the two Hamilton-Jacob: equations

H(-dW(b, a, E){da,a)=E, H(3W(b,a, E)/db,b)=E (5.40)
with respect to b and a® and use Hamilton’s equations
i W a W
7B - _ =B = -
(t“)W 0, q (ta)W Pa(ta) =0,

: 3>wW 3w
=B — =B - A —_
q (tb)aaaaba - 0, q (tb)abaabE pa(tb) 0

It follows that the determinants on the left hand side of (5.36) and (S.§7) vanish. Choose an atlas* on
M such that in every coordinate patch the components of g(t) are (|g(¢),0, .. .0) then

3’W/ob“0a' = 9*W/da“ab' =0 (5.41)
*Wlaa“sa' = —p.(t)dt)l,  a*Wiab*ab' = p.(t,)G(ts). (5 42)

On the other hand because the hamiltonian 1s a constant of the motion, there is at least one periodic
Jacobi field, namely (g, p), and one pair of vanishing characteristic exponents. Set k, = (g, p), then
a,=a_,;=0. If there are no other constants of integration egs. (5.38) and (5.39) are satisfied with the
determinants being taken with respect to a, 8 =2,...n in the chosen system of coordinates, or with
respect to the nonvanishing characteristic exponents.

If there are j > 1 constants of the motion

E(4(t), p(t)) = constant j'=1,...j

then there are j periodic Jacobi fields given by equation (5.14) and j pairs of vanishing characteristic
exponents. Choose an atlas on M such that in every coordinate patch h’(f) has only one nonvanishing
component along the j'-axis equal to its norm. By an argument similar to the previous one we see that
eqs. (5.38) and (5.39) are satisfied with the determinants taken with respectto a, 8 =j+1,...n or with
respect to the nonvanishing characteristic exponents.

*If this requires a change of coordinate system, see for instance ref [23] p 149 how to construct the coordinate system such that a given field
has only one nonvamishing component
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We shall complete the calculation of %wxs(E) assuming that the hamiltonian is the only constant of
the motion.* We assume also that the characteristic exponents are all distinct and different from 2#/ir
(mod 47/i7). The elements of the null subspace of the Jacobi operator have components only along
(q(t), p(H)). In the chosen system of coordinates, the integration over da’...da" is readily obtained
by the stationary phase approximation, the integration over da' = da* has to be done explicitly.

We first evaluate Dy (a*, a*, E). Take the derivatives of (5.40) with respect to E and use
Hamilton’s equations. It gives in the chosen system of coordinates o°W/dEab'=|G(t,)| ",
9°Wlaa'aE = —||g(t,)|". It follows from eqs. (5.28) and (5.41) that

Dw(b, a, E)=—||G(t)|"* det 3*W (b, a, E)/ab'3a*  with jk=2,...n (5.43)
which together with (5.38) gives
Dw(a*, a*, E) = 4(t)|”

where ¢ is the time such that §(t) = a*.
The integration over da’...da" introduces the following factors (see eq. (5.39))

Qrik) """} det(R() - 1)) " exp(~ikm/[2) (5.44)

where k is the number of negative eigenvalues of R(r)—1. It will be convenient to reexpress the
determinant as follows.

Jgt(R(r) -1)= klz—:!z (explaxr)— 1) = }1 4 sin’ ia,7/2
(@ER() = D)= T 3 explms+Daur

= 20 > expkzz(mk+%)ak'r. (5.45)

=0 my=0

The integration over da' reduces to §, [|G(t)|”" da* = r whether the periodic motion is a rotation or a
libration [e.g. 12]. Finally

Swca(B)= ()" 3 rJdei(R(r)~ DI exp (% W.(E)~ h(), +p, + k,)/4) (5.46)
Porbits.
Ywin(E) = (ih)™" 20; 7,(E) 2;0 ey exp-hi- W(E, m,...m,) (5.47)
orbits n=0
where
W,(E, ms...m) = W,(E)— h((A, +p, + k)4 i éﬁz (my +Dex(E)1(E)27). (5.48)

The sum over the periodic orbits consists of an infinite sum over the multiple traverses of a basic orbit
and a finite sum over basic orbits. Recall that in eq. (5.47), 7,(E) came from [y, 4(b=a,a,E)da,i.e.
from an integral over the configuration space, whereas W,(E) came from a time integral

*For the use of collective coordinate methods when a system has continuous symmetries see refs [61] and [63]
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T «p, @)~ H(q, p)) dt, hence

Gws(E) = (i) D 1,(E) 2 2= z= W”vi/ (E, my, ... m,)

basic
orbits

= (ih)™" Z (E) i i exp%Vf’(E, mz...m,.)/(l—exp%ﬁ/,(E. mz...m,,)).

basic my=0 mp=0
orbits

(5.49)

The poles of 9(E) are the energy eigenvalues of the system; they occur for Vi’,(E, my,...m,) = hn,e.for

W(E) = § P.(g, E)dg* = h(n +(A+p+k)d+i 22 (my +%)ak(E)~r(E)/27r). (5.50)

This is the generalized Bohr—-Sommerfeld quantization condition.*

Two cases: 1. Each « is purely imaginary, the system is stable, the energy 1s real. 2. Some «; are
complex, the system is unstable, the energy is complex, the wave function (5.16) has a decaying term
whose decay rate is given by the imaginary part of the energy. The characteristic exponents are, of
course, only partly responsible for the line breadths. The primary reason for the decay of bound states
is the nteraction of the electrons with the electromagnetic field.

Remark. Liapunov has shown that the norm 1s not the only function on the Jacobu fields which can
be used to define stability. The second variation of the action 1s certainly a good candidate to
investigate stability in the sense of Liapunov

Remark on complex classical paths. We started with the real classical energies and real classical
paths. The characteristic exponents have introduced complex valued classical trajectories and
complex energies in the Bohr-Sommerfeld condition. Complex valued classical trajectories were first
introduced by Keller [78] in his “geometrical theory of diffraction”. With McLaughlin he has shown
[80] how the classical paths of all types -including the classical diffracted paths -enter the WKB
approximation. Balian and Bloch [6, 7] have systematically investigated the complex Hamilton-Jacobi
equation when the potential is analytic and developed quantum mechanics in terms of complex
classical paths. Balian, Parisi and Voros [8] have shown in an example how asymptotic expansions
can fail if the classical complex trajectories are not included in the WKB approximation.

In conclusion, the WKB approximation of the energy spectrum is obtained from the closed orbits
of the system, if any, and the nearby family of quasiperiodic** orbitst. the characteristic exponents of
a closed orbit (g, p) are obtained from the Poincaré map R(r) where the matrix R(t) consists of the
Jacobi fields along g, p, and the Jacobi fields are obtained by 2n parameter variations of the classical
paths which can be deformed continuously into (g, p).

If the system does not admit periodic orbits, then ¥(a,t, +t; a,t;) cannot be computed by the
WKB approximation and some other method has to be investigated If the system admits

*See ref [33] for the case i which the energy 1s not the only constant of motion

**A vector valued function 1s said to gquasiperiodic or multiply periodic if its components can be represented by a series of the form
2, Crexpik | ) where (k | w)=3"_, k.w* with @ € R" and k € Z" (integer components) I, C* 1s assumed to be convergent

+The objection made by Berry and Tabor that the Gutzwiller-Voros result rests on the assumption that the closed orbits are isolated 1s not
sustained
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quasiperiodic orbits, Berry and Tabor [11] have proposed that the action be written in terms of
action-angle variables (I, #) rather than in the natural phase space coordinates (g, p). The paths
are closed in the (7, §) space and the computation proceeds basically as before. The Berry-Tabor
result is justified by the fact that, according to Carruthers and Nieto [22], canonical transformations
do not affect WKB approximations.

Little is known about generic nonintegrable systems and their quantum properties. It is hoped that
new insight into quantum properties will come from the recent studies of classical dynamical systems.
As we have seen in this section, the bridge constructed between quantum and classical mechanics by
Wentzel, Kramers and Brillouin is very beneficial to quantum mechanics.*

5.5. On the existence of path integral representations of 4(b, a, E) and %(E)

i#%(b, a, E) has been defined as the Fourier transform of #(b,t, +t;a,t,) and ih%wks is the
stationary phase approximation of the Fourier transform of #wkg. The result, written for a and b
within focal distance

ihGacalb, a, E) = Qih) " ""*(Dyy (b, a, E))"” exp (% Wb, a, E)) (5.51)

is very striking. It is the WKB approximation one would have formally written down for

b, a, E) = f exp (% W(a, E))@q (formally), (5.52)

E

where

1/2
Wa B)= [ @m(E - VD" (3 gup da* da?)

and where E is the space of paths from a to b with average energy

tg+T

[ (mlaoFr2+ vy as

qt.)=a, qt.+7)=b. (5.53)

Indeed, let G be the classical path from a to b with constant energy E. Then W(b, a, E) = W(g, E).
We now show that Dy (b, a, E) is the Van Vleck determinant of W(b, a, E). Let us parametrize the
classical path g by one of its co-ordinates, say G'. Then W(b a, E) f"‘ LE( , @'(@), ¢'(@") dq’,
j=2,...,n The Van Vleck determinant of W(b’, b'; a’, a") is det 3°W/ ab'aa On the other hand i m
the system of co-ordinates where §'(t)=|g(t)|, Dw(b,a, E) is given by eq. (5.43). In the '
parametrization where ¢'(¢") =1, it reads

Dy (b, a, E) = det 8*W/ab* da*. [ |

Whereas the path integral representation of (b, t,; a, t,) is over the space of paths going from a to

*It should also be beneficial to classical mechanics since classical mechanics 1s the limit of quantum mechanics But this 1s another story



346 C DeWitt-Morette et al , Path integration in non-relatwistic quantum mechanics

b in a given amount of time ¢, — ¢,, the formal path integral representation of 9(b, a, E) is over the
space of paths going from a to b with a given amount of average energy E. The action W(q, E) is the
action of a free particle on a curved space M with metric

dI’ =2m(E - V(q))g.s dq” dq”. (5.54)

Can we define a prodistribution w”® on E such that
%b,a,E)= f dw®(q)?
E

The best we can hope for, at the present time, is an implicit definition. Two approaches suggest
themselves, both very difficult:

1. A prodistribution on the space of paths from a to b constrained on the Riemannian manifold M
can be defined implicitly, via the development mapping, from a prodistribution on the tangent space at
one end point, T,M or T, M.

2. It may be possible to define implicitly w® by a random process {g(t)} on R". Recall that the Wiener
gaussian w¥ on X_ was first known, not explicitly as the normalized gaussian of covariance inf(f — ¢,
s — t,), but implicitly as the gaussian such that the random process {x(¢)} is brownian (see example 6, p
266: and appendix D). The prodistribution w® on E must be such that it defines a random process {q(¢)}
with the following characteristics:

q(t.)=a, qt.+7)=b

7 is a stochastic variable such that eq. (5.53) is satisfied.
f(||4(tk) ~ q(ti )P = 2m(E = V(q(tio D)t — te—1)’) dwe(q) = 0. (5.55)
E

Note that the last condition says that E is the average energy along the path. Indeed, since g s not
differentiable, we cannot write |[dq(¢)|’ — 2m(E — V(q(t))) dt* =0, but we can write that the expec-
tation value of the left-hand side vanishes. This situation was recognized by Garrod [58, p. 488] and
Gutzwiller [64, p. 1984] who wrote down a formal path integral representation of 4(b, a, E) using
spaces of paths with given average energy and computed $wxg(b, a, E).

We do not know if the conditions (5.55) given for the random process {q(¢)} are sufficient to
determine a prodistribution w® on E. The fact that a random process with brownian motion
characteristics does determine a promeasure w_ on X_ is not a trivial result but a great achievement
of Wiener. It does not seem that random processes of type (5.55) have been studied, nothing can be
said about the existence of a promeasure they might define, let alone the existence of a prodistribu-
tion.

The WKB approximation of %(E) is also very striking and similar considerations can be made on the
possible existence of a path integral representation of 4(E).
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Conclusion

The world is global and stochastic and physical laws are local and deterministic. The beautiful thing
is that these complementarv descriptions of nature can be brought together: A path integral is a global
and stochastic expression, it is also the solution of a local and deterministic partial differential
equation,

In this monograph we have computed path integrals in terms of solutions of ordinary differential
equations, and thereby produced solutions of partial differential equations of parabolic type with
Cauchy data. The corner-stones have been

1. The Fourier transform of the gaussian w* on X_ exists (a source of delight for mathematicians) and
is known explicitly (a source of delight for physicists)

Fw¥(u) = exp(—%i J' du(t) f dpu(s) inf(t — £, s - t,,)).

2. Linear mappings of spaces of paths introduce gaussians whose covariance are elementary kernels
of the Jacobi equation. So much is known about the Jacobi equation from many branches of physics and
mathematics that the prodistribution formalism can borrow a wealth of results derived by Jacobi, Sturm,
Liouville, Poincaré, to name but a few.

Many more problems can be investigated with the methods developed here. Some of them we had
hoped to incorporate, some others came to our attention when this monograph was in the last stages
of completion. We shall use the size limitation of Physics Reports as an excuse to stop here for the time
being.

Appendix A. Some differences between integration on R” and functional integration

“Physical intuition often borders on wishful thinking”*

Theorem 1. On a finite dimensional space, linearity implies continuity; not so on an infinite
dimensional space.

Theorem 2. The compact subsets of R" are the closed bounded subsets of R". A closed bounded
subset, with nonempty interior, of an infinite dimensional normed space is never compact under the
norm topology. (Roughly speaking a compact set has no interior.)

Theorem 3. Let X be an infinite dimensional normed space. Any continuous function(al) on X with
compact support is identically zero.

Theorem 4. There is no measure invariant under translation on a Hilbert space H such that the
measure of every bounded open ball, |x|| < p, is finite.

*“When dealing with less simple and concrete equations, physical intuition 1s less rehiable and often borders on wishful thinking ” [N G Van
Kampen]
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These striking differences between finite and infinite dimensional spaces are an indication of the
pitfalls into which our intuition, based on the properties of R", can lead us.

Before discussing these theorems, recall some definitions. A subset A C X is said to be compact if
every covering of A by open sets has a finite subcovering. Note that a compact subspace of a
Hausdorff space is necessarily closed.

The interior of a set A is the largest open set contained 1n A

The boundary 3A is the set of all points contained both 1n the closure of A and in the closure of the
complement of A:

def — ——
dA = ANCA.

These definitions generalize to topological spaces the familiar notion on R"; to see why they imply
different properties on R" and on infimite dimensional spaces we shall consider some simple examples.

One of the simplest generalizations of R" is the space H of sequences {x';i=1,...} such that
=7(x")? is finite, together with the topology induced by the metric

dx = (3 o' - y')z)m.

In R" a closed unit ball 1s a compact set with nonempty interior. A compact set in R" with empty
interior is for instance a closed subset of R"™'. If we try to construct m H a compact set with
nonempty interior we succeed in constructing either a noncompact set (example 1), or a set which
does not belong to H (example 2), or a set with empty interior (example 3).

Example 1. The obvious generalization of the closed unit ball in R" 1s the set of points {x'}€ H
such that T (x*)’ < 1. Its interior £(x')* < 1 is nonempty. We shall show that this set 1s not compact: If
the ball were compact, any infinite sequence of points in the ball would have an accumulation point in
the ball. Consider the sequence of points a, € H such that a, = 8. This sequence 1s in the closed unit
ball, no subsequence converges to anything, the ball 1s not compact.

Example 2. Consider the unit cube in RXRX---, i.e the set of points whose coordinates
0<x'=<1. This set is compact in the space R XR X --- with its usual infinite product topology
(Tychonoff topology). But all the points of the cube are not in H. The corner point {1,1,...} is not
square summable.

Example 3. Consider the Hilbert cube in H. This 1s the set of sequences {x'} such that 0 < x’' < /i,
i.e. the parallelepiped whose edges have length 1, 1/2, 1/3,. ... The Hilbert cube is compact because 1t
is the infinite product of compact sets with a metric topology that 1s equivalent to the Tychonoff
topology. But the Hilbert cube has an empty interior: it contains no open set.

Proof. The open balls in H form a basis for the topology induced by the metric d on H. Let B.(x,)
be the open ball of radius 2¢ centered at xo. For any xo € H and any € > 0 there is a pomnt y € B.(x,)
which is not in the Hilbert cube. Indeed, let n > 1/e. The point y ={xo,... x5 ', x5 +¢ xo*'} 1s in
B.(x,) butis not in the Hilbert cube. The Hilbert cube is too cramped to put any open set inside it. [ |

These examples explain the contents of theorem 2: A compact subset of an nfinite dimensional
space X 1s all boundary, like a closed subset of R"~' n R".
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We shall now use theorem 2 to prove theorem 3. Consider a continuous function(al) on X which is
zero outside a compact set. The set of x € X with f(x) # 0 is open and is contained in a compact set
and is hence void. Thus f(x) =0 for all x. [

We would expect any measure on X to have the usual reasonable properties of measures on R".
Theorem 4 shows that no such measure exists.

Proof of Theorem 4. Let a be the measure of the unit ball, let » be the measure of balls of radius
€ < 1. Let {e,} be an orthonormal infinite subset in H. Let x,, = Ae, and consider the balls {x; x — x,]| <
¢} They are included in the unit ball if A + € < 1. They are disjoint if A'V2> 2e. There is an infinite
number of disjoint balls of measure b included in the unit ball, therefore additivity would imply that
the measure of the unit ball be infinite.

Fig 10

Remark. The expression “invariant” measure is also used in a different sense from theorem 4. A
measure g on X is said to be invariant under a transformation 7 : X — X if the sets of measure zero
are the same for u and for its image under T.

Appendix B. Jacobi fields and related topics

When the covariance of a gaussian prodistribution is identified as the elementary kernel of a Jacobi
equation, the work is 1 a very advanced stage of completion: the properties of the Jacobi equation
have been investigated, under different names, in various branches of physics and mechanics and
many theorems can be used for computing path integrals with respect to gaussian prodistributions
with such covariances.

Some other names for the Jacobi equation are: variational equation [e.g. 143, p. 268], équation aux

variations [120, p. 163], small disturbance equation [37, p. 165] and, in the context of Riemannian spaces,
equation of geodetic deviation.
An elementary kernel is often called a Green function, although, strictly speaking, a Green function is
an elementary kernel satisfying a particular set of properties. Many properties derived in this
appendix apply obviously to the elementary kernels of any homogeneous second-order linear
differential operator.

Consider a lagrangian system S. Its action

s=[ Ly@.fund, =l
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can be expanded around a classical path

S(f) = S(q) +15"(q)xx + 0(q, x). (B1)
If f: T—>R" then x = f — g. The simplest method to compute the expansion (B1) is the one-parameter
variation method (40, 41, 105]. It is valid when f:T—> M where M is a Riemannian mamfold with
metric g equal to the Legendre matrix*, assumed here to be invertible

Lap(q() = m™" 3’L/aq"()dq" (v). (B2)
Let U be the interval [0, 1], let u € U, and let {a(u); u € U} be a one parameter family of paths

a(u): T - M such that &(0)= g and a(l)=f.
Set

a(u)(t) = a(u, t), da(u, )/ ou = a'(u)(t) and a'(0) = x.

The function a:U X T—> M defines a parametrized two dimensional surface. We use primes for
covariant derivatives along the curves a(-,t): U > M and dots for covariant derivatives along the
curves a(u,-): T>M. We use erther of the following notations according to typographical con-
venience:

Vial(u, t) = da(u, t)/ou = d,a(u, t) = a'(u, t)
Vau, t) = da(u, t)/ 3t = d.au, t) = a(u, t).

Note that a'(4,t) =V, V,a(u, t) =V, V,a(u,t).
Let V be a vector field on the parametrized surface a; the Riemann tensor R is defined by

V.V, -V,V,)V=R(d.a da)V.

The expansion (B1) is easily computed as a Taylor expansion with respect to the parameter u:

©

S(f)=Sea(l)= 3, (1n)S°a)™(©0) (B3)

n=0

(Sea)(u)=S'(a(u))a’(u)
(Sea)(u)= S"(a(u)a'(u)a'(u)+ S'(a(u))a"(u), etc.

Since S e @ is a function with values in R, its derivatives can be understood as ordinary derivatives or
as covariant derivatives. They are considered here to be covariant derivatives for simplicity and
convenience, and so are the derivatives on the right hand side.

The first variation is

tp

(Sea)(u)= f (Ll - adsz)a’(u, t)dt+ Lya'(u, t) - (B4)

=i,

T
where L, and L, are the derivatives of L with respect to its first and second argument, understood to
*The Legendre matrix is, most often, defined to be A.g(q(t)) = —3>L/3q*(t)dq®(t) For this reason, In previous papers, we have sometimes

used g,5 = Aol The chowce (B2) 1s preferable because it gives g,5 = 8,5 In flat space Moreover, 1t brings out exphently the dependence of the
wave function on # and on g = (B/m)'?
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be a(u, t) and a(u, t) respectively. Set
d
Lq(t) = L:(q(1), q(1)) = 5, Lo(q(1), q(1)).

The Euler-Lagrange equation 1s
ZLq(t)=0.

The term S”(a(u)) in the second variation is a symmetric bilinear form* on the space of vector fields
along &(u), which after integration by parts, reads

S"(a(u)a'(u)a'(u) = j {#@)ea'(u, }a'(u, 1) dt

173

(1~ 352 ' D 0 + 5 5 L Dt )|

ta

where L,, and L,, are the derivatives of L, with respect to its first and second argument, more precisely
L% = 3*L{da” (u, )da* (u, t) # L5, and where

. d’ d
Fa(u)) = _Lzzd—tZ+ (Liz— Ly — szz/dt)a +(L; —dL/db).
The Jacobi equation is
Fla(u))a'(u, t)=0. (BS)
A solution of the Jacobi equation is called a Jacobi field along a(u). In general we shall set:

a'(0,t)=h(t) if h is a Jacobi field along q.
Jacobi matrices and related matrices. The mapping J5(¢, t.): T.M = T,,M such that

(B6)
ho(t)=0, V. ho(t)= 0% forany ve T.M

defines a matrix J5(t, t,), called a Jacobi matrix; each column of J5(¢, t.) consists of the components
h{s, of the Jacobi field A, vanishing at ¢, and whose derivatives hg)(f,) = 8.
The mapping Kz(t,t.): T.M - T,,M such that

{ 5(t, t,)v? = h*(t) is the a-component of a Jacobi field along g

{J a(t, )" = h*(t) is the a-component of a Jacobi field along q

B7
ho(t,) =", V.h*(t,)=0, for any v € T.M (B7)
defines a matrix Kg(t, t,), called a Jacobi matrix; each column of K3(t, t,) consists of the components
hs, of the Jacobi field hs),, whose derivative vanishes at f, and such that hg,(t,) = 85.
The Jacobi matrices J(¢, t,) and K(¢, t,) are known respectively as the commutator function and the
Hadamard function. We shall show that J is indeed the commutator function (modulo —m~"). Namely

3g°(£)3q°(s) _ 34" (5)3g"(#)
da”  dpa, da”  dpa,

~-m~' (¢, 5) =

”

*Often called the hessian of S at a(u)
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where q(t) is the stationary* path q(t, a, p,) defined by 1its itial position g(t,)=a and mtial
momentum p,.

Proof** The derivatives of g with respect to a and p, are Jacob fields.t Set s = ¢, in the above
equation, 1t turns out that

m~ T t,) = 8% (1)] 3pag.

Thus J(t, t.) defined by the Poisson bracket (modulo —m ") satisfies the same equation and the same
boundary conditions as the Jacobi matrix defined by (B6). Note m”~ T (ty, ) = 39" (1)] Oppe.

Definition. Let S(a, t,: b, t,) = S(q) be the action function for the stationary path g such that
g(t.) = a and q(t,) = b. The off diagonal block of the hessian of S 1s called the Van Vleck matrix.

Van Vleck matrix = 325/da“ab®. (B8)

Lemma. The inverse of the Jacobi matrix J defined by

MaB(ttu tb)JB'Y(tbq ta) = 6; (Bg)

is equal to the Van Vleck matrix, modulo m™'

M.g(ta, t,) = —m™" 3°S(a, ta: b, t,) da*3b®.

Proof T The inverse of the Poisson bracket is the Lagrange bracket, hence M(t,,t) is the
Lagrange bracket, modulo —m,

—mM_g(ta, t,) = —psal da™ = 3°S|da*ab"®. -

The advanced and retarded Green functions are, respectively, G**(t,s)=—0(s—t)J(t,s),
G™'(t,s) = 6(t — 5)J (¢, s). The advanced and retarded Green functions are often labelled G™ and not to
be confused with the same symbols used here for the covariances.

The Jacobi matrix J 1s obviously antisymmetric since it 1s equal to the commutation function
JE(t, s)=~J%(s,1).

So is the Van Vleck matrix. The other Jacobi matrix, K, does not have, in general, any symmetry
property. We shall label K(t,, t) the matrix with entries

K2(t,, 1) = K**(1, 1)
We shall label N and N the inverses of K and K, respectively,
Noglte, OKP(8,8) =82,  K™(te t)Nga(t, t,) = 8. (B10)

*We use the expression “'stationary path” to refer to a solution of the Euler~Lagrange equation, usually reserving the term “classical path”
for a solution which minimizes the action
**These simple proofs are due to Mizrahi [107] See other properties of the Jacobi matrices in [108] More elaborate proofs and other results can be
found in ref [40] p 373 See also ref [128]
tSee next paragraph a detailed analysis of one-parameter variations through classical paths
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One-parameter variations through stationary paths. The dimension of the configuration space
being n, there are at most 2n linearly independent Jacobi fields along q. They are easily computed if
one knows the general solution of the Euler-Lagrange equation. Indeed [73, 40] the set of derivatives of
the general solution of the Euler-Lagrange equation with respect to its 2n constants of integration is a
complete set of Jacob fields. Thus one way of obtaining a Jacobi field is to make what is known as a
“‘one-parameter variation through solutions of the Euler-Lagrange equation”; i.e. a variation &(u) such that
Lalu,t)=0.

If this variation keeps one end fixed, say a(u, t,) = a for every u € U, then da(u = 0, )/ du is a Jacobi
field along g vanishing at t,. The condition that the family of paths {£a(u, -): u € U} has a fixed end point
a(u, t,) = a determines n of the 2n constants of integration of the general solution of the Euler-Lagrange
equation, leaving n undetermined constants which can be varied to obtain n Jacobi fields vanishing at ¢,.
These n Jacobi fields are the columns of the Jacobi matrix J(z, £,).

Remark. This construction of J*?(t,, t,) provides a very simple method for computing the Van
Vleck determinant.

In flat space one can obtain the remaining n Jacobi fields by making n one-parameter variations
through families of stationary paths with the same initial velocity. If one thinks of such a family as a
family of stationary paths with initial velocities perpendicular to a given plane 0= So(a) = g.za"v”,
one can generalize this construction to curved spaces: Let Sy(a)=0 be an initial wave front, for
instance So(a) can be the initial value of a solution of the Hamilton-Jacobi equation, or
exp(iSe(a)/h)T(a) can be the initial wave function of a system (section 3.2). Let Sy(a) have first order
contact with its tangent space at q(¢,)

VaVaSoe(q(ta)) =0

where the covariant derivative V, = D/dq“(t,). Consider a family of stationary paths {a(u)} with initial
velocities a*(u, t,) = V*So(a(u, t,)). Then the Jacobi field h along a(u) such that

h(t) = dual "’)l and  K(t)) =0
u=0
is obtained by making n one-parameter variations through the family {a(«)}. Indeed

h(t,) =V, d.0(u, t,)

= Via(u,t,) W 8PV, VaSo(q(t )R (t,) = 0. [ ]

u=

Caustics and conjugate points. We shall give three equivalent definitions of a caustic.

1. It can happen that an n-parameter family of stationary paths has an envelope. The envelope is
the caustic with respect to the n initial data which define the family.

2. It can happen that there are k nonzero Jacobi fields along g with vanishing boundary conditions
at q(t,)=a and q(t,)=b. The two points a and b are then said to be conjugate along g with
multiplicity k. A caustic is a set of conjugate points.

The vanishing boundary conditions can be either Dirichlet h(t,)= h(t,) =0, or von Neuman
conditions A(t,) = h(t,) =0, or a mixture of both (k components of h(t,) and n ~k components of
h(t,) vanishing). A Jacobi field with vanishing Cauchy data is always identically null (see below).

3. It can happen that there are fewer than 2n linearly independent Jacobi fields defined by
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boundary conditions at ¢, and ¢,. If there are 2n — k linearly independent Jacobi fields, a and b are
said to be conjugate along g with multiplicity .

The equivalence of these three definitions is proved in ref. [40, p. 375]. Milnor [105, Th 18.1, p. 98]
gives still another equivalent definition in the case of geodesics. We shall only make a few comments
to indicate how one defimtion is related to the others.

1. Recall that two curves f; and f, have an intersection of order k at ¢ if f,(¢) = f,(¢) as well as their
first k derivatives. An envelope 1s the limit of the intersections of a family of “infinitesimally close”
curves. In the limit these intersections are of order k = 1. Hence the Jacobi field along g obtained by a one
parameter variation of stationary paths vanishes when g touches its caustic. And a caustic defined as an
envelope is indeed a set of conjugate points with respect to the initial conditions which define the family of
stationary paths

Note that if two stationary paths with common origin have an intersection of order k = 0, then the
intersection is not a conjugate point of the origin.

2. Let a and b be conjugate along g and let h, be a nonzero Jacobi field such that h,(¢,) = h,(t,) =0,
then if h, is a Jacobi field defined by its values at ¢, and ¢,, h, and h, + h, are two different Jacobi fields
satisfying the same boundary conditions It follows that definition 2 implies definition 3.

Criterion for identifying conjugate points. Consider a family of stationary paths emanating from a fixed
point. q(t) is conjugate to q(t,) if and only if Det J(t,t,)=0

Consider a family of stationary paths with equal initial velocities.* q(t) is conjugate to q(t,) if and only
if Det K(t, t,) = 0. This criterion follows immediately from the third definition.

Example. Surface area of a soap film held by two loops.** The properties of caustics and their
relationship to catastrophes can be displayed in the following example, often used in the calculus of
variations.

Dip two loops of radius r and R in a soap solution. Remove them. Assume that the loops, originally
concentric, are gradually pulled apart so that their planes remain perpendicular to the axis joining their
centres. The soap film forms a surface of revolution of minimum area and eventually breaks into two
circular discs held by the loops. When does the film break?

Answer: The area of the surface of revolution generated by the curve f 1s

S(f) = 27 f O+ )" dt.

Here t, — t, is the distance between the two loops. S(f) is minimum for g such that S'(q) =0. The
Euler-Lagrange equation and the Jacobi equation are, respectively,

L) =~q(Hg)+ 4’ +1=0,

F@h() = 1+ ¢(1)) (= q(Oh(1) + 24(h(t) — G()h(t)) = 0.

*See p 353 for the meaning to be given to this phrase when the configuration space 1s a riemannian manifold
**DeWitt-Morette and Tschumi in ref {133]
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The general solution of the Euler-Lagrange equation is the two-parameter family of catenaries
a(u, v, t) = u cosh((t — v)/u), u,v>0.

The derivatives of o with respect to # and with respect to v are Jacobi fields. The most general Jacobi
field along a(u, v) is thus

h(u, v, t) = Ada/du + poaldv,

where A and u are two constants of integration.

The family of catenaries keeping one end fixed is a one-parameter family of catenaries defined by
r=alu,v,t,)=u cosh(v/u). This equation determines either v as a function of u or u as a function of
v. Say v(u). The Jacobi field along a(u, v(u), t) is h(u, t) = A(dafdu + (3a/dv)(dv/du)). It vanishes at
t =t, since alu, v(u), t,) = constant for all u’s

On the other hand, the envelope of the one-parameter family of catenaries {a(u, v(u)} is by
definition the set of points on {a(u, v(u),t)} such that da/du + (da/dv)(dv/du) =0 (limit of the
intersection of infinitesimally close curves of order k > 1). The Jacobi field A(u, t) is a nonzero Jacobi
field vanishing at the origin and on the envelope of {a(u, v(y)}. The point where a(u, v(u), t) touches
the envelope of {a(u, v(u))} is conjugate to a(u, v(u), t,): the envelope is the caustic defined as the set of
conjugate points of a(u, v(u),t,)=r.

The Jacobi matrices J and K have only one entry. Along the curve a(u, v(u),t) they are,
respectively,

J(t, t,) = sinh 2= te 4 L= ta i 12008 oy fa o)
u u u u

K(t,t,)= % cosh = —uv(u) (cosh - :(“) _! —uta sinh 1= :(u)).

Note that J(t,t,) is not function of (¢ —¢,). But J(¢,t,) = —J(t,, t). The Jacobi matrix K(¢, t,) has no
symmetry property.

The condition J(t,t,) =0 determines the caustic with respect to a fixed initial value a(u,v,t,) =
constant. The condition K(t,¢,)=0 determines the caustic with respect to a fixed initial slope
da(u, v, t,)/dt, = constant.

i
]
!
i
!
!
!

ta ty
Fig 11 A family of catenary with fixed onigin

Given r, R, T there are two solutions, or one solution, or no solution, depending on whether (R, t,,) is
above, on or below the envelope. Assuming R fixed, the bubble breaks when ¢, is such that (R, t,) is
on the caustics.
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Example. The equation of geodetic deviation.

Consider a free particle i curved space, L(f(¢)) = 3f (t)|.

So&(u)=f%(a(u, )| a(u, 1) dt

T

(Sea)(u)= f (a(u, t) | Vid,a(u, ) dt = (a(u, 1) | a'(4, t))l :b —f (V. Vea(u, 1) | a'(u, ) dt

(8= W) = (Va0 | o )| + (@t )| Ve )]

- f (V.Via'(u, t)+ R(a'(u, ), alu, ))a(u, )| a'(u, 1)) dt

- f (V.Via(u, t) | V,a'(u, 1)) dt.

This example shows how one can work entirely with covariant derivatives. In practise, one is
interested either in a variation {a(u)} keeping the end points fixed, or keeping one end point fixed, or
keeping the itial, or final, velocity (covariantly) constant, and the above expressions simplify
accordingly.

The Jacobi equation is

V.V.h(8) + R(h()q(1)g(t) = 0 (B11)

known as the equation of geodetic deviation.
Construction of Jacobi fields by variation through geodesics:
a) Geodesics emanating from a point.

In flat space J%(t t,)=83(t—1t). In general
Jos(t, t,) tells how a family of geodesics emanating
from a point a at ¢, diverge.

Fig 12
b) Geodesics with equal velocities.

In flat space K“s(¢,t,) = 85 In general one can use
the construction described previously (p. 353) to build
a family of geodesics with “‘equal” itial velocities. Fig 13
K“g(t, t,) tells how such a family of geodesics diverge.

Elementary kernels. The elementary Kernels of the Jacobi operator are the natural covariances for
lagrangian and hamiltonian systems. They are easily constructed [40] in terms of the Jacobi matrices.
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All the elementary kernels are symmetric; G*®(¢, s) = G?*(s, t).
[G+(t=t,,,s)=0 {G-(t=ta,s)=0 {G(t=ta,s)=0

VG (t=t,,5)=0 VG(t=t,5)=0 G(t=1t,s)=0.

G(t, 5) is known as the Feynman Green function.

G.(r, 5) = 0(s = r)K(r, ta)N(ta, 1) (85, 5) = 8(r = $)J(r, t,)N (s, t.)K (L, 5), (B12)
G(r, )= 6(s = NJ(r, ta)N(ta, t,)K (ty, $) = 0(r = )K (7, t,)N (85, ta)J (8, 5), (B13)
G(r’ S) = 0(s - r)J(r’ ta)M(taa tb)J(tb’ s) - o(r_ S)J(r’ tb)M(tby ta)J(ta’ s)- (B14)

See note I1I added in proof for the boundary conditions of K when the potential is velocity dependent.

Examples.
1. The covariances of the Wiener gaussians are elementary kernels of —d*/d¢>. They are con-
structed from J*?(¢t,1,) = g*®(¢t - t,) and K**(¢,t,) = g**. (B15)

2. The covariances of the Ornstein-Uhlenbeck gaussians are elementary kernels of —d’/dt> + . See
note III added in proof.

J*8(t,t,) is always antisymmetric. In general K**(¢, ¢,) is not symmetric.

Some properties* of the covariances most often needed in path integration.
1. If the potential does not depend on the velocity, the Van Vleck matrix for a short time interval is

MaB(tbv ta) = (gaB/(tb - ta))(l + O((tb - ta)z))' (B16)

Proof: If the potential does not depend on the velocity, ¢, is of the form # =~V + R(f). The
Taylor expansion of J(t, s) is
J(t,5)=J(s, )+ (t—s)VJ(t=5,8)+5(t— )Vt =s5,8)+ -
=(t~5)g"'(s)+0(t - 5)’,
where we have used ViJ(t =s,5) = R(s)J(s, s) = 0. Equation (B16) follows. Equation (B16) is no
longer true for velocity dependent potentials as can easily be seen from the action function of a

particle in a constant magnetic field [56, p. 64]. m
2. Let {t,...t,} define a p division of T =[t,, t,]

L=t<hi< ' <L<bLua=1l.

*For other properties also used 1n path integration and for the calculations and proofs of the results quoted in sections 2 to 4 see ref [40] pp
389-393 and p 373
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The image of the gaussians of covariances G, G. under the mappings P : X >R P.:X.—>R®""" by

P:x{u“=xt);i=1,...p}, P.x—{u"= x*(t);i=0,...p},
P_ix—{u=x*(t);i=1,...p+1}

are respectively the gaussians on R”" and R """ of covariances W = GE(t, 1), WP =GPt 1).
To complete the computation of an integral whose integrator is a gaussian known by its covariance ¥/,
or W., one needs the mverse matrices W', W' and their determinants. They can be computed from
G, G. using the properties of the Jacobi fields, they are given in [40, pp. 391, 392]. The determinants are
needed for the computation of the Fredholm determinants in section 1.5:

det W' = det M(ty, t,) det M(t,, t,_,) ... det M(t,, t.)/det M(t, t.),
det W' =det M(ty, 1,) ... det M(t,, t,)/det K(t,, t,) det N(t,, 1),
det W' =det M(ty, t,)...det M(¢,, t,)/det K(ty, t,) det N (2, 1.). (B17)

3. In section 1.5, it has been established that the Fredholm determimnant of the linear mapping
M:Y - X, where Y and X are spaces of L*' paths vanishing either at ¢, or at ¢, 1s

(Det M"Y = Det Gg(r, s)/Det Ga(r, s).
Gp is the covariance of the gaussian wp on Y, image under M ~! of an arbitrarily chosen gaussian w, on
X of covariance G4. Let WS = G(1,,t,) and W% = G¥ (¢, 1)
Det Gy(r, s)/Det GA(r, 5) = lim det W5 [det W™,
p =00

Since* for a short time interval Mg(ty, ti—1) = Ma(ty, ti—1) + Ot — t._,)%) one obtains
(Det MZ')* = det Ka(t, ty)/det Ks(ta, t»), (Det M) = det Ka(ts, t.)/det Kp(ty, ta). (B18)

4. A Jagobl field i can be specified by its Diric_:hlet data {h(t,), h(t,)}, its Cauchy data {h(t,), h(t.)}
or {h(t), h(ty)} or its von Neumann data {h(t.), h(t,)} or {h(t.), h(t,)}:

h(t) = —J(t’ ta)M(tm tb)h(tb) - J(t) tb)M(tb’ ta)h(ta) (Blg)
h(t) = K(1, t.)g(q(ta)h(ta) + K (1, t)g(q(t)h(2.) (B20)

and three other similar equations. From these five equations one obtains many linear relationships
between J(¢, t.), J(t, t,), K(t, t.), and K(t, ). Taking derivatives of these relationships leads to other
relationships, in particular for velocity independent potentials**

VJ(t, t)=K(tt) where K°°(t,t,)=K"*(t1). (B21)

Note that #(t,) = h(t,) = 0 implies h(t) = 0 (eq. B20), but h(t,) = h(t,) =0 does not imply h(t) = 0 since
M(t,, t,) can be infinite.

In this appendix we have constructed Jacobi fields by taking derivatives of the stationary paths with
respect to constants of integration. Conversely, itis sometimes convenient to solve the classical boundary

*Although (B16) 1s not true for velocity dependent potentials, (B18) remarmns true B Sheeks, private communication
**See note I11 added 1n proof for velocity dependent potentials
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value problem in terms of the Jacobi matrices J and K. Indeed, the classical path q(t, a, b) such that
q(t,) = a, q(t,) = b can be obtained as the average path over the space of paths from (a, t,) to (b, t,).
Mizrahi [108]* has derived several formulae which solve the boundary value problem and give convenient
expressions for S(a, t,: b, t,).

Appendix C. Index of sign conventions and basic formulae

1. Fourier transforms. The normalization of the Fourier transform is chosen so that #(8 * A) =
(F6)(FA) = FA. The sign convention is:

W)= [ expl-ity, D) dx,

(F l‘s,')(x)=(2—7177 f exp(i(y, x))g(y) dy.
F

Note that if (Ff)(y) is defined to be [z~ exp(i(y, x))f(x) dx then the roles of the lower- and upper-half
complex planes are reversed.

2. Riemann curvature tensor. The definition of the curvature tensor is the same as of ref. [67]. The
sign is the same as that of ref. [67] and the opposite of that of ref. [105]. Thus if Y (¢, u) is a surface
parametrized by ¢ and u and Z is a vector in the surface, then the commutator of covariant
derivatives is

V.\V.Z-V,V.Z=R(3Yldt aY|au)Z.
In component form
Za.liv - Zﬂ.'yﬁ = RaBWZB'

3. The_Jacobi operator. For a lagrangian L=%m|l2(t)|l2— V(Z(t)), the Jacobi operator along a
solution Z(t) of the Euler-Lagrange equations is

- mV~g " ZWWWIVIZ) +RC, Z1), - |Z(y)).
4. Jacobi matrices. Unless otherwise stated, the Jacobi matrices are solutions of

FJ(t,5)=0, £K(t5)=0
with the boundary conditions

VJ(t=5,8)=¢g""(s), J(t=s15=0, VK(it=s51:5=0, K(@=s25 =g ")
Their inverses are M and N:

Jt, s )M(s,t)=1, K(t,s)M(s, 1) = 1.
(These signs differ from ref. {40].)

If the Jacobi equation is the small disturbance equation of a classical mechanical system, then M is

*[108] pp 63 and 74 See also p 75-a cnterion for the non-existence of a classical path
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the Van Vleck matrix of the system:
M*(t, t,)=—-m™" 3°8/6a"3b®

where S is the classical action from (a, t,) to (b, t,).
5. Elementary kernels of the Jacobi operator

FG.(t,5)=8(t—5)g™'(s).

All of the elementary kernels are symmetric: G*?(t,s) = G®*(s,t). On configuration space, the
boundary conditions, unless otherwise stated, are:

G.(t=1t,5)=0 G(t=1,5)=0 G{t=1t,5)=0
VG.(t=1,8=0 VG (t=t,5)=0 G(t=t,5)=0.

G(t, s) is known as the Feynman~Green function. The elementary kernels on configuration space can
be expressed 1n terms of the Jacobi matrices:

G.(r,5) = 0(s ~ 1)K(r, ta)N (Lo, 1) (85, 5) — 8(r — $)J(r, t,)N (s, t.)K(ta, 5),

G(r,5) = 8(s = J(r, t.)N(to, ts)K(ty, 5)— 8(r — $)K (1, t,)N (b, ta)J (ta, 5),

G(r,s)=0(s — ) J(r, t,))M(t,, t,)J (ts, s} — 6(r ~ s)J(r, t, )M (ty, t.)J (L, $).
For a free particle on flat space, %, = —g(t)V; and

G.(r,s)=inf(t, — r, t, — 5),

G_(r,s)=inf(r—t,, s — t,),

G(r,5)=0(s = r)(r—t)(ty — ta) (£, — )+ 0(r = s)(t, — Nty — t.)"'(5 — t).

On phase space, the blocks of the elementary kernels are obtained from the elementary kernel on
configuration space. For a free particle

0 -V,
Fo= 1
V, —;;g

G(r.5)= GP(r,s) G_-"4(r,5)
PITNGCLLEM ) Gonglrys)

where G°#(r, s) is the elementary kernel of the free particle on configuration space, and:
G_°a(r, ) = mV,G2(r, §)8ap(s) = —md°a0(r — )
G_(r, s) = mg.,(r)V,G(r, 5) = —m8.F0(s ~ r)
G_op(r, 8) = m’g,(r)V,V.G7(r, 5)8sp(s) — mgag(r)8(r—s)=0.

Thus, 1n cartesian coordinates,

Gtr.s)= 8 O(s—r)(r—t,)+0(r—s)s—1t)) —mdz0(r—s)
-r8)= -md.Po(r—ys) 0 ’
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Similarly,

G.(r, )= 8Os -ty —5)+0(r—s5)ts 1) - még0(s — r))

-md.Po(r-s) 0

6. The Cameron—-Martin transformations, their inverses, and their determinants.

MZ':X_>Y_ by x(t)—y(t)
y(t)=x(t)- f 8(t — 5)K(t, t,)N (ts, 5)x(s) ds;

M_:Y_->X_ by y(t)y—x(t)
30 = y0)- [ 0= DR, 1INy, Ny
T

Det M ~' = (det K(t,, t,)/det K(ta, t,))"">.
M:X.>Y, by x(t)~y()

y(0 =20+ [ 005~ DK (4 LN (1 $)x(5) s
M.:Y.>X. by y(t)—x(t)
X0 = y0)+ [ 00 - DK0, LN, Dy dr;
T

Det M ;' = (det K(t,, t.)/det K(ty, t.))"">.

7. The Feynman-Kac formula is

wo.)= [ awtco exp(;z;in— [ Vv unen dr) sDevi (e,

In flat space
Dev,(ux)=b + ux.

8. Normalized complex gaussians on R" and their Fourier transforms
dw,(v) = 27i) "™?|det(W "), |"? exp Gi(W ™), v'v") dv' ... do",

(Fwa)y) = expGi¥ly,y,).

361
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Appendix D.* The It integral and the Stratonovitch integral

The art of time slicing has been perfected by physicists while the science of random variables
indexed by time has been developed by probabilists. Physicists have discovered that different
prescriptions for discretizing a path lead to different path integrals. For instance the path integrals
constructed with the discretized action

teer) — X(2
; L(“H%%)([kﬂ_&) (D)
and with the discretized action
[ o tesr) — Xx(t
; L(x( X 12 k)’ x( I;k 13_2{( k)) (feor— 1) (D2)

are not, in general, equal. They are solutions of different Schrodinger equations. Mizrahi [110] has
established the general correspondence between time slicing prescriptions in path integration and
factor ordering prescriptions in the Schrodinger equation.

Probabilists, on the other hand, have derived many important results on the statistical properties of
x(t) when x is not a smooth path. Since their language and their script is not usually familiar to
physicists, we shall introduce the concept of a family of random variables indexed by time. First we
give a few definitions [e.g. 57], with the probabilists’ notation

Definitions* A probability space consists of a triple ({2, #, P) where

1) £ is a space of points , called the sample space and the sample points.

ii) #1s a o field of subsets of 2. These subsets are called events.

iin) P(-) is a probability measure on %.
General and abstract properties of random systems follow from this defimtion. In this appendix we
consider the following example.
Let £ be the space of continuous paths w: T >R
Let X(¢,-): 2 >R for instance X(t, ) = w(t) or X(t, w) = (Dev w)(t) where Dev 1s the development
map defined 1n section 3.3. Since w 1s not a smooth path, X (s + €, @) 1s not determined by X(s, ) for
€ >0. The notion of randomness follows from the fact that @ 1s not differentiable

X(t, ) is called a random variable on ({2, %) if for every Borel set** B in R? the set {0; X(t,0) €
B}E€ %. A random variable X(t, ) is usually abbreviated by X(t) or X, and a set {w; X(¢, w) € B} is
abbreviated by {X(t) € B}.

Let F be the smallest o field generated by the family {%:t, <t <t,} where % 1s generated by the
sets
{w; X(s,w)EB, s<t BEB} (D3)

It follows from the definition that, if s <t,  C % and %, = M=, %, Indeed consider for example the
random variable X (¢, ) = w(t). We shall construct a set F, € %, which 1s not in %,:
F.€ %, & w€EF, implies o € F, whenever »'(0) = (o) for all 0so=<s (and does not imply
w'(0) = w(o) for o> s).

*This appendix has been written after the monograph was completed, following the participation of one of us (C DeW ) 1n the 1978 session on
Stochastic Differential Equations [24]

*+A Borel set of RY 15 an element of a Borel o field @ of R A Borel ¢ field of R 15 the smallest o-field generated by complementation, and by
countable intersections and umons of the open sets of RY
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|

Fig 14

Thus if s <t a set F, € %, 1s not in general in %, because the sets in %, are defined by conditions on
X (o, w) for 0 <o < s and not by conditions on X (o, w) for 0o <t

A process is a family of random variables {X,} indexed by ¢. A process is said to be adapted to an
increasing family {&%} if X, is %, measurable, i.e. {X,(w) € B}€ &,

The probability measure P on {2 defines the properties of the random variable X(¢); for example,
the expectation value of X(¢) 1s

E(X(t) = j X(t, w) dP(w). (D4)
O

Alternative notations are [ X(¢)dP, [ X(t, w)P(dw).

Example: Let P be the Wiener measure, let X(t, ) = w(t), with 0(0)=0,let 0=, <t -+ <t, <
tas1=t,. The random variables {X(t,), X(t)— X(t1),..., X(t)— X(t,)} are independent for the
probability P for any time partition. X (#) — X(#_,) has a normal (i.e. gaussian) distribution with mean
0 and covariance |t, — t,.-1|. Proof (see p. 266).

Let U:X()~{u',...,u"""} by u* = X(t) - X(t_1), then

]¢(X(tl)v- , X(ty) = X(£,)) dP(X) = f o', u" N dy") . dyea (™)

n Rn+1

where dy,(u*) = 27) " exp(— (u*)[2(tc — ti_y)) du®.

The process {X(t); t =0} defined by the Wiener measure 1s called the normalized Brownian motion.

In this monograph we have exploited the consequences of linear mappings U on {2 and computed
the images under U of the probability measures P. Probabilists have investigated a different — but in
some cases related - problem. Given the d-dimensional Brownian motion {B(¢); t = 0}, define a new
process {£(t); t = 0} by the stochastic differential equation,

[dg(z, w)=o(t, &t w)dB(t, )+ b(t, £t w))dt, (=5,
£(s,w)=1x,

where d£(t, w) denotes the infinitesimal increment in ¢ during the time interval [z, ¢ + dt] and dB(¢, w)
denotes the corresponding increment in 8. We know that the conditional probability P(a, t.; b, t,) of
finding a Brownian particle at (b, t,) knowing that 1t was at a, at ¢, is the solution of the diffusion

(D3)
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equation* gP/at, — 4,P = 0. What 1s the diffusion equation of the particle whose random motion is
given by eq. (D5)?

Many powerful theorems are derived from this interplay between stochastic differential equations
and partial differential equations both for diffusion equations and eigenvalue problems of elliptic
equations. We wish we had learned this subject before writing this monograph.

When dealing with stochastic differential equations, one of the first questions which arises is “Since

B(t, w) is nowhere differentiable, can one attach a meaning to [; o(u, &(u, w)) dB(u, w) given some
continuity condition on o?”” The following definition has been proposed by It6. Set s <u, < - - - <u, <1,

t

fa'(ua £(us )) dB(uv ') = lim ; U(uk) g(uka '))(B(uk’ ) - B(ukfl’ ))

s

The following example gives one of the basic rules of the Itd calculus:

Compute I = I 2B(t)dB(t) where B is the Browman process of mean 0.
T

If B(t) is differentiable, ordinary calculus can be used and I = B%(t,) — B*(t,). If B(t) is not differenti-
able we can use Itd calculus. Set B(t,) = B, then

I =lim 2,; 2B (Bt — Be) = lim 2.; (Bis1 = Bi= (Brr = B))-

The expectation value E(Bi. — Bx)> = tir1 ~ tk. Hence

E [ 26480 = EB0) - B0~ (o~ ).

This equation is written in It6 calculus dg*(¢f) = 28(t) dB(t) + dt.

Itd calculus proceeds to defining the differential of f(£(¢), t). It 1s noted that df(£(¢), t) is expressed in

terms of first and second derivatives of f with respect to its first argument and first derivative with

respect to its second argument together with the “Itd rules”: dt dt =0, dg(¢) dt =0, dB(¢) dB(t) = dt.
It6 calculus was built to compute integrals where the integrand is non-anticipative

[ $6,80) 481 = 3 16, BBt - B8

*In general ¥ 1s generated by the sets (D3) and this forces probabilists to work with the Wiener covanance G_(t, s) = nf(¢ - ¢,, s - t,) even In
problems where 1t would be simpler to work with G.(t,s) This explamms comments on “~t parabolic equation”, “forward Cauchy data”,
“backward equation” etc
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At time f, we know B(#) and the stochastic properties of B(f..)—B(t). We do not know
B((te + tii)/2).

Stratonovitch [132] remarked that the rules of ordinary calculus could be applied to stochastic
integrals if one defined the integrand at the mid-point. A rule which is precisely [59] the rule that had
been used by Feynman all along. Schulman [5] has given interesting arguments for justifying
Feynman’s heuristic rules. Probabilists however, prefer to work with the It6 calculus, since the
Stratonovitch calculus can be shown to be only a particular case of the It6 calculus.

In this monograph, we encountered briefly stochastic integrals in the integration by parts which
enter the calculation of the Feynmann-Kac formula (sections 3.2, 3.3, 3.4) and proceeded according to
the rules of ordinary calculus, i.e. we treated our integrals as Stratonovitch integrals. It follows that
with our rules the determinant of the linear mapping y+—>x such that x(¢)= y(t)+ f;, y(s)ds is
expa(t, — t,). If we had worked with Ito calculus, the determinant of this mapping would have been
one*. The final results would have been the same.

The difference between the probabilists’ approach and the methods followed here can be sum-
marized by noting that probabilists work with probability spaces ({2, #, P), the careful elaboration of
the o field ¥ makes it possible for them to define a probability measure P. Alternatively but less
frequently, they consider P as a projective family of measures on the projective system 2 of {2 and
work with (£2, 2, P). We started from promeasures i.e. from ({2, 2, P) to introduce prodistributions
and develop a scheme which can include Feynman path integrals. The central object has been
(2, 2, w) where 2 is the space of paths with values in the configuration space or in the phase space of
the system and w a prodistribution with covariance adapted to the lagrangian or hamiltonian nature of
the system. We have put various structures on {2 (space of paths with values in multiply connected
riemannian manifolds) and have used linear maps on {2 to induce prodistributions adapted to the given
problem.
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Notes added in proof

I. (To be inserted p 291 line 9 from bottom.) In both cases, however, the result is the wave function at
time ¢, knowing the wave function at time ¢, < t,. In the S-matrix theory, we need also the wave function
at time ¢, knowing what it is at time ¢,. The “‘earlier” wave function is a solution of the (— ¢)-Schrédinger
equation

aulat = -;;(Ho + V), x)

and the corresponding Feynman and Kac formulae are respectively

Hitar 1) = j aw¥ () exp (+ f VG +uy)dt) 6(x+ py(t)  (Feynman)

ta

P(ts, x)= J dw? (z)exp (+% f Vix + pz(t)) dt) o (x + puz(ty)). (Kac)

We call “Feynman formula” the one which translates immediately into mathematical terms, the “sum
over all paths” idea: the probability amplitude of finding at (x, ¢.) the system known to be in the state
¢ at t, is given by the sum over all paths which are at x at £,; the condition satisfied by the paths at ¢,
1s inferred from the function ¢. The prodistributions (w Y)* are defined by

(Fw*)E) = (Fw)*(=§) = (FwW)*(£).

IL. (To be nserted p. 293 before “Non Relativistic Quantum Mechanics”.) The S-matrix can be
constructed in terms of the Mgller wave operators*. Let ¢, and ¢s, be two eigenstates of H, with the
same energy E, Let

d’m(to’ x) = W :‘—)(bm(x) and d’ﬁn(t()’ x) = W t—o(bﬁn(x)

where

Wh= llm exp(—1(to — t.)Ak) exp(i(to — ta) Hol ),

W= lim exp(i(t, — t.)HIk) exp(—i(t, — to)Holh).

tp=+x

Contrary to usual practice we do not set t, =0. Note that in the definition of W on p. 292, t, 1s set
equal to zero, and the superscript ¢ refers to t, or ¢.

*See for nstance [149, pp 173-215, in particular eqs 142, 149, 159] or preferably [151, pp 112-115]
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By definition*, the S-matrix is

(aulSlow = [ Wlto, ) inlto, 1) d
M

= ] (¢ﬁn(t0’ X))* ll/m(tO’ x) d-x = <¢ﬁnl(Wt—o)* W?'(bm)

= lim (sl exp(i(ts — to)Ho/h) exp(—i(ts — t,)HIh) exp(i(to— t.) Hol )| db.n).

ty =0, th =0

We shall assume ¢,,(x) and ¢gn(x) to be plane waves of momentum p, and p; respectively,
Gun(x) = (x|d.n) = exp(i(p,, x)/1),
& fn(X) = (ulx) = exp(—i(ps, x)/h).

The path integral representation of the S-matrix 1s then readily obtained from the path integral
representation of the Mgller wave operator by setting a(p) = 8(p —p,) and a(p)=8(p —ps) in the
initial and final wave function respectively. Moreover, set Y = Y. @ Y_ the space of paths g such that

gt —to)=0(to—1t) y(t —to) + 0(t — to) 2(t — to).
The prodistribution w* on Y defined by w¥ on Y, and w" on Y_ is characterized by
Fw¥ () = Fwl(E) FwY(E),

where £, and £_ are elements in the duals of Y, and Y-, respectively. w" is a normahized gaussian of
covariance

Gw(t, $)=0(to—1)0(to—5s)(B(t —5)(to—1)+0(s—1t)(to—35))+ 8(t —to) O(s — o) (B(t —5) (s — tp)
+0(s—1t)(t—t,)).
It follows from S = (W)* W that

anSlon = [ aw*@) [ exp(~1p-p.x)) dx

X exp(—ﬁi f V(x +0(to—t) p.(t — to)/m + 6(¢t — to) pe(t — to)/m + ug(t — to)) dt.
R

Albeverio and Hgegh-Krghn have proved that path integrals over Y are valid for potentials V(x)
which tend to zero faster than |x|™'™ for some positive e.

Campbell, Finkler, Jones and Misheloff [148] have obtained a lattice approximation for the phase
space path integral representation of the S-matrix valid for the same class of potentials. It is worth
mentioning here an interesting feature of their calculation: They make the change of variable

(Q(), P())—(q(1), p(1)) defined by

q)=QM)-P®)tIm
p()=P(1)

*Thus 1s the S-matrix of the mteraction picture
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and note that the new classical equations of motion can be derived from the variation of

S(a,p) =~ [ (V(a(t) + p(e) hm) + a(®) o)) d

keeping the values of p constant at the end points. S(q, p) 1s precisely the action which appears in
their path integral. They call the new variables (q(t), p(t)) the “classical interaction picture variables”.
They note that for potentials which fall off faster than 1/r, not only lim,_... p(t) = constant but also
lim,_.. g(t) = constant. Thus the classical interaction picture variables give immediately the “asymp-
totic constants” of the motion introduced by Thirring* in his beautiful presentation of the Mgller
operators and S-matrix. In our derivation of the Mgller operator, p. 292, we made a change of variable
y+>z such that uz(t) = wy(t) — pt/m. This change of variable generalizes to arbitrary paths y € Y, or
y € Y_ the change of variable made by Campbell et al. for the classical path Q(t), so that we could
call z an “interaction variable” of integration. Expressing the path integral representation of the
Mpiller operators in terms of the interaction variable showed immediately that the oscillatory terms
cancel and that the Mgller wave operators exist when a system approaches an integrable system
asymptotically.

Under the change of vanable y+~>z, the argument of the potential changed from x + uy(t) to
x + pt/m + pz(t). Both the integral over y and the integral over z are computed with respect to the same
prodistribution. Thus the change to the interaction variable can be loosely said to be a change from
x+—>x + pt/m. The variables of integration in a path integral correspond to operators in the operator
formalism of quantum mechanics. We recognize in the change x> x + pt/m the change from the
position operator x in the Schrodinger picture to the position x(t) in the interaction picture, where

x(t) = exp(iHot/h)x exp(—1Ht/h) = x + pt/m.

Of course this remark is not to be construed as a prescription for constructing ‘“path integrals with
interaction variables™, 1t 1s simply a comment to contrast the argument of the potential in the S-matrix
with the argument of the potential in the Feynman-Kac formula.

I11. (To be inserted p. 357.) If the potential depends linearly on the velocity
V(g)=Y(q)+(A(q). 4)
it is convenient to work with the following Jacobi matrices:
J(t, t2) defined as before (eq. B6),
K(t,t,) defined as before (eq. B7) but with new boundary conditions; namely
Rt =0%  h°(t) =387 (Ap,(t) — A, (L) V.

Equations (B12), (B13) and (B14) are valid with the above definition of K. The case of velocity
dependent potentials is being investigated by B. Nelson and B. Sheeks and will be published
elsewhere.

Example: The Ornstemn-Uhlenbeck velocity process v with initial velocity vo =0 can be obtained
from the Brownian process x by a linear map

*See [151, p 112] for the precise statement for the existence of the Mgller wave operators
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t
v(t)=yx(t)-B f exp(—B(t — 1)) exp(B(s — t,)) yX(s) ds
0

= yx(t)—JK(t, tv) N(ty, 8) yx(s) ds
[

where K is a solution of

(-d*/de*+BH K(t, t,)=0

K(tbs tb) = 0’ VlK(t’ tb) = —B'

t=tp
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