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A b a c a  

A new method for computing p~h m~gr~s exO~ltly ~s devdoped ~nd apphed to [rob~ms m non-relat~v~t~c quantum mechamcs, such as 
wave functmn~ propag~ors on configur~mn spaces and on phase space, caustic pro~em~ bound ~ates P~h m~gr~s for p~hs on curved 
spaces and for p~hs on m ~ y ~ o n n e ~ e d  spaces are computed 

Introduction 

"In 1932 D~rac [125, p 31~ lind ~e found~mn aone of wh~ was des~ned ~ become m ~e hands of Feynman a new 
formulatmn of qua~um mechamcs Feynm~n rinsed ~e su~e~ ~ ~e ~nk of a new &~phne "  

"A p h y ~  needs that his equattons should be mathematically sound" D~rac [4~ 

A pmh ~ g r M  is often a beautiful answer to a phys~M probMm ~.g. 35]-prov~ed one knows 
how to compu~ it! Admittedly one can ex~act some ~ f o r m ~ n  ~om a pMh integrM wffhout 
computing if, but unless one has devdoped a ve~atiM path integration ~chndogy one is severely 
restric~d in the use of this powerf~ method. 

Path ~ g r M s  and partiM differentiM equations serve different purposes. Path ~ g r M s  are more 
than solutions of differentiM equations sm~fy~g given boundary conditions. Th6r formMafion 
~corpora~ #ohm properties of the sy~em and they can #ve answe~ which cannot be #yen by pa~ial 
• fferendM equations (see section 3.1). 

When funcfionM integrM~n was ~ o d u c e d  in phys~s ~dependenfly by the work of Wiener on 
brow~an motion* ~ 1922 and by Feynmaffs formM~m of quantum phys~s [53, 5~ in 1942, partiM 
differentiM equations were such an om~po~nt formdation of phys~M laws thin ff was di~c~t to 
appreciate pmh integrMs. Neve~heMss they have wormed themsdves in, and appear nowadays in 
nearly MI branches of phys~s. But because a workaMe theory of ~ g r a t i o n  on function spaces 
cannot be cons~ucted as a formM generalization of ~ g r m ~ n  on R ~ (see appendk A), pmh 
~ g r a t i o n  has on the whole remMned a rudimentary tool. No~ however thin even in its rudimentary 
form, ~ has produced an ~ustrious offspring, the Feynman diagram mch~que. But the generM user 
who cannot progress as we~ as Feynman wffh crude ~s~uments needs a refiable formulat~n. 

A greta exam#e of funcfionM ~ g r a t i o n  is the Wiener integrM. Unfo~unmdy despffe the~ 
fimilarities with W~ner integrMs, Feynman (pmh) m~grMs cannot readily be defined in the same 
manner because they cannot be bu~t from bounded measures. AnMytic cont~um~n of W~ner 
M~grMs has served we~ ~ some proMems, in particular m cons~ucfive field theory. Albevefio and 
H~egh-Kr~hn ~] have deveMped a generM theory of osc~atory ~ g r M s  on reM H~be~ spaces and 
ap#~d ~ to the ma them~M foundm~n of Feynman pmh ~ g r a l s .  Truman [135-13~ has carefu~y 
~vestigmed the p~ygonM definition of Feynman p~h ~ g r M s  and ~s ap#~ations. In this monograph 
we shall present another approach to Feynman ~ g r a t i o n -  one wh~h does not ~eat Feynman 
~ g r M s  as the limff of an ~ g r M  over R ~ when p = ~. 

The possibility of defining path integrals without the "lattice approximation" dawned on one of us 
whim reading the marvelous chapter of Bourbaki [13]** on integration on topologicM vector spaces: 
one could define an object, later called a "prodi~fibufion", and w~h R build and compute some 
Feynman integrMs. The potentiM of this formulation appeMed to the second author who immediatdy 

*Them are many books and articles on ~e su~e~ ~ g 11~ 
**To those who do not ~ceJve resent g r ~ c ~ m n  ~om such ~admg~ a shou~ be sa~ ~ a was read under dures~ b~ ~ ~ another ~ory 
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used ~t to obtmn, on the back of an envdope, the pa~ition function of an elecwon ~n a random 
potenti~ in c~sed form ~3]. The third author, who tikes top~ogy, geome~y and phy~cs, found in the 
theory of prodistributions a rewarding fidd of ~vestigations. Together, and sever~ papers l~er, we 
hope to present this form~ation of p~h ~ g r a t i o n  not as a rec~e, but as a tool wh~h everyone can 
fash~n to one's own needs.* 

This to~ meshes gears w~h produ~ ~tegr~s (section 2) and a small turn of the crank ~ves the 
p~h integr~ representation of the wave function known as the Feynman-Kac formula and the Meier 
wave operato~ (sec~ons 2.3, 2.~. The Feynman-Kac formula m used, ~ part~ular, ~ sections 3.3 and 3.4 
to compu~ wave functions and propagato~ on curved spaces. 

The Gaus~an prodi~ributions built w~h the Jacobi fields of the sy~em (appendix B) and finear 
~andormations on the dom~n of integration ~ections 1.4, 1.5) are simple to m a n i p ~ e  and wall suaed 
to soNmg many prob~ms of quantum phys~s. In a nutshell, the dementary kernels of the Jacobi 
oper~o~ make exceUent covafiances for the gaussian prod~tribution of ~gran~an and hamdto~an 
sys~ms. A natural application is the semic lass~  expans~n to all orders ~n h (secaon 3.4). The method 
does not break down on the c a u ~ s  and ~ves the phase ~sses ~ conjug~e points (section 3.5). It can ~so 
be comb~ed w~h the d~gram ~chn~ue whose primary usefulness is for computing power ser~s in a 
coupling con~ant, so th~ the coup~d peaurbat~on is indeed sm~l (section 3.6). 

A useful by-product: The Fredhdm de~rm~ants of the finear ~andormations discussed ~ this 
monograph (Volterra equations) can now be compu~d explicit~ via p~h integrals; ~.e. the Cameron- 
Mart~ form~a can be turned around and used to compute Fredholm determinants (section 1.5). 

Another aspect of the method is the poss~d~y ~ some cases of associating ~ a wall defined sense a 
prodistribution on X C Y to a ~ven prodistribution on Y. For ~stance ~ven a gauss~an on the space 
of p~hs w~h only one end fixed, one can associate, in the Leray sense, a gauss~n on the space of 
p~hs w~h both ends fixed ~ections 1.6 and 3.~. 

It has been s~d that the method presen~d here is difficu~. Different, yes; difficult, "no" say the 
users, and depending on one's background one cou~ even add "obv~u~'. Moreover, ~ is ~ways 
p o s s ~  to pr~ect an ~fimte dimens~n~ space ~to a fi~te one (but not v~e vers~ and to compare 
the new resd~ w~h the familiar latt~e appro~mation. 

Ong~ally this monograph was to recede sever~ other top~s which had to be shelved for ~ c ~ o n  
~ another monograph. Most prom~ent among the questions in holding paaern is the prob~m of paths 
'~o~g backward ~ ~roper time" and related subjects such as: p~r product~n in c ~ s s ~  relativistic 
mecha~cs, causality ~st with the e ~ e n c e  of p~hs gong backward ~ time and re~ored by quantum 
mecha~cs, and the Schwinger effective lagrangian f o r m ~ m  in fie~ theory. When lack of space 
forced us to elimm~e these questions ~ became natur~ to focus on nonrelatifistic quantum 
mecha~cs and to give the fion's share to the gauss~n m~hod. 

Th~ monograph takes up where the book by Feynman and Hibbs [56] and the a ~  by Kel~r and 
McLaughlm [80]** leave off. We hope ~t can be a user's manu~ and we have let relmbility d~tate the 
level of m a t h e m a t ~  rigor. AH expressions are explicitly given, not  modulo an unknown (infinite!) 
factor. The definition of mathematical terms is included only when needed for computational purposes. 
To define terms needed to ~ate a theorem correctly but of no concern to the practicing physicist 
would have cluaered this monograph to no benefit.t For instance we do not define "Hausdorff" but we 

*A promeasu~ ~s a ~ n ~ u l ~  case of p r o d l ~ n b ~ n ,  and ~ ~ s d ~  den~d h~e ~ y  obv~usly ~ W~ner m ~ s  
**On ~e whale, we do n~ ~ the &~us~ons found m references [5~ and ~ 
tlf  desired ~ e ~  defimtmas can be found m ~ d ~ d  mathem~x~ ~xts We have used bash notaUon and ~rmmdogy, ~ for in~ance ref 

I23].which gathers m a s~ngle volume d~fferem are~ ~ n t e m p m a r y  mathematics, references are made ~ th~s book m ord~ ~ use only one ~feren~ for 
d ~ e ~  areas ~ m ~ h e m ~ s  
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define "derivative mappinf ' .  When ~ can be done without loss of generality, we often give the proof 
of a proposition in the context of an application. On the other hand, ~ would have been cumbersome 
m many cases to in~oduce a theorem by presenting an examp~. When such is the case, the example 
foUows right on the heels of the gener~ statement and can be read before the theorem ff one ~s so 
inclined. For instance ff the following paragraphs seem too abs~act, go right on to example 1. 

Mathemafic~ introduction 

I. Prod~tfibutions 

1.1. Promeasures 

It is eas~r, even for a user's manual, to ~a~ from the theory of promeasures* (also called cylindrical 
measure~, and we give a brief introduction** to the subject. The theory of promeasures generalizes 
the theory of integration on R" to spaces which are not locally compact.~ R is restricted to topological 
vector spaces that are Hausdol'ff and locally convex. Let X, Y, . . .  be such spaces.~ A promeasure on 
X is a family of bounded measures on finite dimension~ spaces appropriately related to X, satisfying 
some coherence conditions. The family of finite dimensional spaces form a so-called "projective 
sy~em of X" defined as follows. 

Let ~(X) be the set of closed subspaces V, W of X of finite codimension~ partially ordered by the 
inclu~on relation C. Let p~ be the canonicM mapping from X into the quotient space XIV. Let 
W C V and ~t  p ~  be defined by p~ = p ~  o p~ The quotient spaces X/V, X/W,.. .  together with the 
canon~al mappings p ~  : X[ W -> X[ V. . .  form the projective syaem of finite dimen~onai quotient spaces 
of X indexed by @(X)- in brief, the projective sy~em of X. 

Examp~ 1. Let X be the space of continuous functions L f ,  ~ . . .  defined on T C R. Let the 
functions L ~ wh~h take Ihe same vflues ~ a ce~ain partition ~ = {~.. .  ~} of T be called eq~v~ent,  Le. 

f ~ f  ¢~ f ' = f + g  w R h g ( ~ ) = O f o r e v e r y ~ E ~ .  

The set of functions g wh~h vamsh on the set ~ forms a closed subspace V C X of finRe codimens~n ~ 

X/V is the space of eq~v~ence c h ~ e s  ~ ]~f{ f ' ;~  ~[}. 

F:g l  

*In~oduced by Seg~ [12~ under ~e  name weak canon~  d~t~butto~ 
**For ~ h e r  dermis ~e for ms~nce ~ [13, 23] 
tSe¢ appen&x A 

t~X, ~ can be e~her fin~¢ ~ mfimte dunensmn~, here ~ey u ~ l y  ~e mfim~ d~mens~on~ but not necessarily ~ 
§Also called ~finite space 
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The canon~fl mapping p~ : X --> X / V  ~ given by L f . . . .  ~ If]. The space X! V has dimenfion ~ since 
we need only the v quantities { f ( ~  to define [f]. Similarly another pa~kion Ow defines another closed 
subspace W C X. If ~ C O~ then W C V and X / V  C X] W. 

Definitio~ A promeasure ~ on X ~s a family of bounded measures {#v} on X! V wah V ~ ~(X) 
wh~h satisfies the following coherence condi~ons: 

{ ~Vh(eX~ ~ ~ ~,de p e n d e #  n t v  is the i m age ° * f V  a n~n d eiSr n O tep d~ o~(X ),.~ 

The projective sy~em {XI V, p ~ ;  V ~ ~(X)} of X on wh~h the promeasure ~s built is determined by 
the t o p o l o g ~  du~ X' of X, i.e. by the set of linear continuous functions** on X: Let x ~ X and 
x' ~ X'  then (x', X)x = x'(x) ~ R. The space V belongs to ~(X) ff and only ff ~ consists of x ~ X such 
that (x I, x) = 0 for a finite number of x~ ~ X'. The set Vo = {x~ is s~d to be o~hogonai to V. 

In example 1, X'  is the space of bounded measures on X and V is defined by the fin~e set 
~8,,, g) = g(~) = 0: ~ ~ Ov}. 

The topolo~cfl duff X' of X is the corner ~one of our formulation and we shill make extensive 
use of linear mappings and their ~anspose~ Let P : X ~  Y be a finear continuous mapping. Its 
~anspose fi maps Y'--> X '  and is defined by the relationship 

( :y ' ,  X)x = (y', Px)y. 

Examp~ Z Whh the notation of example 1, ~t p~ : X ---> R ~ by f ~ {.f(t0. • • f(~ ~ E R ~; the ~anspose 
fro :R ~ ~ X' by ~ = {~ . . . .  ~} E R ~ ~, E~:~ ~,,. Indeed 

f > ×  = . . . .  . . = 

I 

• 

Because we can ~entffy X / V  and R v, this examfle shows that ff p~ : X ~ X/V, ~o : (XI V)' ~ Vo c X '  
where Vo h onhogonfl to V. It is easy to show that fro is an momorphism of (X/V)' hto Vo. The mapphg p~ 
of the examp~s 1 and 2 w~  be used whenever we want to compare our resul~ w~h resu~s obtained wkh 
the ofi~nfl defimtion in wh~h a path ~ rephced by v of ~s vflues. Many other lhear continuous 
mapp~gs w~  be used (see for instance sections 1.2, 1.4, 1.5, 2.3, 3.2, 3.3, 4.4, 4.5). The ~anspose of an 
arbi~ary finear continuous mapping from X ~to R ~ ~ ~ven ~ the foflowhg exampb. 

Examp~ ~ Let X be ~ e  space of conhnuous funcaons defined on T C R X' is the space of bounded 
m e n u ,  s on T. L ~  P : X ~ R ~ by x ~ u whe~ u is ~ e  v4up~ {u ~ = ~I, x~. The du~ of R ~ ~s ~ e  set 
of v4up~s ~ = {~} and (~ u)~ = E ~  ~u'. The Wanspose ~ : ~ 2 ~ x ; .  

Proof: 

= Px>,, = x )  = x>. 
t ~ 

• 

*Let A C X / W  and BCX]V such that A = p ~ ( B )  then ~v ~ the ~mage under Pow of #w ff gv(B)=#w(A) One writes #v=p~w(#w) or 

~ v  : P ~ w ~ W  

**Also called func~on~s ,  or forms We use the word funcUon for  any mapping w~h v~ues  m R or C, whether ~s d o m ~ n  ~ a fimte or mfimte 

d~men~onM space 
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Fourier transform~ We rec~l first some properties of Fourier Uandorms of ~mpered ~stribufions 
St' based on RLLet ~ be the space of rapidly decreas~g functions ~ on R ~. The Fourier ~andorm ,~T 
of T ~ ~ '  is defined by 

( ~  ~) = (~ ~ )  

where 

~ ( x ' )  = f exp( -~x ;  x ~ ( x )  dg  

R n 

In p a p u l a r  ff T is a vector v~ued* measure ~ on RL then 

(~, ~) = f d ~ ( x ) ~ ( x )  ~ : 1 . . . .  ~ 
R n 

and 

(~#.,)= f dx'fexp(-ff~x'))d~o(x),°(x'L 
R n R n 

Note that a measure ~s not defined pointwise but setw~e, M U ) =  f v  dMx). Its Fourier ~andorm,  
on the other hand, is defined po~tw~e 

~ ( x ' )  = f e x p ( - ~ x ' ,  x)) d~(x) .  
R n 

In other words, a measure is a d~tdbutbn ot order zero, i.e. a distribution defined** on the space of 
continuous (not necessarily smooth) functions with compact suppo~. But the Fourier ~ansform of a 
measure ~ on X is a distribution eq~v~ent  to the function ~ on the du~ X' of X. If X = R ~ is the 
space of n-dimens~n~ conVavariant vectors, X ' =  R ~ is the space of n-dimens~n~ covariant 
vectors. 

~ e  ~ a ~ u ~ r  ~ n s [ o ~  un~r a ~ear m ~ p ~ g  ~ Let P : X ~ Y and fi : Y ' ~  X'. Let ~ be a 
measu~ on X and u ks image under E Then 

~ = ~ o ~  

The Fou~er Wandorm of a promeasure ~ 
v ~ ~x~ .  

Let x' be in the space ~ ,  o~hogon~ to 

f ex~-~u~ u~ d~u~ 
~ v  

~ ( x ' )  = ~ ( u 3  = 

S~ce 
X ' =  U ~ 

v ~ x )  

(1.1) 

is defined by the fam~y of Fourier ~ansforms { ~ v ;  

V, and let u be ~n R v and u' in the dual of R °. Then 

x ' ~ .  

*Coordinate expressmns w~H be written exphotly only when des~ab~ 

**We say that a &stnbutmn ~s defined on a space of test functions of dom~n R n, or that a &stnbuuon is based on R" The theory of 
dlsmbuuons on generM spaces has been studied by Kree ~2] h ~ not ~mply a form~ generahzaUon of &smbuuons on R n 
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~ ' ~  W' 

F~g 2 5~ ts a funcnon on X' ff ~ = P(~L then ~v(y3 = (,,*~ o #)(y3 

this equation define s ~ on X'. R ~ s~MgM~rw~d ~ show ~ m  eq. (1.1) is vMM for promeasu~s. EqumMn 
(1.1) is one of the bas~ tods  ~ computing pMh ime~Ms. 

I.Z P m ~ a d b ~ M n s  

A promeasure is a family of bounded measu~s.  For ~s~nce ,  the W~ner promeasu~* is a family 
~ gausshn measu~s.  To show why p~measums,  and ~ p a ~ u M r  the W~ner  measure cannot readily 
be used in the case of Feynman ~ g r M s  we s h ~  contrast reM and imagin~y gausshn measures on 
R ~. Let 

d%(x) = ~A~o~2(d~ A- ' )  '~2 e x ~ -  (A-'),~'x'I2A) d x ' . . ,  dx ~ 

where A = 1 ~ r  ~M gauss~ns and A = i for ima#nary gau~hns .  X/~ = exp(i~4). The reM gausshn yt is 
a bounded measu~**: ~o M~(x)l < ~. The imaginary gausshn ~ ts n ~  bounded, and we cannot use it 
to define an integrM ~ the usuM sense. One can define ~a d ~ )  as the limff when a = ~ of fg~ d~,(x), 
but for v > 1 one cannot define ~ d~,(x) as the limff of an M~grM over a finite domMn. For exam#e 

1 ~ compmed ~n Cartesian coor~nmes as 
the lim~ of 

a b 

- - ~  - - ~  ! ( 2 ~  -~ exp(i(x ~ + y ~ / ~  dx dy = 
1 -  (1~ exp ia2/2) ff compu~d ~ pol~ coor~n~es  as the 

fim~ of 
a 2 w  

0 0 

One can h ~ y  b ~ d  a ~eory  of ~ g r a f i o n  where change of vafiaNes of ~ g r ~ n  is not ~ o w ~ ,  
~ t  None a ~eory  of ~ g r ~ m n  over mfin~e d ~ e n s ~ n N  spaces. 

A l t ~ h  ~ is a measu~ u n s ~ N e  for ~ e ~ o n  in the sense of set ~eory ,  R is an exce~ent 
measu~ ~ the sense of ~ r i b ~ o n  ~eory.  

*It can be shown ~m ~e Winner ~ o m e a ~  ~s eqmvMem to a measu~ ~ g 13, p 8~, a is ~us ~ffect~ co~e~ to s~ak of ~e  W~ner 
~ ¢ a s H ~  

* * ~ e n  A -~ ~s a positive defim~ form on R ~ 
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(a) It is a tempered distribution,* ~ E ~'. Its Fourier ~ansform is the normalized comp~x gaussian 
function of cova~ance A ~, variance A'~x~, 

~y,(x') = exp ( - ~  A " x ~ .  

(b) It is in the space of operators on 6e': both multiplication %T and convolution % * T are defined 
for every T E 6e'. 

Since there is a one-to-one correspondence between the set of promeasures on X and the~ Fourier 
wansforms on X',  one can define a promeasure by ks Fourier Uansform and state the coherence 
conditions as conditions sat~fied by the Fourier Wansforms. At  th~ point we shah remove the 
rest~ction to bounded measures since ~Tx is defined equally we~ for h = 1 and for h = i, and we shall 
c~l** "prodist~bufions" the general~ation of promeasures thus obt~ned 

~ n ~ m  The ~ u ~  t ~ m ~ r m  ~ 
V ~ ~ }  such that 

~ is coherently defined: If x ' ~  ~ ~ ,  
promeasu~ is a g o ~ s ~ b u f i o n .  

on X' d a ~ f i ~ f i ~  # ~ X ~ a h ~ y  { ~ v ;  

then ~gv(X ' )  = ~#w(X 3 .  It is easy to check that a 

G a u ~ n  prodist~butions. A pro~s t r ibm~n w on X is sMd to be gaus~an ff 

:Tw(x') = w ( X ) e x p ( - ~ W ( x ' , x ' ) ) ,  ~ = l o r i  

where W is a b~near  function on X'  ~ o s ~ v e  d e f i ~  ff A = 1). W(x' ,  x') is called the va~ance. The 
n o r m ~ n  w ( X )  ~ not necessarily equ~ ~ one. We ~ e  us~g ~ e  ~ a ~  w for gauss~n pro~stributions 
because ~s famous prototype, the W~ner  measu~,  is usu~ly called w. 

E x a m p ~  ~ Let X_ be the space of continuous paths x on T = [~, ~] with vMues in R" va~sh~g  at 
~. The b ~ e a r  function W on X'  is of the form 

f du.(t) f s). 
T T 

G~°(h s) is called the covariauee of w. 

Def inR~g  The W~ner m ~  on the space X of pmhs 
~ o ~ s ~ b u t i o n  c h e f , r i n d  by A = 1, w ( X )  = 1, and 

G(~ s) = O(t - s~ s  - ~ )  + O(s - t~ t  - ~ )  = Mffs - ~,  t - ~ )  

with v~ues in R is the gaussian 

*The space of tempered d~stnbutmns, labeled ~', ~ the space of dlstnbUtlOnS defined on the space Se of te~ func~ons ~ such that ~ has a 
Fourier ffansform h follows that ~ ~ the space of d~stnbu~ons which have Fourier transforms 

**Ongm~ c~led pseudomeasures The word "prod~tfibutmn" has been sugge~ed by D~udonn~, to describe a projectwe family of 
d~stnbu~ons 



264 C DeWtH-Moret~ ~ al , P a ~  integration m non-relat~wsttc quan~m mechamcs 

where 0 ~s the step functmn equ~ to one for pos~lve argumenB and zero otherw~e. For ~mphcity we 
sh~l o~en use the term "W~ner measure" for both the comp~x and re~ norm~ked gau~hns of 
covafiance ~finum and label ~ w w See p 266 for the relationship b~ween the W~ner measure and the 
Browman motion. 

E x a m p ~  L The space h~oduced m examp~ 4 ~s used e~enfivdy m ~e  ~ffus~n prob~m. A 
part~c~ is known ~ be somewh~e ~ time ~: how will ~t d i f fu~  9 A ~ f f ~ e ~ ,  but ~mfl~ space is used 
in quan~m phys~s, namdy the space of p~hs x" T ~ R "  va~sh~g at ~. One knows the wave 
funcuon ~ time ~, one wants the wave function ~ ~, hence one sums over ~1 the p~hs ta~ng ~e  
same v~ue ~ ~. 

Let X_ be the space introduced ~ examp~ 4 and X÷ be the space of p~hs vanishing at ~ Let 
P : X _ ~ X +  by x ~ y such th~ y(t)= x ( t ) - x ( ~ ) .  P is a finear map~ng. Its ~anspose fi ~s such th~ 

~ = ~ - ~(T)6,, w~h ~(T) = f d~(t). 
T 

Let w_, W_ and G_ ~ ~ t i v e l y  the Wien~ measu~ on X_, as variance and covanance, and let w÷, W+, 
G÷ be ~e  corr~pondi~ quantities on X+. Then 

W+(#,~) = W_(~fi~,~#) = ~ d#(r)~ d~(s)[O(r- s ) ( t , -  r)+ O(s-  r ) ( ~ -  s)]. 
T T 

The covariance G+ of the W~ner measure on X+ ~s 

G+(t, s) = O(t - s ) ( ~  - t) + O(s - t ) ( ~  - s) = ~ f f ~  - t, ~ - s) 

The s~ll h computing a p~h integr~ consi~s in choosing the covafiance and the no rm~a t ion  
best s ~ d  for the prob~m ~ hand. We sh~l gNe in sect~ns 3 and 4, a method for computing covarmnces 
n ~ u r ~  su~ed to ~ven ~gran~an and hamflton~n syuems. The vers~l~y of the p~h m~gration 
technology based on prod~tribution comes in part ~om the gre~ cho~e of covarhnces ~ our dhposal. ~ 
comes ~so ~om the fact that we work w~h the var~nce W(g, g) r~her than the covarhnce G~(h  s). For 
~s~nce the image under a hnear mapphg P of a gausshn of variance W ~ the gausshn of variance 
W o ft. No such fim~e relation exists bOween covanances. Moreover the variance is a coordinate free 
expressmn, and the proNems connec~d w~h change of coor~n~e sy~em on the configuration space do 
not exist. 

t e ~ t b t o ~ 

~xamp~ 4 ~xam~ 5 
~ 3  

t b 
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Gaussian and gaussian induced* prodistribufions are the only ones we have been abM to use in a 
pracfic~ way so far. It is not too severe a restriction for quantum physics since the covariance 
cons~ucted from the Jacobi fields of the system contains the essence of ~1 quantum effect.  
Neve~heMss ~ would be vMuabM to be able to integrate w~h respect to other prodistribufions. 

/.~ ~ m ~ n  

T ~  ~ u ~  ~ ~ s  wi~ ~ s ~ c t  ~ a ~ o ~ s ~ b ~ n  w ~nown by its Fourier ~angorm 
~ )  will proceed en~rely in terms of ~ .  But we sh~l ~so use the usu~ n ~ o n  to wri~ down a p~h 
~ 

f F(x) dw(x) ~ R. 

x 

We s h ~  use ~ e  ~ ~  ~ e ~ e s  ~ ~ ~ n :  
~ ~ y :  

W 

f ~(F(x) + G(x)) dw(x) = ~ f F(x) dw(x) + ~ f G(x) dw(x): 
x x x 

change of variab~ of integration:** Let F = ~ o P where P : X ~ Y by x ~-~ g Let P~ be the image of 
under P. Then 

f F(x) dw(x) = ~ [(u) dPw(u) (1.2) 
x Y 

where 

~(Pw) = ~w o ~. (1.3) 

If P ~ a finear c o ~ u o u s  map~ng of X ~ a fin~e ~mens~n~  space, F is cfl~d a cyfindficfl or a ~me 
function. A c ~ d r i c f l  ~ g r f l  is equfl to an i~egrfl over a fin~e ~mens~nf l  space. 

Let w be a normalized gauss~n prodistribufion of variance W, ~w = e x ~ - i  W/~, then 

f F(x) dw(x) = f f(u) dPw(u); 
X R ~ 

Pw is a n o r m ~ e d  comp~x gauss~n measure cf variance 

We : WoP.  (1.4) 

The most generflt l~ear continuous mapping P : X-> Rv is defined by x ~ u = {u ' , . . .  u°} where 
u ' =  (x;, x) for some x ;~  X'. Let ¢ = {~ . . . .  ~} be ~ the dud  of R~ then (see examfle 3) ~ ( ~  = 

*See p 268 
**Other notations such as E[F] often used m probablhty theory are not as conven~nt when performing change of Varla~es of Integration 

fv ~ not necessarily fimte See for m~ance secUon 3 5 
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E ~  ~x; and 

S ~  W~; ,  x ) =  ~" .  Pw ~ a ~ r m ~ d  comp~x g ~ n  m e ~ u ~  on R ~ of c ~ ~  ~ o ;  

= ~ ~ ~ ~ l~ll~ ~ Q (  ~ 1 ~  ~ ) du ' . . .  du °. dPw(u ) (15) 

~ a m p ~  & ~ n e r  measum and Bmwn~n mo~o~ The Brownhn motion is a random motion such 
• ~,  ff t > s, x(t) - x(s) is a random v ~ a b ~  ~ gau~hn S s ~ b S b n  of mean x(s) and mean square 
~ v ~ b n  t - ~ We c ~  ~ a ~ y  use eq. (1.5) m c o m ~  

f ~ ,  ~ -  x(t,) . . . . .  x ( ~ + , )  - x ( g ) )  I d w ~ ,  

where w~ is the re~ W~ner measu~ on X_. Indeed, ~t  

P : x ~ u  ={u  ~ = ~ + , -  ~ , x ;  k = 0 . . . . .  n}, 

then 

~" = w _ ( ~ + , -  ~,,, ~+,- ~,,) = ~ , 1 ( ~ + , -  ~) 

f f (  u l ,  . . , U n + l )  dy l (U  1) . . . . .  dy,+~u"+'), I =  
~n+l 

where 

dy~(u ~) = (2~(~+, - ~))- '~ exp(-(uk)2/2(~+~- ~)). 

The random process* {x(t); t ~ O} defined by the W~ner measure is the Brownian motion. 

Examp~ Z Let P : X - > R  ° by x~-~u ={u ~, u2~} where u~=frg~( t )x~( t )d t ,  u ~ = x~(t). Introduc- 
ing the Lebesgue measure A defined by 

(A, ~b) = f ~b(t) dt 
T 

and the vector vflued Dirac measure ~7 of componen~ ~&,  we can write 

u' =(x~x), u 2~ = ( ~ 7 , x ~  

Let ~ = {~,, (2~}, then 

~ = ~ = ~,Ag~ + 6o8~, 

= ~,Ag. + ~2~6, 

*A random process, m probablhty theory, ~ a family of random variables indexed by ume See appendix D 
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and 

W(~,#) = f d ~ ( t )  f d~#(s) G~e(~s), 
T T 

w(~, :¢) = ~:" 

= s , .  

T T 

~'~ = f ~ ) G ~ a ( ~  t), 
T 

f ° / 4 : ~ = G ~ ( ~ t ) .  
T 

To c o m p ~  ~ e  c~culation of [~o ~u)  dPw(u) ~ ~m~ns  to inve~ the c o v ~ n c e  ~ "  and to compute 
~s d~erm~ant. For v small, as is often the case, this not p~ticularly diffic~t. L~ge v's come usually 
when u ~ = (8~,, x~ = x(~); then W(8,,, ~) = G(~ ~). The ~ v ~  and the d~erm~ant of ~:~ = G(~ ~) 
have been computed ~ ~ the cases of g ~ e s t  intere~ ~ quantum phy~cs and ~ a t i ~  
mecha~c~ namdy when ~e  covafiances are e~ment~y kernds cf the Jaco~ equation of ~ e  sy~em. 
(See appendix B.) 

App~ca~on: The moment Mtegrals and the Feynman diagram ~chniqu~ Let w be a normM~ed 
gaussian on X of variance W, covariance G; then 

12~ef (8~ x~8,, x> dw(x) = AG(~ s), (1.6) 

X 

where A = 1 for reM gauss~n and ~ = i 
moment i n t e ~  

for compMx gauss~ns. More generally, ff n is even, the 

I~ = f (~,,x~2, x)'"(~,x)dw(x)=(A)*2~ W(~,,,~W(~,s,~O... W(~,._,,~,.L 
X 

where the sum ~ taken over all partitions of {I , . . .  n}. If n is odd the moment integrM va~shes. 

(L~) 

Proof. The moment integral is a cylindrical integral which can be computed by the method outlined 
above. It simplifies the calculation to write first 2(8. x~8~, x) = (& + ~,, x~ - (~. x ~ -  (~,, x~ and 
similar expresfions* for/~. By eq. (1.5) 

/ (~ + ~, x~ dw(x) = ~ ) - ~  f u ~ e x ~ - u ~ l ~  du = ~ / 2  
X R 

whe~ ~ =  W ( & + ~ ,  & + & ) =  W ( ~ & ) + 2 W ( ~  ~ ) +  W(~,~) .  

* ~ e  d ~ s  m ~f .  ~N  M ~ m ~  Ms proved ~ ~ ustng gener~lzed ~ p o l ~ o ~  [ i ~  

• 
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The momem ~ e ~ f l  ~ ~s ~ e  key inte~fl ~ ~ e  Feynman ~a~am ~ch~que. F ~  ~s~nce 

f P~, ~(t,,...~$~,x)...(~,x)dw(x) 
X 

= E Pal ~(t, .... t~)G%%(t,,,t,~)... G%'%(t,~_,,t,). 
p a r t  

When P ~, ~(t~ . . . .  ~) = P~,(tO... P~(~)  one speaks of vertex functions P~(t) and propagator lines 
G~(~  s). The propagator l~es are hooked up to the vertices in all possible ways, and the E~a~ is 
~presented by 1, 3 . . .  ~ - 1) diff~em dh~ams.  

We do not deve~p fu~her the ~agram ~chn~ue w~ch has been ex~nswdy s ~ e d .  Equation (1.~ 
shows how ~e  dh~am ~chfique can be obtfined ~om p~h inte~ation. 

Akhough all the exam~es ~ven here have been worked out wah gaussmn prod~tributions, the 
bas~ equations (1.D and (1.3) app~ to any pro~gributions and can be used to ~ g r ~ e  any cylindrical 
function. M~ra~ [10~ o~en uses gausshn ~duced prodistributions. For ~ a n c e ,  ~t w be a gausshn 
p r o ~ s ~ u t i o n  and let F be a cy~ndfic~ function of the form F(frx~)[(Odt). One can define a 
gaussian ~duced pro~stribufion ff by the equation fx df f~ )=  fxF(f~x(t)~O dO dw~ 

~ F ~ not a cylindrical function but can be approxim~ed by a ~quence of cylindrical functions FL one 
defines the sequenti~ p~h integr~ 

f F(x) dw(x)= lira f F"(x)dw(x). 
X X 

~ e  conve~en~ d a ~ e ~  p~h i n ~  is a d ~ c d t  subject wh~h is nm ~ e m p ~ d  ~ .  

Albeverio and HCeg~KrChn [3] c o n s ~  p~h integrals fx F(x) d w(x) wh~e F is ~ e  Four~r Uandorm 
of a bounded comp~x measu~ on X': 

F(x) = f exp(-~x', x)) dr(x3. 
X'  

Thus 

f F(x)dw~)= f dv(x3 f dw~)ex~-~x',x))= f dv~3exp(-~W(x',x')). 
X X '  X X '  

This method does not requke the inversion of W, but ~ does require finding ~ It ~ well defined but 
only for integrands wh~h are the Fourier ~ansforms of bounded complex measures on X', and th~ is 
restrictive. Albevefio and Hcegh-KrChn have proved that thek definition ~ equivalent to the one proposed 
by It6 [71]. 
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1.~ Some propea&s of the Wiener measure 

The foHow~g mappings estab~sh ~mpo~ant and useful proper~es of the W~ner measure. 

~ L ~  ~ W t  

~g  4 

Let ~ be the space of reM s q u ~ e q n ~ a b ~  functions h on T: 

~h~ = f g ~ h " ~ a ~  
T 

Let L 2~ be the Sobo~v space of s q u ~ e h n ~ a b ~  ~ n ~ o n s  on T whose first weak* ~ f i v ~ v e s  are 
s q u ~ ~ a N e .  Let L~ ~ C L ~'~ and L~ ~ C L ~'~ be the s u b ~ a c ~  of L 2"~ of func~ons v a ~ h ~  at ~ 
and of func~ons vamshmg at t~ ~ e ~ v d y .  

I g~ ,y~)y ' ( t )  dL ~(t) = dy/dt. 
T 

The action S(f) = f~ L(f(tL ](tD dt of the phys~al systems considered here are mappings S : L ~ - ~  R. 
Path integrals, on the other hand, arc not defined o v e r  L 2"~ but over the spaces of continuous 
functions, for instance over space Y_ ~he space ~+] of continuous functions vanishing at ~ [at ~]. 
Fo~unately L~ ~ is dense in Y_, Le. any path in Y_ is the limit in the L~ ~ topology of a sequence of 
paths in L~ ~. Similarly L~ ~ ~s dense in Y÷. 

HoMer con~nuous paths. So far when talking about the paths in Y± we have used the word 
"continuous" loosely. The prec~e statement is as follows ~.g. 121, p. 279]. A path f ~s said to be 
Holder continuous of order a ff I f (O- / (s ) [  ~ Mlt - sl ~. 

Theo~m. Let ~ be the set ~ Holder continuous pa~s ~ o ~  a. Let w w be the Wiener gauss~n 
on ~ .  ~ 0 < a < 1/2 then wW(O~) : 1. ~ 1~ ~ a ~ 1, then w~O~) = O. 

~eo~m.  L~ ~ ~ contused ~ ~ ~ a ~ 1/2 but not ~ a > 1~. 

P r o ~  t 

f ~ L~ ~ ~ /(t) - f(s) = f f (u)  du 
$ 

f ~ u ~  2 du j 12 du ~< IIf]l~,(t - s). 
$ $ 

*Derivatives m the sense of d~stnbuuon theory Sobolev's spaces L p m are ~so hbelled W~, the spaces L 2 m are ~so hbelled H m 
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Intumvdy this theorem says that ly(t)-y(s)]" is of order I t -  sl ~n, a fact worth remembering when 
expanding ~n powe~ of It - s[. 

The primitive mapping maps ~ onto L~ ~ and ~ in~ Y~ by 

h(t)~-+y(t) = f ~O±(s - t)h(s)ds 
T 

where 0÷ ~s the usual s~p up func~on 0 equ~ to one for positive argumen~ and to zero otherwhe, 
and 0_ is the s~p down function equ~ to one for negative arguments and zero otherw~e. Let 
P~ : ~  L~' and Pff:  ~ Y~; the mapphgs P~ and Pff  do the same thug but thek difference will 
show up striUn~y bdow ~ompare theorems 1 and 2). The mc~s~n  mapping i maps L~ t into Y by 
y ~ y. Innocuous it appears, but p o w e ~  R w~ b e . . .  (see theorem 3). 

The e a n o n ~  gaus~an on a Hflbe~ space is the normalized gausshn prodhtribution whose 
variance is equ~ to the square of the norm. Thus the variance of the cano~c~ gausshn on ~ and on 
L zA are 

I~(h, h) = ,hll~ = f g~'h~(t)h~(t) dt 
T 

IL2,(y, y) = Ily~:~ = f g~O~(t)y~(t) dL 
T 

Theorem 1. The Wiener measum on Y~ ~ the imag¢ under the pdmMve mapp~g P~ o[ the 
canon~al gauss~n on ~. 

Pro@ The ~anspose map ~ is defined by 

= = [ d (t)f o<,-:>h(s)ds: 
T T 

thus 

#_#(s) : f O(t- s) dg(t), 
T 

and the variance is 

to 0_(~, ~)= f ds f O(t-s)dMt) f o(C-s)d~(tO 
T T T 

l o ~ _ = W _ .  

A fimflar c~cdafion ~ves 

= f d/~,(t)y d/~(t')inf(t-to, 
T T 

t ' - ~ )  

• 

,o [ f 
T T 
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Theorem Z The canonical gaussian on L~' ~ the imag~ under the p~mitive mapping P~, o[ the 
canonical gaussian on gg, 

I ~ , = I ~ o ~ .  

The proof proceeds as in the previous theorem. 

Theorem 3. The Wiener measure on Y is the image, under the inclusion mapping, o[ the canonical 
gaussian on L ~'~. 

P~=ioP± 

W±= I~o P~= I~op~of  = U~,o~ 

To ~ s p h y  how ~ e  h d u s ~ n  mapphg wo~s  we compu~ ~ o ~ 

<{~, y)~,' = <~, ~ ) ~  = f ~t({~(t))~(t)dt= f y(t)d~(~.  
T T 

It f ~ w s  that 

f O ( t - , d , ( t )  
T 

I~=,o~...)= f ~(~.(r))~(~.(r))dr 
T 

= f I 
T T 

Therefore I~5' o [ = W_. 
~ y ~ L~', then d(f~(r)/dr = fr O(r- t) d#(O. ~ follows that I~5' o f=  W+. • 

Theorem 3 gives the W~ner measure ~ terms of the space L 2"~ wh~h is of phys~M interest, theorem 
2 shows Ihat the same result is obtMned by us~g the mapp~g P ~ :  ~-~ Y± wh~h is usuM~ sim~er to 
handle. In section 1.5 we shall work with P ~ {0 compu~ some Fredholm determ~ants. 

1.~ The Cameron-Ma~in t r a n s f o r m ~  Fredholm de~rm~ants. A~ne transformations 

It is easy to compu~ the image of a gaussian under a finear map~n~ h is more diffic~t but often 
necess~y to solve the inverse proMem: Given two gauss~ns, WA on Y and ws on X (wi~ variances 
A, B, and covafiances GA, G~), what is the l~ear reaping M: Y ~ X wh~h t~nsforms one ~to  the 
other? For examp~, in sec~on 3.2 we have to compu~ the integr~ 

f 
Y+ T 

0.8) 
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where w A is the W~ner measu~ on Y.. Obvmu~y we need to find the hnear mapp~g which maps WA 
lnto a new gaussian w~ "incorporating" the integrand. A ~mflar proNem occurs ~n sec~ons 3.2, 3.3, 
3.4, 4.6 where, ~ven a hgrang~n sys~m or a hamfltonhn sys~m, we seek the varmNe of ~ g r ~ m n  
best adap~d to the computat~n of pa~  integrals. Such prob~ms can be solved by a generalized 
Cameron-Marun f o r m ~ *  

The Cameron-Maain formula. Consider a n o r m ~ e d  gaussmn w~ of variance A defined on Y. Its 
~mage under the hnear continuous mapping M : Y ~ , X  is the normalized gauss~n w~ of var~nce 
B = A o ~ .  Although dw~(y) and dw~(x) cannot be defined for arbarary prod|stributions, their ratio is 
defined** and g~ven by the Cameron-Martin formula when M has a unique inverse M ~" 

dw~(x)[dwA(x) = Det M ' exp(~(A-'(M-'x,  M-lx) - A-~(x, x))) (1.9) 

Proof of the Cameron-Ma~in formula. Let X' and Y' be the du~s of X and of Y, let ~ ~ X' In the 
fin~e dimens~on~ case, A(~ ~) = A " ~ ,  1.e. the covafiance GA is the dyad~ A", 

dwa(y) = ~/2~1 dy'  ."~Y~--~l(deta~l)l~exp(~A~'y'y') 

d w~(x ) = d w a (X ) ( ~  ) l~exP ½( B - ' - a-1),,x~ x ~ 

The mapping M is defined by the matrix MI, 

B" = M~M~AU; B , '  = A f f (M- '~ (M- '~  

det B~det  A ~ = (det MT~ tl.~0) 

The infin~e d~mension~ case is obtained by rewriting the finite dimens~on~ case in terms of ~near and 
bflinear continuous mappings rather than matrices and dyadics. Inverse bflinear forms are defined 
bdow. 1 

We prove later on (p. 279) that Det M is the Fredholm determinant of the hnear mapping M. Stated 
in a terminology valid both for the finRe and infin~e dimensionM case, eq. (1.10) says 

Lemma. The de~rm~ant of M, squam& ~ the ra~o of the determ~an~ of the covadances of wo 
and wa. 

This ratio can be ev~uated ~ c~sed form by the method gNen In appendix B, p. 358. 

Inve~e b ~ e a r  forms. We have to define the "~verse"  of a bfl~ear forint on X'. The reverse, m 
the sense defined bdow, of a b~near  form on X' is a bilinear form on X". S~ncett X" is not 

* Early m the development of the theory of prod~stnbutlons, Mlzrah~ used the Cameron-Marhn mapping to absorb pan of the mtegrand and create 
new gaus~ans See ref [107] for h~s techmques and the~ appl~at~ons 

**See the proof that the ratio ~ defined in appendix B, p 358 
t A  fruitful discussion w~th J Dollard ~s gratefufly acknowkdged 

tTln generM X" D X 
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necessarily equfl to X, ~ ~ be~er to work backwards: define a bil~ear form on X, compu~ ~s ~ v e r ~  
on X', i.e. assume we know A -~ on X and compu~ a b i l~e~ form A on X' wh~h can ~gitimately be 
called ils ~v~se .  

Let ~ 5 . . .  ~ X and x', y ' . . .  C X'. A b~near form A-t(x, y) defines a l~ear map A~ ~ :X ~ R for 
every y ~ X by 

A~'~) = A-'(x, y~ 

Hence A ~  X'. S~ce A~ ~ ~ finear in y ~ defines a l~ear map ~-~ :X ~ X' by 

~-'y= A~'. 

If ~ - '  is a bijection ~ne~ne ,  omo) then ~ has an ~ve~e  ~ : X ' ~ X  such that 

A-'(~x', A y3 = (A ~,, A y~ = ~A-' Ax~A y~ = ~', Aye. 

Definition. The bilinear form A on X' is said to be the inverse of the bilinear form A -1 o n  X if 

A(x', y') = A-~(Ax~/iy'). (1.11) 

Equation (1.11) provides a method for computing ~, hence a method for computing A. 

Examp~ 1. Let X be ~ e  space of L~ ~ p~hs ~ y . . .  ~efined p. 26~. The most generfl symmetric 
bil~ear form on X is f r  (a(t)x(t~(t) + B O ~ ) y O )  + xO)$O~ + y ( t ~ O ~  d~ A~ume ~ 

A-l(x~ Y)= f (~(y) lp(t~dt : f g~=(t)ff(t)dt 
T T 

and compute A(x', Yg. Equation (1.11) gives 

A-'(~x', ~y') = f dt (~x~t)[ ~ y ~  = ~', AyeS'. 
T 

The duality ~ L~ ~ ~ (x', y)= f r ~ t ) p a O ) d L  Hence ~ is the canonic~ homorphism X'->X defined 
by the metric on X. And 

A(x', y3 = A-~(~x~ ~y9 = f dt g ~ ( t ) ~ t ) .  
T 

This examp~ is p o s s ~  too trivial because the space of L~ i paths can be identified wRh ks duff. 

Examp~ Z Let X+ be the space of continuous paths ~ ~ . . .  vanishing at tb. Let i be the inclusion 
mapping from the space of L~ ~ paths vanishing at ~ into X+, i: y ~ y Let A -~ be the bilinear form on 
X+ induced by i from the bilinear form A -~ on X defined in example 1. The duality in X+ ~ 

<x,,,> = f ya(t) dx t) 
T 
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and an arbitrary mapping A :X’+ X 1s of the form 

(~y’)“W = j- G:’ 0, s) dy;r(s) with G+(&,, s) = 0. 

T 

Equation (1.11) gives 

A-‘(&,ay’)= /dtg,,V,(/ G,‘(t,S)dx;(s))V,(j G!‘(t,r)dy;i(r)) 
T T T 

= 1 d-x;(t) j- G?(t, S)dy;(s). 
T T 

It IS satisfied d G+(t, s) IS the elementary kernel of -V,V, such that dG+(t,, s)/dt, = 0. Together with 
the previous condition G+(&, s) = 0 and the fact that G+(t, s) = G+(s, t) this determines G, uniquely. 

In conclusion, the inverse of A-‘@, y) = ST (x(t) 1 y(t)) dt in the space of L2*’ paths is A@‘, y’) = 
_fT (i’(t) ) y’(t)) dt; its inverse in the spaces X, of continuous paths vanishing at tb [vanishing at t,] is 

the Wiener variance A&‘, y’) = .fT dxL(t) _fT dyb(s) GTB(t, s). 

We have computed the inverse of A-‘, not the inverse of A. We may occasionally speak 
colloquially of A-’ as the inverse of A; we may also say that the elementary kernel Ga of an operator 
DA that satisfies the boundary conditions CA is the inverse of (DA, CA), and vice versa. 

We have noted previously that tt is simpler to work with the variance A than the covartance G,; 
similarly it 1s easier to work with the “inverse” variance A-’ than with the “mverse” covariance 
(DA, C,) Covariances and inverse covariances are introduced m the last stages of the calculatton. 

Remark. G, are the reproducing kernels in the spaces of L2’ paths vanishing at tb [vanishing at t,], 

(GA ~1 1 x(-))~21 = x(s). 

How to use the Cameron-Martin formula for computing or simplifying path integrals. Consider the 
integral 

K,(t)y”(Oys(t) dt 
Y T 

We give first three different methods for simplifying this integral and then proceed to compute an 
example. 

Method 1. Change of variable M : Y + X 

I = 
I 

dw&)exp (; \ V,,(t)(M-‘x)“(t)(M-‘x)@(t) dt)F(M-lx) 
X T 

By the Cameron-Martin formula 

dw,(X)=dw..,(X)DetM-‘exp($A-l(M-’x, M-lx)-A-‘(x,x))). 
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Choose M -~ such that 

A - I ( M - t x ,  M - ~ )  - A-'(x, x) - f dt = 0 
T 

i.e. choose M such th~ 

A-'(My, My) - A-'(~ y) + f V~(t)y~)y~(t)  dt = O. 
T 

Then 

(1.12) 

I = Det M -~ f dw~(x) F(M-~L 
X 

Method Z Change o[ prodbtdbutiom Since the exponent ~ quadrat~ in ~ there is a mapping 
M-~:X-> Y such that the image of WA on X is w~ on Y sat~fying 

dw (y)exp(  f V~, )y~ , ) ya ( t )d t )=De tM -' dwa(y). 
T 

Find ~ such that B-~(g y) = A-~(g y) -Yr V.o(t)y"(t)y°(t) dr, then 

I = Det M -~ f dwa(y) F(y~ 
Y 

The second method (change of gauss~n) ~ in gener~ simper than the first one (change of variable) 
because F is usually ~mp~r than F o M -~. The gaussian w~ incorporates more information about the 
sy~em than w~ but ~ is still a gaussian and as easy to handle as w~. 

The second method is used in the application p. 276 and in sections 3.2, 3.3 and 3.4. Obviou~y both 
methods give the same answer: 

f dwa(x) F(M-'x)= f dwB(y) F(y). 
X Y 

h is p~asin~ neve~he~ss, to check R on an examp~. For in~ance ff F(y) = / ( y ( ~  then 

I = Det M-' f du(2~i)-ln(det GB(ta, ~ - " 2  exp(~ u~GB(~, ~))[(u~ 
R 

Ufing the first method and assuming M -~ to be of the form 

M-':x~->y by y(t)=x(t)+ f k(hs)x(s)ds 
T 
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then 

F o M - ' ( x ) = f ( x ( ~ ) +  f k (~ ,s )x(s )ds) .  
T 

Set u = (~o + ~ x) = x(~) + / k(~, s)xfs) ds, 

then 

I=  Det M-| f du(2~O-l~(det W~(~,o+~ ~,o+ p~-l~exp(~u2/W~(~t~+~ ~ta + P))f(U) 
R 

W~(~,o + ~ ~,o + ~) = G~(~, t~) + 2 f k(~, s)G~(s, to) ds 
T 

+ / ds f d rk (~ , s ) k (~ , r )G~(~r )=G~(~ ,~ )  
~ T 

Method • Any term in F wh~h is an exponentifl of a linear or quadrat~ form in the var~b~ of 
integration can be incorporated wkh wa and ~ve a new gaussian ww The following example will show the 
generfl procedure for incorporating quadratic forms. See the paragraph (p. 281) on affine ~ansformation 
for incorporating linear forms. 

A ~ a ~  Compu~ the p~h ~ e g r ~  ~ven by eq. (1.8). We s h ~  use the second m~hod. The 
prob~m consists ~ fining M-':X+ ~ Y+ such that 

~ ) -  A-~(~ y) = -  ~ ~ ~ d t  + ~ ( ~ ( ~ )  A - | ( ~ ,  
T 

for ~e  case where A ~s the W~ner variance 

a(~, ~)= f d .~ (~  f d ~ ( s ) G ~ ( ~ s ) ,  (1.13) 

w~h r r 

G~(~  s) = g~(O(t - s)(~ - t) + O(s - t)(~ - s~, 

~ being the eucfidean me~c  on R ~. G~(~s) is the e~menm~ kernd of ~ = - g ~ o ~ s  ~ wah 
boundary cond~ons Ca "Ga(~ ~) = 0, dG~(~ ~)/d~ = 0. 

A -t is a bflinear form on Y+ wh~h is d ~ m m e d  by G~, and v~e versa. For instance ~ A ~s the 
W~ner variance, then 

A ' (~ y) = f ~(t)[I ~ dt y ~ Y÷ 
7 

= - / ( Y ( t ) l y ( t ) ) d t - ( Y ( ~ ) l Y ( ~ .  
T 

(I.14) 

(1.15) 
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We seek Go such that 

B-'(L y) = A-'(My, My) 

- I  (g~ay~(t) + V~(t)y~(t))yO(t) dt - (g~o~(&) - S~oy~(taDy~(ta) (1.16) 
T 

It follows that Go(~ s) is the elementary kernel of Do = -g~o d~dt 2-  V~o(t). 
In appendix B (p. 357) we give the eMmentary kernel G of an operator D in terms of ~ts solutions 

K(~ ~), J(m ~) and their reverses. Covadances G+ of gaussians on Y+ are g~ven by 

G+(~ s) = O(s - OK(~ ~)N(G, ~)J(~, s ) -  O(r- s)J(~ ~)I~(~, ~)Iii(t., s). 

Let Ka(K ~) and K~(~ G) be the soluaons of DA and Do respectively satisfying the boundary 
condiuons 

I 

K~'(G, G) = g~', dK~'(K G)/d~ I ,=~ = 0 

K~(t~, ~) = g~,  dK~(~  G)/d~ I ,=~ = &,(~).  

Let Ja(K G) and Jo(K ~) be the s~utions of Da and Do respecavdy sm~fy~g the same boundary 
condihons: J~(G,  G) = 0, dJ~'(K ~)/d~l , :  ~ = g"~. Let Co be the corresponding boundary cond~t~ns 
for Go. Note thin the boundary conditions for Go are more compl~ated than the boundary condi~ons 
for G~ because we chose an appl~m~n ~n wh~h S~,(~) # 0 for greater gene r~y .  

Hav~g de~rmmed the covariances GA, Go as the dementary kernels of (Da, C~) and (Do, Co), we 
obt~n immed~atdy the ra~o of thek determ~ants ~om equation (B.I~. Thus the ~ g r ~  I ~ven by eq. 
(1.8) can be wdRen 

I Det M I ~ dwo(x) = Det M -~ = (Det G~'(~ s~Det G~'(~ s)) ~ 
X+ 

= (det K~'(~, ~ d e t  K~'(~, G~-~.  (1.17) 

The proNem ~s solved w~hout computing M, w~hout even computing wn. We only know Gn as being 
the dementary kernel of (Do, Co). The path integr~ I ~ven by eq. (1.~ appears ~ section 3.2 as the 
solution of a pa~ial differential equat~n s a t i r i n g  some Cauchy data; it is compu~d here in ~rms of 
the determ~ant of two finhe dimens~n~ matrices, themsdves obt~ned by salving or~nary, second 
order, hnear homogeneous differential equation~ 

Fredholm de~rm~ants. In the prev~us application we have unobtrusNdy compu~d the dete~ 
minant of a finear map~ng M -~ :X÷ ~ Y÷. But cf wh~h mapp~g M -~ we do not know y~. We know th~ 
M-~ ~ such that the image of the gaussmn WA on X÷ is wo on Y÷; we do not know e x ~ i t l y  wa and wa, we 
o~y know that the~ covariances are the e~men~ry kernels of Da and Do satidy~g some boundary 
condemns Ca and Co r e s p e ~ d y .  We shall proceed to d~erm~e M -~ e x ~ i t l y  on this basis. S~ce ~1 
our computat~ns can be made only with the second method, we work w~h M -I, not with M. 

Problem: Let wa be the W~ner measure on X÷, let the covanance Go of its image under M -~ be the 
elementary kernel of (Do, Co). Find M -~. 
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Answe~ Since the W~ner measure wa on X÷ is the ~mage of the canonic~ gaussian on ~ under the 
primitive mapping pW inWoduced on p. 270. 

Pff: ~--> X+ by x(t)= - f  h(s)ds, (1.18) 
t 

we expect the gaussian w~ on Y÷ to be the image of the canonical gaussian on ~ under the generalized 
primitive mapping [94] 

by y(t)= - / ~  s)h(s)ds P + : ~  
! 

where the kernel F is such that ~ . ,  s)h(s) ~ ~ The cova6ance of wo is then 
tb tb 

G~(~ s)= O(r- s) f ~ t ~  t)g ~ dt + O(s- ~ ~ ~ t ~  t~ ~ dL 
r $ 

F is un~udy d ~ m ~ e d  by the cond~ons imposed on Gs and found to be equ~ to* 

t )  = t)  

where K~(~ ~) as a f u n ~ n  of r is the so~fion of 

D~K~(~ ~) = O, K~(~, ~) = g~, d K ~ ( ~  ~ d d ~  = S~a(~), 

N(~, r) is the " m v ~ "  of K(~ ~) ~ the sense that: 

K ~ ( ~  ~ )NL(~ ,  r) : 6~ 

Know~g P+ and P~ ,  we can eas~y d ~ m ~ e  M s~ce 

p+=M-~op~. 

A s~Mghfforw~d cMcdafion #ves M-~:X+ ~ ~ by 

t I tb 

y(t,=x(t,+ fdf(ot' ss,x(s,ds = x(t,+gs(~ta, f dN~t~'S'x(s, ds 
t t 

and the problem is solved. 

(1.19) 

(1.20) 

(1.21) 

(1.22) 

(1.23) 

(1.24) 

• 

Remark. The spaces Y_ and X_ are as important in pracace as the spaces Y÷ and X+, and to have 
on record the corresponding expressions for them we summarize the procedure for finding M :  ~ : X~ -> 
Y± and the~ determinants for both cases together. 

Let P~ : ~ - >  Y± by y(t) = ~ f O±(s - t)F±(~ s)h(s)  ds 
T 

*No summatton over B intended, the ~be~ B are placed tn upper or lower posmon so~ly for typograph~ convemence 
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where 0+ is the usufl step up function 0 equfl to one for po~five arguments and zero otherw~e, and 
0_ is the step down function O_(t - s) = O+(s - t). The image under P~ of the c a n o n ~  gaussian on Y( 
is the gauss~n of covafiance 

G~(~ s) = O±(r-  s) I O±(t - ~F+_(~ t)F±(~ t)g -~ dt + O±(s - 0 1 0 ~ ( t  - s)F+_(~ t)F±(~ t)g -1 dL 

T T 

G~ is the elementary kernel of (Ds, C~) ff and only ff 

F+(~ s) = K~(~ ~)N~(to, sL F_(~ s) = K.(~ ~)N"(t~, s) 

where, S~ being the matrix in eq. (1.8), 

DsKn(K ~) = O, Kn(G, ~) = g-t, 

Since P ~ = M :  ~ oP_+ w, M : ' : x ~ y  by 

y(t) = x(t)± f o (s- t) OF~(ot' s S) x ( s ) d ~  

Set 

k+(O = dKS(d~ r ~ ) N s ( t , ,  ~ ,  

dK~(df' t ~){ ,=~ = ~. 

k_(r) - dKa(d~ r ~)Na(~, ~. 

Then M : y ~ - ~ x  by 

x(t)  = y(t) ± ~ O±(s - O k ~ y ( ~  d~ 
T 

Det M ~  ~ = ~ t  ~ ( ~  ~ ~ ( ~  ~ - 1 ~ ,  D ~  M :  ~ = ~et ~ ( ~ ,  ~ d e t  ~ ( ~ ,  ~ - ~ .  

Now that M -~ has been de~rm~ed, we can check on t~s examp~ that D ~  M -~ ~ven by 

~ M- '~ = ~ t  ~ ( ~  ~ D ~  ~ s) 

is ~e F~dh~m d ~ m ~ a ~  ~ ~e fine~ mapp~g M -~. One expels ~is ~ be so ~om ~e anflyfis ~ 
the f i~e ~menfionfl case, but sa~ng th~ the ~fin~e d ~ e ~ n f l  case is the l ~  of the f i~e 
~mens~nfl case when ~e numb~ of d ~ e ~ n  goes to infi~y is a ~eacherous procedure, best to be 
avowed. We ~ ~ ~mp~e  D~ M-~ by a procedure w~ch ex~b~s ~e ~ h C m  ~ r m ~ a ~  ~ ~s 
usufl form- or rather we sh~  compu~ ~ t  M w~ch is s ~ f l ~ .  

M: ~ ~ ~ is ~ven by 

x(t)= y(t)+ f ~ ( ~  ~)N~(~ ~y(~ d~ (1.2~ 
t 

Indeed eq. (1.2~ ~ves 

¢ 
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Diffe~ntiation and simpM Mgebrmc manipulation #ves (1.25). T~s ~nvat lon shows thin M is umque 
• 

Knowing M, the computation of Det M goes as fo~ows: Set 

k~(~ r) = O(r- t)k~(O = O(r- t) dK~(rr' C) N ~(~, r) 

and assume that the undefined quantity k(~ r) equMs 

½k(r +, r) + ½k(r-, r) = ½k(~. 

This assumption, standard m theory of Fredholm determinants of Vo~erra equations, can be justified 
here by the fact that both calculations of Det M (eqs. (1.16) and (1.26)) give the same result: 

DetM=ex~M~l+k( t ,~ ) )=~=o-~ .  f d~ . .  
T 

f dr, .od ~et [0(~ - ~ ) k ~ ( ~  
T 

=exp f ½trk(t)dt=exp f -½trK~(~)~-~(t.,t)dt 
T T 

= (det Kn(t~, ~)/det Kn(~, ~1~. 
Since det K~'(~, ~) = g ~  and det Ks(~, ~) = g~', the result ~s proved. 

(1.26) 

• 

The various games we have flayed ~ t~s section have ~ven us two m~hods for computing the 
F~dhdm d~erm~an~ of l~ear mapp~gs from L~t(T) into L~I(T) of the type defined by eq. (1.24). 

1. Take a simile gausfian wa on Y+, map Y+ ~to X+ by M, and compu~ the ~mage of wa under 
M. D ~ m i n e  the "~v~ses"  (Da, Ca) and (D~, C~) of the covariances Ga, GB of wa ~nd wa, 

(Det M) 2 = det Ks(~, ~)/det K~(~, ~) 

where 

D~Ka(~ ~) = O, K~(G, ~) = g~, dK~(d t' t ~)[ ,=,~ = 0 

and where KB is ~ven by a similar equaUon. The Fredholm determ~ant of linear mappings from Y_ 
into X_ is obtfined similarly. 

2. It often happens that there are two mappings P~ : H -~ X÷ and PB : H ~ Y+, simpler than M, such 
that P~ = M -~o P~. Take a simple gausfian on H. Let w~ and w~ be ~s images under P~ and Ps 
respectivdy and then proceed as above. 

In this section the key e~men~ have been the coordinate free symmetric bilinear forms A -1 on X÷ 
and B -1 on Y+ (eqs. (1.14) and (1.16)), induced by the variances A and B on the duffs of X+ and Y÷ 
respectivdy. Y÷ and X+ are LZ~(T) spaces, i.e. spaces of L 2"~ functions* on T. So is the action 
S(f) = fr L(f(t), ](t~dt Moreover the second variation of S is, fike A -I and B -~, a symmetric 
bilinear form on LZ~(T) and the methods developed here have wide application in phyfics ~.g. 37, 40]. 

*A function Is L 2 ~ ff R ~s square mtegrable as wall as ~s fir~ order weak denva twes  (derwatwes ~n the sense of dlstnbutmns) 
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A~ne transformations. The finear Cameron-Matin ~ansformations were in~oduced to simplify 
the computation of mtegrfls of type (1.8) with quadratic terms. In th~s section we study the ~mage of a 
gaussian under an afline mapping and develop a method for computing or fimplffying integr~s w~h 
finear terms in the exponent. 

Recfll the fin~e dimenfionfl case w~h ~ L ! ~ R". Under the affine ~ansformation x = y  + L the 
gaussian w on R" of variance ~ becomes a shifted gauss~n w~ whose Fourier ~ansform is 

~w,~9 = e x ~ - ~ T )  e x ~ -  ~ ' ~ x ~ .  

Let M: Y+ ~ Y+ by M(y) = y + L Let w be the gausshn of variance W on Y+, let w~ be ~s image 
under the affine map~ng M. Then 

,~w~(~) = e x p ( - ~ ,  1~ exp(-~ W(~, g)). 

Ag~n dw and dw~ are not defined but the~ ratio is defined: 

dwt(x)=dw(x)exp{~ f ,l(t)ll ~ d t - i  f (l(t)tdx(,)) }. 
T T 

The affine mapping, hke the finear mapping (see p. 274) can be used in two different ways 
depending on whether one prefers to integrate the original integrant w~h respect to w~ or to integrate 
the shifted integrand w~h respect to w. Consider the integr~ 

,= f ~(~)~{i f(~(,)I ~ . , } ~ ( ~  
Y+ T 

Under the attine change of vafiab~ M: Y+-~ X÷ the integr~ becomes 

~= f d ~ , e ~ ( i  f'~<'>l~~'~~ 
~ T 

Choose M -~ such that 

~ f ~,.~ o~-~ f ~ )I  o~,.  ÷ ~ f I~.  I ~ - ' ~ .  = o 
T T T 

i.e. choose M such th~ M-~x = x - l w~h a(t) = ~t), l(t) = - ~  a(s) ds. Then 

, =  exp(-~f~,t~ dr) f dw~)F~-,). 
T ~ 

Note that under the mapp~g M - ~ : ~  ~ ~ the image of w on ~ ~ w{_~) on ~ s ~ g y h g  

dw~,~y, = d~(y, exp ~ f ~ , ~  ~ + i  f{l(t)I d y ( t ~  

(1.27) 
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Then, ff I(t) = - f  a(s)ds, 
t 

, = e x p ( - ~ f , ~ t ~  dr) f d w ~ , ~ ' ~ y )  
T ~ 

and we have obm~ed another ~ W ~ f i o n  for computing L 

(l 28) 

If l(~) # 0, then M : Y÷ ~ Y~ where Y~ ts not a vector space ufless one defines addR~n by the 
pre~nption gwen p. 291. The formuhe ~ven in ~is  s e ~ n  ~ e  s t~ vfl~.  No~  ~ the duff of Y~ ~s 
sightly ~ f f ~ e m  ~om the duff of Y+. 

1.~ ~ace ~ pa~s w~h bo~ ends fixed 

A p~h ~ e ~  is often over a space of p~hs ~ t h  both ends fixed. A space of p~hs x such th~ 
x ( ~ ) =  a, x ( ~ ) =  b is a vector space only ff a = b =0. Indeed x,y ~ X  imams x + y  ~ X  o~y  ff 
~ + y ~ )  = x(~) = y(~) w~ch ~ turn imams a = b = 0. Let X be the space of c o ~ u o u s  p~hs x on 
T such that x(~) = x(5) = 0. X can be treated e q u ~  well as a subspace of X÷ or X_. Say X C X_. 
Gwen a ~ b ~  w_ on X_, one can define a p ~ s ~ b ~  w on X assocm~d to w_ as f d ~ w s .  

R e c ~  first the fin~e ~men~on~  case: ~ v e n  a measu~ on R ", the measu~ of an n - 1 ~men~on~  
surface S C R ~ is zero. N e v e ~ h e ~  there is a n~ur~  and conve~e~  way to inWoduce a measu~ on 
S a s s o c ~ d  to ~ e  measure on R ~, namdy the Leray form: Let S be a subset of R" of co&men,on 
one* defined by the ~ d u c ~  e ~  S(u) = ~ u ~ R ". The Leray form ~ on S assodated to the 
measu~ V on R" ~s defined by the e ~  

dS ^ dw = d~ (1.2~ 

For exam~e the Leray form on the plane u: = C ~ s o c ~ d  to ~ e  gauss~n V on R: 

dy(ut, u:) = ~ a ) - ' ~ 2 ~ b )  - '~  e x ~ - u ~ 2 a  - u~/2b) du~ du: 
IS 

d~(u) = ~ a ~ ' ~ 2 ~ b y  ~ e x ~ -  u~2a - C~2b) du. 

No~ th~ ~ is not the n o r m ~ e d  gaus~an on R. 
The Leray form ~ on S ~ c ~  to the Lebesgue measu~ on R ~ defines the ~ r a c  measu~ ~s on 

S by 

( ~  ~) = ~ ~ d~. (1.30) 

s 

The space X of p~hs w~h both ends fixed ~s a subset of X_ of co~mens~n one and we can 
g e n e r a t e  the notmn of Lemy forms to define a p ~ i ~ b ~  w on X assocm~d m the Leray sense 
to a ~ven p m d i s ~ n  w_ on X_. A p m ~ f i b u h o n  is by defin~on a family of di~dbufions on a 
projechve sy~em of fi~te dimenfion~ spaces. To each fi~te dimen~on~ space X_/V_ of the 

* I e the d~men~on of S t s  n - I The more gener~  terminology ~ introduced here to prepare the mfin~e dtmenslon~ case 
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projective system of X_ co~esponds a finite dimenfionM space X[V of the projec~ve system of X 
such that V is defined by one more equation than V_, namely (tt~, x) = 0. 

De~mtion. L~ V E X_, and let V be defined by (8,~, x)=  0 and by the equations definmg V_. A 
prod~tribufion w on X is s~d to be a ~ o c ~ d  ~ the Leray sense to the profl i~bufion w_ on X_ ~ the 
d~tnbution on X/V ~s Leray ~ l~ed  to the di~dbution on X_/V_. 

Leray associated gausgan~ Let X be the c h a r a c t e n ~  funcaon* of X C S_. Let w_ be a gaussian 
on X_ with variance W_ and covafiance G-. R follows from the definition that the prodistributlon w on X, 
Leray related to w_ on X_, is the gauss~an normflized to 

= f dw_ ) 

of covafiance (see eq. (1.6)) 

(1.31) 

iG(~ s) = ~ X ~ X ~  xX&, x) d w ~ f l w ~ L  (1.32) 
x_ 

These c ~ n ~ c ~  N ~ # ~ s  are ~a~ ly  comping .  Let 

P : X  ~R"  by x~{u  ~ = ( 6 ~ , x ) =  x ~ ( ~ ,  then (1.33) 

w(X)= f du' .. .du" 6(u').. .  ~ u " ~ 2 r ~ l ~ t  O ' ( ~  ~ - ' ~  e x p ~ u ~ O ( G ~ &  ~ ) ) ~ )  

= ~ O - ~  G ~ ( ~  ~)1 -'~. (1.34) 

The covafiance G(~ s) can be compu~d by the same m~hod. 

Prodistdbutions on L ~'~ space~** The covarhnces G, on spaces of L 2J paths vanish~g eRher at ~ 
or t, are e~mentary kernels of a second order linear differentifl operator D. It follows from the 
defimtiont that the covafiance G of the prodistribution w on X Leray assochted to eRher w_ or w÷ 
is the e~mentary kernel of the same operator D such that 

G(~ s )=  0 for r or s equ~ to ~ or t~ 

The covariance G is the Green's function of the operator D in the strict sense of the term, namely G 
is the e~mentary kernel of a positive second order linear differential operator that vanishes on the 
boundary and that is C ® except on the diagonfl. When D is the Jacobi operator (alias the operator for 
small disturbances) G is known as the Feynman-Green fnnction. 

Example. The gausshn w w on X associated h the Leray sense to the W~ner gausshn w~ on X_ 
is the gausshn normfl~ed to 

wW(X)  = ~ f f ~  - ~) ) - '~ (det  g~a)'~z, 

*X~) = I for every x E X ~ d  ~ ~ 

**See f ~ t n o t ~  p 2 ~  

$U~ ~e  defimhon ~ g ~ h ~  wah ~ e  exp~s~on ~ven p 272 for d wa~) ~ fimte d~menston~ spac~ and n ~ e  ~ A-~ ~ ~ e  ~me  ~ r  w, and w 
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~ts covanance ~s 

GW~(~ s) = -g~(O(s  - t~t - ~)(~ - ~) ~(~ - s) + O(t - s)(t - ~ - ~)-~(~ - s)). (1.35) 

Lemma. 

f F ( x ) d w ~ x ~ ( ~ D  = f F(x)dw~x)Sx( tb)= f F ( ~ d w ~  (1.36) 
X+ X X 

P~o[. It is su~c~m to prove that ~is  equation ~s true for cylindric~ functions, F ~ ) =  [ o P(x). 
Wkho~ loss of generality we shall prove k wkh P : x ~ , u  ~ = (~, x). 

I ~ 

X+  

where 

On the other hand 

f P ( x ) d w ~ 8 ~ ( ~ : ~ - ' ~  74/'+0) '~ f ~u')8(u2)du ' du 2 exp~u'u~(~/~'~ 
R 2 

j =  f r o  P(x)dw(x)  = (2~i)-~/2(G+(~ ~))-~a(2~i) -~/~/4/'-~ f [(u)du exp ½u2~/'-~ 
X R 

where ~ = W(~, ~). The integrals I and J are equal ff (~¢'~)~ = ~-~, Le. 

~G+(~, ~) = det ~+,.  (1.37) 

If ~ = ~,~ for an arb~rary ~ then eq. (1.37) fo~ows from eq. (B17). The proof for arbitrary ~ can be 
checked on specific examples. • 

2. Product ~ g r a ~  

Introduced by Volte~a [140] ~n 1896, product mtegr~s are a simple and rigorous vehicle for 
Feynma~s operator c~culus [55]: They y~ld resuRs quickly and provide expl~h error estimates. 
Product integration has been devdoped recently by Dollard and Friedman [44] who have used ~, in 
part~ular, to obt~n the asymptotic behavior of positive energy solutions of the Schr6dinger equation. 
As an immediate application of the~ theorems they prove the non-exi~ence of positive energy bound 
states for some c~sses of potenti~s and the possib~ existence of such states for others. For example 
they show that E = 1 ~s the only positive energy for which the Wigner-Von Neumann potenti~ 
[141,130] can have a positive-energy bound state. 

Intere~ing appl~ations of product integr~s to Brownian motions on a L~ group have been 
devdoped by McKean [99, p. ll5 and references quoted therein]. 

After a brief inwoducfion to product integrMs, we sh~l use them to obt~n a path integr~ solution 
of the Schrodinger equation, known as the Feynman-Kac formula or the Trotter-Kato-Nelson Ill7] 
product formulm 
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Z I. De~n~ion and propen~s o[ product integra~ 

There is a sWong form~ an~ogy between the theory of product integration and the usual theory of 
Riemann ~ntegrat~on; product mtegra~on is to products what R~emann integrahon ~s to sums. The 
add~ve neuWal e~ment 0 becomes the mult~pl~atlve neuW~ dement  1 (the ~dent~y matfx), the 
add~ive reverse - A  becomes the multipl~ative inverse A -1, etc. 

A Riemann mtegr~ [(t) = f~ g(s) ds can be inWoduced as the solution of the differential equation 
df(t)/dt = g(t) such that [(~)  = 0. Simdady a product integr~ 

U(t) = 1L[ exp(A(s) ds)U(~) 
ta 

can be inWoduced as the solution of the differential equation 

ddU t = A(t)U(t), equ~ to U(~) at t = ta. (2.1) 

Let £ .  be the set of n × 1 matrices w~h complex entries, and £ .×.  be the set of n × n mat6ces w~h 
comp~x entries. The norms are defined as fo~ows. Let a' be the entries of a ~ ~., and let ~ ~ ~.×. ,  

where the supremum is over NI ~ in e~ such that II~ll = 1. Throughout th~s secnon A, B are con~nuous 
func~ons from [~, ~1 into C~×~ and V is a d~fferentmble func~on from [~, ~] into ~,. 

An approximate solution of eq. (2.1) can be obt~ned by making a partition* 0~+~ = {G, s~ . . . .  , ~ + t  = t}  

of [~, t] with A~ = ~ - ~_~. Let ~(0~+0 denote the mesh of Ov+l, i.e. the length of ks longe~ sub- 
intervM. Then** 

U(t)~ {~,~__~ exp(A(st)As,)}U(t~ (2.2) 

Vo~erra has shown [140] the exi~ence of the lim~ of this product when g(~+l) goes to zero; h ~s thus 
possible to define a product integrM as follows. 

DefinRb~ Let A :[~, ~]->C . . . .  The product ~ g r ~  of A over [~, ~] is defined by 
v + l  

I-I exp(A(t) dt) = lim I I  exp(A(~)d~  
T ~ l ~ O  ~=1 

Some of the properties of produ~ ~ g r ~ s  are well known by physicists who have done similar 
man~ulations. The n o t i o n  of product ~ g r M s  allows a swift presentation of these properties and of 
others. It makes p o s s ~  concise s ta~men~ of ~gorous results wh~h otherw~e wou~ be cure- 
become. We shall be~n by a rrope~y wh~h simpl~es many other ~atemen~. 

Prope~y ~ Let A : [~, ~] -~ C.×., then H~ exp(A(r)) dr ~ non-s~g~a~ in the sense that the mapp~g 
HI exp(A~) d~: C~ ~ C. has a non-van~h~g deNrm~anL 

*The partitions of a Ume mtervfl  [6,  6 ]  a ~  chosen ~ r o u g h o m  so ~ h = to, ~ = ~÷t ~ r  1 ~  conven~nce  m going from X± m X 
* ~ x ~ B )  = ~ - o  B~n ~ 
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Prooj. Use the definition and the determinant ~race relationship, 
t 

r[~ exp(A(r) dr) = exp I trA(r) det dr¢ 0. 
s 

Prope~y 0 allows the following definitions, analogous to that in the ordinary theory of integration" 
t 

r I  exp(A(r) dr) = l, 
t 

~exp(A(, r)dr)={Oexp(A(r)dr)}-'. 

This definition removes m many statements the necessky of ordering the ~mks of integration. In the 
fo~owing properties, several proofs are obvious for s < t and generalized to arbkrary s and t by this 
definition. 

Property 1 

~-~ ~ exp(A(~ d~ = A(t) ~ exp(A(~ d~, ~s O ex~A(~d~=-  O ex~A(~d~A(s). 

Property 2 

I'I ex~A( u ~  ) du) : I~I ex~A~) du) I~I ex~A(u) du~ 
$ r $ 

Property 3. L a  {A(r); r ~ [~, ~]} be a commutative f am~  ~en 
t 

l • I •  exp(A(r) dr) = exp f A(r) d~ 
$ 

Property 4 (The sum rule). Let P(~ s) = fl~ exp(A(G d~, then one can w~te dther 
t t 

I-I exp(A(r) dr + B(r) dr) = P(~ s) ]-I exp(P(~ r)B(r)P(r, s) dr) 
S ~ 

o r  

I-I exp(A('  r) dr+ B(r) dr) = l~I exp{P(~ r)B(r)P(~ t) dr}P(~ s). 
5 S 

Proof. If F(~ s) denotes either side of these equations, compute OF(h s~Os to prove the second. 

Property 5 (The similarity rule). Suppose that T:[~, ~]-->C,×, has a conhnuous de~va~ve T' and 
suppose that T(t) ~ non-singular for all t ~ [~, ~], then 

T-l(t) ~-I exp{A(r) dr} T(s) = ~I exp{T-i(r)A(r)T(r) dr - T-m(r)T'(r) dr}. 
$ ~ 
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The proof is similar to the previous one after multiplying both sides on the left by T(t). 

The following properttes give error estimates and make possible the definition of improper product 
integrals when one of the limits of integration goes to infinity. 

Property 6. Let s s t, then 

II 
r 

v exp(A(r) dr) s exp II I IIA(r>li dr. 
s 

Property 7. Let s s t, then 

Proof. Because of property 1 

fiexp(A(r)dr)= l+idrA(r)fiexp(A(u)du). 
s s 

Using Property 6 

II fi exp(A(r) dr) - 1 
s 

(( sjdrUA(r),,exp{~((A(u)l(du]=exp{jllA(u),,du)- 1. 
s ‘ s 

Improper product integrals. Provtded the indicated hmit exists, we define the improper product 
integral 

fi exp(A(t) dt) = !!m_ $ exp(A(t) dt). 
1. 

An improper integral can be singular. For Instance, let A(t) = -1 for all t then 

lim fi exp(-1 ds) = lim exp(-I(&, - L)) = 0. 
tb=m 1. tb=m 

Since we are interested in product integrals as solutions of eq. (2.1) we need to determine the 
conditions under which the improper integral of A over [t,, ~0) exists and is nonsingular. When it is 
singular det U(t) has a zero limit for t = a, for nonzero U(L). 

The following properties have been used to determine the possible existence of positive-energy 
bound states, and to study cases of “anomalous” behavior of the wave-function [43]. They give 
existence theorems for the Feynman-Kac formula (see section 2.3). 

Property 8. Let A:[t,,a)+Cnxn be in L’(t,,w), 1.e. 
m 

I 
IIA(t)ll dt < 00, then fp exp(A(t) dt) exists and is nonsingular. 

f. 
f. 
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CoroHary. La A and B:[~,  ~ ) ~  C~ ,  ; suppose that ~ exp(A(t)dt) exists and ts non~mgMar and 
suppose that B ~s m L~(~, ~) (A ~s not necessarily ~n L~(~, ~)), then 

~ exp{A(r) dr + B(r) d~ ~sts  and ts non-~ngMar 

Prope~y ~ Suppose ~at the ~mproper integral H(G) = imp f~ A(s) ds = hm~_~ f~ A(s) ds exist. 
Suppose abo that HA ~ L~(G, ~) (A ~s not necessarily in L~(t~, ~)), then ~ exp(A(t~ dt exts~ and ~s 
non-~ngMar 

ZZ Asympto~c solu~ons of the Schrodinger equat~n [or ~rge pos~&e energies 

For s l m ~ i t y  consider the one dimens~n~ d~mens~ess  Schrodmger e q u ~ n  

Set 

- d:~/dx ~ + V(x)~ = E~. 

U(x)= ( ~ ) ) ) ,  A,(x)= ( V(x~-E ~)" E> V(x). 

Its solution expressed as a product integr~ is 

Set 

t ,'g,t 

k(x) = +X/E- V(x). 

The m~nx At(x) can be dmgonfl~ed: 

AI(x)= M(x)A(x)M-'(x)' A(x)= ('k~ x) - i ~ x ) ) '  

The simflad~ rule (propeay 5) now y~elds 

~ exp M ( y ) A ~ ) M - ~ d y  = M(x) ~-I e x ~ a ~ )  dy - M-l(y)M'(~dy}M-l(xo). 
XO X 0 

Property 4 gwes 

~o exp(A(y)dy- M-'(y)M'(y)dy)= (e'~x' 

K(x) = i k(y)dy, 
XO 

M x' (,klx  
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Combining these results we get 

(z!$l) = (. ’ * ik(x) -ik(x) )(e’T’ ,-!k) $expAjy)dy 

Using the inequality on the norm of product Integrals (property 7), it 1s easily estimated that 

fi exp A,(y) dy = 1 + R(x, x0, E) where 
X0 

IIRk xo, ElII 
X0 

By matrix multiplication we find 

$(x, El = 4(x0) ~0s ( f (E - vb’))l’z dy ) + (E _ v(;o)y~ sin $‘(x ) (1 (E - V(yN112 dy ) + r(x, xoE). 

2.3. Feynman operator calculus and the Feynman-Kac formulae 

The Feynman operator calculus, colloquially called the disentangling of non-commutating operators, 
starts with the remark that the order of two operators, say A and B, need not be given by their 
position, say AB, but by an ordering label A(Q) B(s,). Once the ordering labels have been attached to 
the operators, they can be manipulated nearly as if they commuted and their order restored only when 
needed. 

Example 2. Let fro = fi2/2m = 4’ A,/2m. The solution of the Schrodinger equatton 

&j/at = - (i/fi)tio$ 

with Cauchy data $(t,, x) = 4(x) can be written 

Although it seems hardly interesting to have attached an ordering label to fro, we shall see that it leads 
to a path integral representation of $(tb, x) which is convenient for deriving the Feynman-Kac 
formula. Indeed: Let X be the space of square integrable functions h on T, and let w, be the canonical 
gaussian on X of variance I: 

I(h, h) = 1 g”@hp(t)h&) dt. 
T 
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We shall prove that 

Uo(~, ~) = exp(-~ f Ho(t) dt)= exp (-i2--~ ~ g~'p~(t)p~")dt) 
T T 

= f dw¢(h)exp(-i  ~/~--~--f h~, )p . , )~)  
~ T 

(2.3) 

: f dwAh)exp(-~m~, f h~(t)dt), 
~ T 

w~th/~ = k/~-~-~. (2.4) 

To prove eq. (2.3) compu~ the path ~ g r a l  by the method ~ven p. 265. Let P : ~ R  by 
h ~-~ u = (1 /~m)f rp~)h~( t )d t  = (plum, h)~ The image of We under P is the gaussmn Pw~ on R of 
variance 

~H~gm, ~gm)= ~(~m) ~ f g~p~(t~.(t)dL 
T 

hence 

dPwc(U) = du~iI (p /~m,~m )}-'~ exp{iu ~ / 2 ~ m ,  p/~m~ 

and 

f dwAh) exp{-~'~m f h~(t)p~(t)dt}= f exp(-~u)dPwAu)=exp{-d(pl~m, pl~m~2}. 
~ T R 

• 

Equation (2.4) reexpresses eq. (2.3) in terms of the operator ~. The operator ~ enters the path integral 
representation of Uo(to, ~ ) ~nea~r 

The Feynman-Kac [ormu~. The solution of the Schrod~g~ equation 

~d~t = -~(~o+ ~(x~,(~ x) 

w~h Cauchy data ~(~, x) = ~(x) can be wriuen* 

~(~,x) = 1-~I~ exp (-~(Ho(t)  + V(x,Ddt)~.)  

: 

On using property 4 (the sum rule) of the product integrals we get 
*The equauon ~(tb, x) = c x ~ - 0 / h ) f r  (Ho(t)+ V(t9 dt}~(x) ~ not coffe~ Wl~Om ad~Uon~ p~scnptton because the famdy {Ho(t)+ V(t~ ~ 

not a commuung family 
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tb 

O,t~.X) = f dw¢(h)1"~I~ e x p { - ~ [ e x p { - ~ f i ~  f h~,s)ds} V(x,t)) 
~ t 

tb tb 

×exp{+~m~O f h~(s, dsl]dtlexp{-~m~O f ~(,)ds}~(~). 
t ta 

Use expOa~)V(x) = V(x + ~a) to get 
tb 

O(tb, X,= f dw~(h, exp (-~ f V(x(t)-~ f h(s)ds)dr)" ¢b(x-g f h(s, ds). 
~ T t T 

This path integral representation of ~(t~, x) is read~y simplified by the primRive mapping P+ : ~  Y+ 
defined by 

~ 

P.h(t) = y(t) = - ~  h(s) d~. 

The image of ~ under P .  is the Wiener measure ~ (see p. 271), 

O(~.x)= f d w ~ ( y ) e x p ( - ~  f V(x+#y(t~dt) d(x+gy(~. (2.5) 
Y+ T 

The Kac formula is o~en wri~en by probabflists as an integral over Y_. The probabilists' formula can 
be obtained from the phy~ci~s '  formula by the mapping y ~-~ z such that z(t) = y(~ + ~ - t). i.e. y and 
z are the same path ~aversed in oppos~e d~ecfions. This mapping gives 

Y- T 

Note that in the Kac formula all the paths are at x at time t,, whereas in the Feynman formula all the 
paths are at x at time ~. Thus the Kac formula runs the movie backwards, it gives the final wave 
funcUon at the origin of the paths in terms of the initial wave function evaluated at the end points of 
the paths.* 

The domMns of integration Y~ are vector spaces, as it should be since prodistribufions are defined 
on vector spaces. The space of paths [ such that [ (~)  = x is not a vector space unless x = 0. Indeed [t 
and f2 being in a vector space such that f~(~) = f2(~) implies ~ + f2)(~) = f~(~) = [2(~) wh~h in turn 
impfies [ t (~)  = 0. 

UsuMly no sum of paths is needed: The "sum over all paths" is not a sum of paths but a sum of 
functions of paths, for example exp i fT V(f(tD dL ff however one needs to 'Mdd" [t and [2 so that 
(f~ "+'f2)(tb) = f , (~)  = f2(~) = c, one can define the "sum" to be 

A "+"A = 0~- c) + (A- c) + ~ 
*See note I added m proof 
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Remark. The fact th~ in the m~grand y appears multlpfied by ~ = ~/h/m is not a novelty [e.g. 80, 
p. 45~. Here, however, it has not been put in "by hand" but fo~ows naturally from the derivation of 
the Feynman-Kac formula. In the next chap~r we shall expand the in,grand in powe~ of ~ -not  h 
powe~ of h -and obtmn the semmhs~c~ expans~n (eq 3.2~ 

Remark. There is another form of the Feynman-Kac formula [117, 121 p. 279, 3] based on the 
Trotter product formula vM~d for potentials V ~ L2(R ") + L~(R'). We sh~l give later (Remark p. 315) a 
class of potenti~s for wh~h our results are vahd. 

Z < The Mal~r wave operato~ 
Let /~ =/~o + V be the Hamiltonmn operator of a sy~em ~ w~h ~o = ~ 2 m .  The M~er  wave 

oper~o~ W± defined formally by 

W. = lim W~, 
t ~  

W ~ = e xp( + itI?-I[ h ) e xp(-it~Io/ h ) 

play an lmpo~ant ro~ in scattering theory.* Albeverio and HCegh-Kr~hn [3, p. 32-41] have obt~ned a 
path integr~ representation of the M~ller wave operators using theft theory of oscillatory integr~s. 
Theft formula is readily obtMned from the Feynman-Kac formula by hnear mappings on the spaces 
Y_ and Y÷ of paths w~h one end fixed. Let the inifi~ wave function be 

~(x) : f exp(ipx/h)a(p) dp, then 
R 

exp(-~tI?to/h )cb(x) = f exp(-ip 2t/2mh ) exp(ipxlh )a(p ) dp. 
R 

Let Y÷ be the space of paths y defined on [t, 0] such that y(0)= 0. The path ~ntegral representa~on 
of W ~  Is. according to the Feynman-Kac formula, 

O 

(W:~x ,=  ~ dw,(y ,  e x p { - ~ f  V(x+~y(s~ds) f o ~ , - , ~ , = ~ ,  
Y ÷  t R 

× expgp(x + ~y~I)l~}a(p) dp. 
Let P : Y÷ -~ Y÷ by y ~-~ z such that 

z(s) = y ( s / -  . p ~ .  

It follows from the Cameron-Martin formula that 
o 

(W~)(X) = y dpa(p) f dw'(y)exp{i  f ( 2~P~ + ~ ) d s }  
R Y. t 

O 

X exp{-~  f V(x+ , z ( s , + ~ ) d s  } exp ( - ~ ) e x p { ~ p  (x+  , z ( t , - ~ ) } .  
t 

*There ~s an abundam laerature on ~ n n g  ~ e o ~  For the operator formahsm M scattering theo~ N g 3~, ~ r  ~e m~hemancN ~ n n g  
~eory [eg 77, 8N Nso [149, pp 210-2121 and [151] 
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The o ~ N ~ o ~  terms cancel. The l~R  of W ~  when t = - ~  is 

( ~ ) ~ )  = f dp ~ ( ~  p) ~ p ~ h ) a ~ ) ,  
R 

where 
o 

f dw :)exp{- f  x+gz(s,+pMm,ds}. (2.7, 
y÷ --~ 

A fimflar c a l c ~ o n  ~ves W_~)  = fa dp W_~, p) expOpMh)a~) where 

W_..p,= f d w ' . , e x p { ~  f V,+~z(s,+pMm,ds}. (2.~ 
Y- ~ 

The pa~ ~ g r ~  rep~sentations of ~ and W~ are over the space of p~hs defined on ( -~ ,  ~ and 
~, ÷ ~), ~ e ~ v ~ y ,  va~s~ng at 0. 

The scat te~g oper~or $ is defined by S ~ W~ W÷. ~ matrix ~ m e n t s  are (~e n~e H added ~ pmo~ 

{pflSIp,) = f W~(x, pd e x p ( - i ~ f  - p,)x[h)W+(x, p~ dx. 
R 

Non Rdafiv~fic Quantum Mechanks 

Cons~er a dynam~al sys~m whose state at time t is represen~d by a point [(t) of its configuration 
space M. As t varies from ta to tb, f(t) defines a path [ : T ~ M. The Feynman formal~m of quantum 
phys~s beans with the ~entification of the space of all the posfiNe, non-equivalent, paths [ 
satM~ng some appropriate boundary conditions. Thus a path integral "probes" the whole configura- 
t~n space and reflects Ks ~obal featu~s (see for instance section 3.1). In this respect, a path integral ~s 
not just a so~fion of a differential equation sati~y~g some chosen boundary conditions: A 
differential equation is an excellent way of presenting a whole c~ss of functions. It states a ~cal ~w 
satisfied by a c~ss of phyfical sys~ms. The boundary condit~ns are then chosen to answer spec~c 
questions. These two pa~s, on the one hand finding the differential equation ~quation of motion), and 
on the other hand choos~g the boundary conditions and ~obal charac~ristic wh~h determ~e the 
solution may not be ~dependent ~ .  A path integral is a ~ e m e n t  wh~h ~corpor~es these two 
parts orgafical~, and insures that they are compatible. 

The configuration space of a system, even the most trivial one, is rarely Rn: A pendulum, a system 
of indistinguishable particles, a rigid body wkh one fixed point, etc. have configuration spaces which 
are Riemannian multiply-connected manifolds. 

We begin w~h systems whose configuration spaces are multiply-connected in order to show how to 
use path integrals to obtain global features of a sy~em without actually computing the path integrals. 
Computing path integrals ~ the purpose of the other sections in this chapter. The following cases are 
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treated: In section 3 the paths x, 5 h, X, Y, .. map a finite time intervM T = [~,~] into the 
configuration space M of the sy~em; In section 4 they map T into its phase space T*M. Path integrals 
of quantum mechanics can fu~her be ~assified by the boundary conditions imposed on the paths: 

I. The path integrM representation of the wave function, known as the Feynman-Kac formula, is 
an integrM over the space X÷ of paths which vanish at ~ and which are arbffrary at ~ In sec~on 
3.2 the Feynman-Kac path integrM is computed to the WKB approximation. This cMculation serves 
three purposes: 

a. It dispMys the use of prodistrlbufion on a ~mple exampM. 
b. It #ves a precise meaning to the statement "quantum mechamcs goes to cMs~cM mechanics 
when h goes to zero because of destructive interference of the amplitudes aHached to neighboring 
paths." 
c. It sets up the stage for cMculating the wave func~ons of sy~ems whose configuration space IS a 
fiemanman manifold. 
2. The path iategrM representation of the probabflffy amplffude K(~ ~; a, ~) that a system known 

to be in the state a E M at t~ be found in the state b ~ M at t~ is a path integral over the space X of 
paths vamshmg at to and t~ (sec~ons 3.4, 3.5, 3.6) 

At this pomt, phy~cists may immediatdy object to the nature of the space of paths X con~dered" 
Feynman expressed K(b, ~; a ,~)  as the "sum" over all possibM paths L such that f ( ~ ) =  a and 
f(~) = b, of expiS(f)/~ with S(f)=f~L(f(t), ] ( t D d t - n o t  as the sum over Ml possibM paths 
vanishing at ~ and ~. The reason one works with integrMs over X is that funcnonM integration has 
been defined only on vector spaces. Paths [~, ~2 satisfying Feynman boundary conditions form a 
vector space only ~ a = b = 0 (see p. 291). In pracnce one first makes the ~ansformations necessary 
for the Feynman path integrM to be a n  lntegrM over a vector space: For Instance an afline 
~ansformatlon (see p. 281), or a sem~Mss~M expan~on as in section 3 M~rahl has devdoped 
techniques for integration in function spaces wh~h are not necessarily vector spaces and has #yen 
pract~M expres~ons [10~ for such lntegrMs. 

In section 3.4 the theory of prodl~fibution is used to give a workable method for computing the 
sem~Mss~M expansion of K(b, ~; a, ~) in pfinclpM to any des~ed order in ~. This method does not 
break down "on the caus~c~' and the caustic problem is treated in section 3.5. The sem~MsmcM 
expansion is combined with pe~urbative methods in section 3.6. 

The game in both sections 3 and 4 is to find the prodlstrlbufion best sui~d to the proMem at hand, 
i.e. the prod~tribufion wh~h makes ff possUM to express the #yen ~ g r M s  as c ~ d d c M  integrMs or 
as ser~s of cy~ndricM ~ g r M s .  

3. Path integration on configuration space 

& l. M u ~  connec~d configuration spaces 

Let a, a', b . E M and let A = (a, ~), A' = (a', ~), B = (b, ~) chara~edze the ~ and fin~ states 
of a sy~em. Starting from an an~ys~ of quamum effect,  Feynman showed that the p~babihty 
a m ~ u d e  K(B, A) of a ~ans~on A ~ B is the sum of the p ~ b a ~ y  am~itudes a ~ o c ~ d  with ~l 
possible p~hs ~om A to B. ~ ~1 ~e  p~hs are not homo~p~ally eq~v~em, ~ e  Feynman ~e~ry 
says only that K(B; A) is a ~near com~nafion of the parti~ p r o b a b ~  a m ~ u d e s  {K~(B;A~whe~ 
K~(B; A)ls obtaine~ by summing over all p~hs ~om A ~ B ~ ~e  homo~py c~ss ~: 

i 
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K(B; A) = ~ X(a)Ka(B; A). O.1) 
(a} 

The coe~c~ms x(a) are so far unde~rm~ed.  We expect ~em to be ~ l~ed  to the fundamemM 
group ~ of the ~ r ~ o n  space M: The dements {~} of ~ are the homo~py cMsses of cMsed 
Mops at a po~t  c E ~ ~ g e ~  with the m @ ~ o n  law a,~ = ao, where ao is the homo~py class 
of closed loops obtmned by hn~ng a pMh m ~ ~ t h  a path m a,. It can be shown [e g. 131] that there is 
an ~ m o ~  b~ween the fundamentM groups based at two d ~ e ~ m  points c and c' but there is no 
canon~M (i.e. no p ~ )  ~ o m o ~ s m  ~ n  ~em. By connecting c and c', a closed loop at c' 
becomes a closed loop at c, but there ts no umque way of ~ e ~  c and c'. 

By the same ~ken,  there is no unNue way of labe~ng the homo~py classes 6 of pmhs from a to b 
by the eMmems of the fundamemM group. The c o e ~ e m s  ~ (a ) ;  a E r} cannot be p ~ e d  wffh ~e  
p a l m  a m p ~ d e s  K a in a unique fashMn and eq. (3.1) ~s m e a ~ n # e ~  

There are two equ~Ment ways of ~ving mean~g ~ eq. ~. 1). We #ve here the one [8~ w~ch do~  n ~  
~ q u i ~  a u x ~ r y  concepts; the other one ~5] proceeds wa the umve~M covenng of ~ 

1. Choose an ' ~omo~py  mesh", i.e. choose an ~ b ~  point c E ~ and ~ b ~ y  pMhs C(a) and 
C(b) from c to a and c to b ~ e ~ v d y .  T~s ~ m ~ @ y  mesh a~ocm~s a unique cM~d Mop cabc to 
any ~ven p~h ab. 
2. R e q ~  thin the quantify of phys~M ~ s t  K(B; A) be independent of the chosen homo~py 
mesh. No other condition is necessary to d e , r i n s e  ~e  set ~ 

Let us for mmpfici~ speak of a loop a, or a pmh 6, from a to b, ~ e a d  of a loop [a pmh] m the 
homo~py cMss a [class d]. 

Ng 5 

Let us choose two dNerem p~hs ~ b )  and ~(b) from c to ~ In the C mesh ~e  p~h d is pan of the 
Mop ~ = c ~ ' ~ M c ~  In ~ e  ~ mesh if is pa~ of 

= = = w i f h  = 

In the C mesh 

K = ~. X(~)K~ 
~ 

In the (~ mesh 

R = x( )K 
&E~ ~ E ~  

PhyNcN resN~ are independent of the mesh ~ and only ff 

: 

~ ~ (a ) ;  a E r} is a unifary ~ e ~ n t a t ~ n  of ~. 
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Proof. If {X(a); a E ~} ~s a ufitary representat~n of the fundamentfl group, X(~a) = X(~)X(a) and 
X(~)X+(~) = 1. It f ~ w s  th~ IK I = I~ I Conversely, It can be shown [338] th~ {K~; a ~ ~} ~s a 
i~eafly ~dependent set. Hence IKI = Ig l  imams that 

X ( ~ )  = exp(i~))X(aL 

If a = e ~s the un~ e~ment of ~, then X(~) = e x p ( i ~ ) ) ~ )  and 

X(~a) = X(~)X(a~x(e)]-', X(~)X+(~) : [x(e)l z. 

W~hout loss of generality one can set x(e)= 1. • 

In con~u~on. 

~ m .  ~ e  pm~bility amp~u~ K(B; A) ~ a hn~r ~ m ~ n  ~ ~e pm~bility amp~ud~ 
K ~ (B; A) whose ~e~cien~ ~ ( a ~  ~rm a one ~ m ~ s ~ n d  un~a~ repres~mtion ~ ~e ~ n ~ m e m d  
gm~.  

There are as many answers for K(B;A) as there are one d~menslon~ umtary representations 
of ~. These different answers correspond to different systems, and because of the orthogon~ky 
theorem of representations, there is no ~ansition between these different sy~ems. 

~ a m p ~  Sys~ms of ~d~ngu~hab~ p a ~ d ~  ~ .  The ~ g ~  space of a sy~em of p 
~ s t i n g ~ s h a b ~  p ~ s  ~ R" for n ~3 IS m ~ ~ e ~ .  Its f u n d a m e ~  group is the 
~ ~ o n  group ~ w~ch has two and only two o ~ m e ~ n ~  u n ~ y  ~ p ~ m ~ o ~ .  The two 
p o s s ~  ~ s ~  for ~e  p~babfl~y a m ~ u d e  correspond to sys~ms of bosons and sys~ms of 
~rm~ns:  

K ~ = ~ Xa(a)K ~ w~h X~(a) = 1 for every ~, 
a E ~  

K ~= ~ X~(a)K ~ with X~(a) =±1. 
~ 

K F is de~rm~ed mod~o a minus s~n. 
This exam~e shows how the d y n a m ~  symme~es of a sys~m can be o b ~ d ,  vm p~h 

~ ~ ,  from the s y m m e ~  of its ~ r ~  space, i.e. from the s y m m e ~  of ~s states: If a 
sys~m is invafiant under a group of f f ~ d ~ m ~ o n  R, ~ the p o ~ s  m the ~ g ~  space M 
whLh are R~dated must be ~enfified in order that M be ~ a one-to-one c ~ o n d e n ~  with the 
states of the sys~m. As a g e n e ~  rub, M w~ then be m ~ ~ ~ .  Its fundament~ group is 
d ~ m m e d  by R. The f u n d a m e ~  group ~ turn d~ermmes the propag~or ~ hence ~s lnvadance 
group, say ~ The exampb ~eated here shows that a sys~m of n ~ s f i n g ~ s h a N e  p ~ W s  
(~vafiance group R) can be propag~ed oNy by ~ l y  ~ m m e ~ c  and ~ y  an~symmonc pro- 
pag~o~ (~vafiance group T). 

R may or may not be ~entic~ w~h E The phenomena observed when R ~s not ~enfic~ w~h T 
have been ~ven d ~ e ~  names such as symmeWy rea~angemen~, broken symm~n~,  etc.* 

Other m d t ~ o n n e c ~ d  spaces occufing in phys~s mcMde SO(3) (e.g. a spheficM top [123]), the 2 
torus ~.g. decWons ~ a lattice [12~). SO(3) IS doubly connected, its fundamentM group is Z 2 The 

*For an anfly~s of these phenomena m terms of R and T see refs [97] and [139] 
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two possib~ expressions for the probability amplitudes wh~h can be cons~ucted [123] for the 
spheric~ top correspond to half integer spins ff one uses the trivial representation X(a) = 1 for every 
a, and to integer spins ff one uses the representation X(a) = ±1 

Path integr~s have been used to extract information about a p h y s ~  system, w~thout computing 
the integral, in situations other than multiply-connected configuration spaces. For examp~, the 
exi~ence of ghost partic~s in gauge fields ~2], and the b~ck hole rad~nce [66], to name a few of 
current intere~. 

The computation of path integrals remains neve~hdess a primary task and wi~ be treated in the 
remmning pail of this sechon 3. 

~Z WKB ~ p m x ~ a ~ n  ~ ~e wave ~ n a ~ n  ~ flat ~ace 

Cons~er a sys~m S whose action is 

f f 
T T 

/ : r o e  I[f(t)[[e=~(t)[~t))=g~t~)f'(t) • 

Let ~ be the wave function of the sys~m S whose initi~ wave function ~ at t~me ~ ~ known. 
Follow~g Truma~s m~hod [13~* we shall compu~ the WKB approximation of ~ s~rting from ~s 
p~h ~ g r ~  representation, known as ~ e  Feynman-Kac formu~ ~ .  290). Set (~m) ~n = ~, and c = 1. 
Let w~ be the W~ner gauss~n on the space Y+ of p~hs va~sh~g at t~. Then the Feynman-Kac 
form~a states that 

~ ( ~ , b , ~ ) =  f dw,(y)exp/~-~m i f V(b+#y( t~dt}~(b+~y(~, .  0.2) 
Y +  T 

The dependence of the wave function on # is e x ~ f f i y  stated since all quantit~s w~  be expanded ~ 
powe~ of ~. 

We co~d assume that the initial wave function is a phne wave of momemum p,, or a wave packet 
w~ch ~ the fim~ fi = 0 describes a particle of momemum p, at t,. In order to generalize easily the 
c ~ c ~ n  ~ flat space to the case where the configuration space is a fieman~an space we shall 
assume the same initial wave function as Truman [136], nam~y 

~(a) = exp(iSo(a)/~)T(aL 

T is an arbiWary we~ behaved function on R" whose suppo~ de~rmines the l oc~a f ion  of the 
sys~m. So is the ~it i~ v~ue of the s~ution of the Hamil~n-Jaco~ equation for the sy~em ~ Thus 
the ~ probabfl~y dens~y p = ~*~ is p(a) = ITo(a)[ ~, and the fimit when ~ = 0 of the initi~ current 
denshy 

y = *(~*V~ - ( V ~ ) / 2 i m  
is 

hm j(a) = ~a~So(aym. 
h=O 

*See p 312 for p ~  comp~lson w ~  T ~ m a e s  m~hod A ~ r m ~  denvaUon can be ~und  m ~ f  ~ p 460] 
-- 
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We could choose VSo(a) = pO at every point a ~ R". 1 e. Sda) = p~a", ~ ~ suffic~nt however to choose So 
such that 

~So(q(~D = pO (3.3) 

where q is the dass~N path, solution of 

mg~o~o(t)+V~V(q(t))=O, mq(~)=p °, q(t~) = b 

I.e. the surface Sda) = 0 need not be a plane, ~ is only required that it be o~hogonN to Pa at q(~) Since 
lim~ =o- ihV~ (a) = VSo(a)& (a), we somehmes say, loosely, that, m the limit h = 0, & is an e~genstate of the 
momentum operator ~ = -~hV w~h ~genvNue p°(a) = VSda). 

The semiclass~N expansion of 0 ~ conven~ntly obtNned by expanding about the das~cN path q the 
mtegrand of the Feynman-Kac formula ~.1~ Make the change of variable of integration y ~ x  such that 

b + ~y(t) = q(t)+ ~x(t). 
The new variable of integration* x is the deviation of an arb~rary path from the cNss~N path. Under this 
change of variable, the Cameron-Martin formula (p. 274) Nves** 

~ (~ ,b ,# )=  ~ dwff(x)exp {1 1 (-~llq(t)llz-~l---~mV(q(t'+#x"#dt)+i~ ~ (~(t) ldx(t))} 
Y+ T T 

x ~(q(G)+#x(GR (3 4) 

In~gr~e by pa~s the stochastic tntegral**. 

f(q(t) ldx(t)) = -(q(~) I x(~D- I (q(t) lx(t))dt; 
T T 

expand ~q(t)+ ~x(t~, So(q(~)+ ~ x ( ~  and T(q(~)+ ~ x ( ~  ~n powe~ of ~;and use the d a m o n  
e ~  of motion m ~ n  0 = OwK~(l + O(h~ w~re  0w~a is ~e  WKB ~ p m ~ m ~ :  

0 w K a ( ~ , ~ ) : e x p { ~ ( ~ , b ) }  f dw~(x) exp{~-~ f x~,)x'~)V~V~V(q(t~dt 
Y+ T 

+~mX~(~)xa(~)V~V,So(q(~} T(q(~  (3.5) 

where ~(~, b) is the generN solution [e.g. 23, p. 260] of the Hamilton-Jacobl equation of the sy~em 
w~h Cauchy data So at ~. 

f 
T 

*For stmphclty we ~ve ~e  same ~bd  to the vector fidd x Mong q and to ~e  pmh x T ~ R  ~ such thM x(t) ~s equM t o x ( t ) a t  q(t), we Mso 
Mentlfy under the Mbd Y÷ ~e  space of vec~r fidds x Mong q vamshmg ~ q(~) with the space of pMhs x T ~ R "  vamshmg M ~ 

**See appen&x D 
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Here q(L) is a funcUon of q(~), i.e. a function of (~, b). 
The p~h ~ g r ~  ~.5) has ~ready been compu~d ~q. 1.17): 

~w~t~, b, #) = (det/((G, ~ d e t / ( ( G ,  ~ 1 ~  exp {~ ~(~, b)} T ( q ( ~  

where/~(~ ~) is the solution of the differenfiM equation 

m -~tI~(L ~) + V~V~V(qU~,~(~ G) = 0 

such th~ 

R~(~, G) = 8~ and ~R~dtRt = ~, G) = ~ ,So(q( t ,~ .  

Since the c~s~c~ p~h has been defined by ~s ~ f i ~  momentum and ks fin~ position, q(~) is 
understood as a function of the ~itial momentum and the equation of motion can be wfi~en 

mg~oq~(~ VSo(q(t~)), b) + ~ V{q(~ VSo(q(G)), b)} = 0. 

Differentiathg with respect to q(G) and hterchan~ng the order of differentiation shows th~ 

g~(~ G) = Oq~q~OqO(t~) 

satisfies the ~qu~ed condit~ns. In c o n c ~ o n  

~w~(t~, ~ ~) = (det [Oq~(t~q'(t~)[) m exp{i~(t~, b ~ } r ( q ( ~ .  (3.6) 

We ~ve ~ append~ B p r a c t ~  methods for comput~g the WKB approximation. 

Phys%~ ~rpretation of ~e WKB approximatio~ The ~calization cf the sys~m at time ~ on hs 
configuration space M is the support* of hs wave function, here Supp Z Cons~er a flow of ~ a s s ~  
p~hs su~oun~ng the c~s~c~ p~h q defined above by q(~) = b and mq(G) = po. More spec~cally 
cons~er the flow {~(g a, p~); a ~ N} where N is a ne~hborhood of ao = q(~) and where the ~hial 
momenta p~ = ~So(a). Note ~(~ ao, p~ = q(t). This flow gener~es a group of ~ a n ~ o r m ~ n s  {%; t E 
T}, each Wan~ormation 

% : M ~ M  by a~(~a,p~) .  

Let dwo be the vo~me e~ment ~ ao. Under the Wan~ormation if,, the vo~me ~ement d~ becomes 
d~, = det[Oq~Oq~(t~ dwo. We shall say th~ the de~rm~ant of Oq~(t)/Oq~(t~) ~ves the rate at 
wh~h the flow {~(~ a, p~); a ~ N} ~verges or converges around ~ Equation (3.~ says th~ ~ the fimit 
~=0,  

~ [~(~ b,~)'~ d~, = ,~n '*(a)'~ d~o. 

In the c ~ s s ~  fimit, the probability of finding ~ ~ at time t a sys~m known to be ~ ~ at time ~ 
~s unky. The case when det[Oq~(t)]OqO(to~ = 0 is ~u~ed in section 3.5. 

*The suppo~ of T. M--* R ~ the set of poln~ a ~ M such that T(a)# 0 together with thor h m ~  The hmh points are included so that, for 
m~ance ff T(a) van~hes at ~olated points, these points b~ong neve~he~ss to Supp T 
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ZZ WKB approxtma6on of the wave function ~ curved spaces 

What is the Schrodinger equation for a system whose configuration space is a fiemannian manifold9 
How does one compute a path integr~ over the space of paths X : T ~ M  where M is an n- 
dlmenslon~ nemanman manifold? These ques~ons have been discussed since Paull remarked [118] in 
1952 that the Feynman propagator for a short ~me mterv~ does not qu~e obey the Schrodinger 
equation. It "misses" ~ by a term propo~ion~ to h 2 which vanishes in slmp~ cases but does not 
generally vanish on curved spaces. Alternativdy one can ask what is the sho~ time mterv~ 
propagator wh~h obeys the Schrodlnger equation lh&~(~ x ) = - h : d O ( L  x~2m + V(x)O(~ x) on cur- 
ved spaces 9 Or what is the path integral representation of a wave function which sa~sfies this 
Schrodinger equation? 

Recently the works of Elwo~hy on W~ner mtegr~s on curved spaces and the work of Truman on 
the c ~ s ~ c ~  limit of the solutions of the Schrbdinger equation have provided a method for computing 
the semiclassic~ approximation of the wave func~on on curved spaces. The key e~ment for 
ex~ndlng the resu~s of sec~on 3.2 to curved spaces is the development mapping as used by Eells and 
EIwo~hy [46-49] 

The devdopment mapping was first ln~oduced in dlfferentifl geometry for describing the rolling of 
a fiemannian manifold on a plane. It has been used by Yoslda [145] in describing brownmn motion on 
a 2 sphere and has appeared more or less expl~lfly in later papers* on brownmn motion on manifolds. 
It is defined as follows. 

Let ToM be the tangent space to the configuration space M at b. The devdopment mapping IS a 
bljeCtlOn between the space of L 2"~ paths** on ToM wh~h vanish at ~ and the space of L 2 ~ paths on M 
which are at b at to. It is defined as follows: 
Consider* a path z on ToM. A path Dev z on M is stud to be the devdopment of z if its denv~ we  at t, 

T b M 

M 

~g 6 z(t) ~s equfl ~ (Dev z)'(t) p~al ld  tran~orted along Dev z ~ b The devdopment m~p~ng ~ a mapping ~om ~e  ~ e  ~ L~ ~ p ~  on 

~ M  into ~e  ~ e  d L~ ~ p~hs on M It is n~  a reaping ~om ~ M  into M 

*See references quoted m refs [46] and [49] 

**Defined p 280 
*As usual one tdenufies TbM and R" The metric on TbM and R" ~ g(b) 
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paralld ~anspoaed to b, is equ~ to z(t), when ~ exists. When z(t ~) ~ z(t-), then (Dev zy(t +) and 
(Dev zy(t-) parallel ~anspo~ed to b are equal respect~vdy to z(t +) and z(t-) 

It follows immediatdy ~om the definition that 
1 The devdopment mapping maps a ~raight line on T~M into a geodesic on M such that 
(Dev z ) ~ )  = z(~). 
2. The devdopment mapping preserves angles 
3. Closed loops on T~M are not developed into closed loops on M: a mapping ~om the space of paths 
on T~M ~nto the space of paths on M cannot both map closed loops into closed loops and conserve 
angles. A closed loop is a part~cu~r case of paths w~th both ends fixed. Hence a fam~y of paths wah 
both ends fixed is not devdoped ~nto a fam~y w~h both ends fixed.* 

The space of L: ~ p~hs on T~M vamsh~g ~ the on~n m dense In the space Y~ of continuous p~hs on 
T~M va~s~ng ~ the ofi~n; the space of L ~ p~hs on M gong through b ~ ~ ~s dense ~ the space ~ ( M )  
of continuous p~hs on M going ~tough b at ~. The devdopment map~ng d~erm~es ~ a measurab~ 
map between the space of continuous p~hs on T~M which vamsh at ~ and the space of continuous p~hs 
on M wh~h are at b and ~. To s~m~ffy the no~tion we may sometimes use the same label for the 
deve~pment mapp~g and the map~ng it de~rm~es  on the space of continuous p~hs, and wfi~ 

D e v : Y ÷ ~ ( M )  by z ~ , D e v z  

but ~t should remembered th~ by so doing we crea~ a ~eacherous ~gerdemmn.** 

Since p~hs are vanab~s of ~ o n ,  we shall consider a p~h X on M as a mapping from T × ~ 
into M: 

X(L z) = (Dev z)(tL 

The theory of ~o~smbuf ions  makes ~ possible to extend to the Sch~&ng~  e q u ~ n  the resu~s 
~ d  by ~ w ~ t  for the heat e q u ~ n ;  the solution of the Schrodinger e q u ~ n  

i h ~ ( L  x) = -h~d~(~ x)/2m + ~ L  xL ~(~, x) = ~ )  

~s ~en 

~ ( ~ , b , ~ ) =  f d w ~ y ) e x p  ~ f V(X(~b+~y))dt}~(X(~b+~y)) .  (3.7) 
Y+ T 

This ~s also the e q u ~ n  one would have wn~en if asked to ~ e  ~ r m ~ y  eq. (3.1) to curved 
spaces As before assume 

~(a) = ~ a ~ h ) ~ a ) .  

In the pmvmus section V and ~ have been expanded about the c ~ s s ~ d  p~h defined by a g~ven ini t~  
veloc~y and a g~ven find point. Here c o n s ~  the c~sf icd p~h X(., q) such that q ( ~ ) = ~  and 
X(~, q) = & In prac~ce it may be d~cuR to find q such ~at  its deve~pme~ is a c ~ s s ~ d  p~h but q 
~s not needed m the find exp~ss~n.  R is su~c~nt  ~a t  ~ exist and be undue. 

*See secaon 3 4 
**Havm~ m a fir~ dra~, excused ~ ~ m n  ~ the convenuon~ "By a conveme~ ~ u ~  ~ ~ u ~ ( '  o ~  men~r (K D E ) w ~ e  bacL 

' ~ h ~  ~onveme~ abuse of ~nguage' phase m ~mo~ as ~ n g  an abu~ of ~e wo~ ~onveme~' as ~e M~a cou~ ev~ have made~ ~nce a 
kn~ks o~ o ~  ~ ~e  m ~  m ~ m a ~ c ~  ~ c d a ~ w  S ~  p 313, ~e e ~  ~ ~e mdusmn reaping t U ~ Y÷ 

tRde~nce ~ and ~ v m e  ~ m m ~ x ~  
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Set X(., q) = Z(.) and call v(t)~ the parallel ~anspofi  of v, from Z(~)  to Z(t) ~ong Z. Then 

mg~zZa(t)+7,V(Z(tD=O, Z ( ~ ) =  v(G)~, Z ( ~ ) =  E 

Z(~)  is a compficated function of v,. In th~s section the time ~ r v ~  [~, ~] ts assumed sutfi~enfly 
short so that there ~s a undue  c ~ s s ~  path between Z(~)  and Z(~).  This restriction is removed ~n 
s e ~ n  3.5. 

Return~g to the ~niti~ wave funcUon, assume that 

V~So(Z(GD = mg~(Z(GD2~(G). 

Here as m the prev~us section, the surface S~a) = 0 is assumed to be p e r p e n d ~ a r  to the c h s ~ c ~  
p~h  at Z(G). 

The devdopment  mapping is not finear, it ~s not even given expl~t ly  but via an mtegro-differenti~ 
equation and computing the wave function given by eq. (3.7) seems a formidab~ task. It is however 
possib~ to compute ks s e m i d a s s ~  expan~on. As before make the change of variable of integration 
defined by 

q + # x = b + g y  

where q is now the path such that Dev q = Z. Set 

Y(h x, ~) = X(h q + ~x) = Dev(q + ~x~t). 

In the following # is a variab~ ~ ~ U = [0, ( ~ m ~  t2] which defines a one-parameter* family of paths 
{Y(. ,x ,~);  ~ U } .  Y(hx, g)  defines a surface on M parametrized by t and #. Let V~ be the 
covariant derivative flong the curve Y (t = constant, ~ #). The expansion of V(Y(h ~ ~)) about Z(t) 
reads 

V(Y(h x, ~)) = V(Z(tD + #V~ V(Z(t))~Y~(t, x) + ½#~V~V,V(Z(t))~Y~(h x)~r~(h x) 
+ ~#2V~ V(Z(t))8 ~ Y~(~ x) + .. (3 8) 

where 

~ Y ( ~ x ) = O , Y ( ~ g ) I , :  ° and ~ Y ( ~ x ) = V , O ~ Y ( ~ # ) I , : o  

~Y(., x) is a vector field** flong Z generated by varying # in Dev(q + #x). Let TzM be the space of 
vector fields~ ~ong Z The following lemma shows that the mapping from Y÷ into TzM by 
x ~,  ~Y(., x) is finear; k will then be easy to reexpress the integrfl (3.7) as an integrfl over the space of 
vector fidds ~ong Z wa the ~near mappings y ~ x  ~,  6Y(-, x). 

Formal Lemma. The mapping ~Y(., .):x~--~Y(., x) ~ the dedvatve~ of the devdopment mapp~g 
at the path q. 

ProoL 
Dev : Y÷ -~ ~ M .  

*Look up apoend~ B for ~e use of one p~ame~r v~mUons and ~e use of covanant denvaaves m Taylor expan~ons 
**T~s notaaon ~ v ~  ~e e~oneous ~dmg ~ ~Y(~ x) ~s a s m ~  m~eme~, ~ is used nevenhe~ss for ~s obvmus conven~nce 
~ n c f i y  ~ ~ shoed ~ c ~  ~ ( ~ ( M ~  

~The ~ r ~ v ~  reaping ~ x )  of a reaping f R ~ R  ~ by x ~ y  ~s the hnear map~qg ~ x )  ~ R ' ~ R  ~ by ~ x ) v =  w such th~ 
( O f ~ ) / O ~ ) v O = w  ~ In g e n ~  ~e ~ n v a t ~  m ~ n g  of f X ~ Y  ms a linear reaping ~ x ) ~ X ~ Y  such ~ ~ x ) :  

~xo) + Ftxo~x - ~o) + Otl~ - ~[) 
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In part~ular 

Dev(q + gx) = Y(., ~ ~). 

By definition 

Dev~q): ToY+~ Tz(~(M)) ,  also called TzM, by 

0~ Dev(q + #x)] , = o :  Dev~q)x = o , r ( . , ~  #)1 " ' °  = ~Y¢.,x). • 

The ~mma and ~s proof are o~y formal because the devdopment mapping is only measurab~ so 
does not really have a derivative. Elworthy* has derived essentially the same reset  vh  the 
G~sanov-Cameron-Martin formuh. 

No~ that Dev~q) is a finear mapp~g x ~ B Y ( . , x )  but that there is no ~near mapp~g 
x(t)~-~ BY(~ x). 

Lemma. Let V = O. Let h be a Jacobi fidd a~ng q defined by h(~) and ~(~). Then BY(., h) ~ a 
Jacobi fidd a~ng Z defined by BY(~, h) = h(~), V~Y( t  = ~, h) = ~(~). 

Proof. When V = 0, q(t)= constanL the devdopment of q is the geodesic Z on M such that 
~(~) = q(t). We shall compute VtV,BY(~ x) for an arb~rary vector field x ~ong q and show that, ~ x 
is a Jacobi field vanishing at ~, BY(., x) is a Jacobi field along Z, 

V~Y(~ x) = V~Y(~  ~ g)[ ~=~ 

By definit~n of the devdopment map, &Y(L ~ g) is equal to ~(t)+ g~(t) paralld propag~ed along 
Y(L ~ ~). Paralld propagation can be expressed ~ terms of o~hogonal flames. A flame v(L ~ #) at 
Y(L ~ #) is a mapp~g ~om R" into Trtt.~,g)M. Indeed, an n-tu~e and a ~ame d e , r i n s e  a u~que 
vector whose components in the ~ven frame is the ~ven n4u~e. Then 

~ Y(a ~ g) = v(a ~ g~4(t) + gx(t~ 

and 

(3.9) 

V~Y(L x)= V ~  Y(~ x, g)[ ~=° = v(t)x(t)÷ V~v(~ x, g)q(t) I ~o  

where v(t) = v(~ x, O) is the parallel ~anspo~ along Z from Z(~) to Z(t). Since Vtv(~ x, ~) = 0 and 
4(t) = O, 

V,V~Y(~ x) = v(t)~(t) + R(2(t), BY(g xD2(O. 

If x is a Jacobi field along q, x(t) = 0 and BY(., x) satisfies the equation of geodetic deviation. • 

BY(., x) is not the only vector field ~ong Z wh~h enters the calculation; so does the vector field vx 
obtained by paralld wansporting x(t) flong Z from b to Z(t). Note that 

BY(~ x) # v(t)x(t). 
*Pnv~e commumcauon 
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In other words devdop~g a famdy of p~hs {q + ~x} and then making a one-parame~r v a n ~ n  ~s not 
eqmv~ent to mak~g a one-parame~r v a r ~ o n  of {q + ~x} and then parcel  propagaang x ~ong 
Dev q. Set 

8Y(k x) = 8Y(h x) - ~(~x(t). 

M 
~ M  ~ F'x'~sy~ ~ 

Dev'(q) 

x ~ / ~ ~ ~ ~ ~ V ~ - z  " ~  BY(., x) : vz 
~ 7  

~ ~ ( ~ )  ~+#x q 

~g  8 ConsMer a sphe~ and as ~ n g e ~  space at ~e  noah p~e The two hnes q and q + ~x deveMp into two geodesics The vector fie~ vx 
Mong D e , Q )  ~ such ~ ux(D ~ obtmned by p~alld propagaung x(t) ~om ~e  noah pMe ~ De~q~t)  The r ecu r  tidal Dev~q~ Mong D e , q )  ~ 
oMmned by mahng a o n e ~ a m e ~ r  v~m~on of ~e  famdy ~f pm[s {De~q+#x) ,  0 ~  ~ ( ~ m ~  n} hs  vMue ~ D e ~ q ~  ~ Dev'(qJ(x)(t) 
a b b ~ m e d  on ~e  ~ u r e  as D e v ~ x ~  
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The marvelous thing is that gY(., x) is differenfiable [49],* of class C :, although 6Y(., x) and vx are 
not differenfiable. Indeed, the differentiability of gY(., x) follows from 

~b 

l z(,))= f 

Pmo[ of e~ (3.10). Compu~ ~ , ~ ( ~  ~ ~)ll 2 at g = 0 in two differem ways. On the one hand 

0.(~(~ ~ ~) I£(~ ~ ~ l  .=o = 2~(OY(~x) I2(t~+-~VV(Z(t))~Y(~x). 

On the other hand, since the ~ames are o~hogon~, eq. (3.~ gives 

o~(~.~:{.=o=~V(t)x(t)l~(t))=2&(v.~.)lz(t))+~(vV(Z(t))lvU~.~ • 

A~er this long but necessary and ~uifful digress~n on $ ~  return to the cMc~ation of eq. (3.7). 
The change of vafiab~ y ~ x defined by b + ~y = q + #x proceeds as before. The Cameron-Martin 
formu~ ~ves, a~er the usu~ ~ ~ n  by pa~s, 

dw(x)= dwW(x)exp i(f dt (2-~[]Z(t)I[2--~(Z(t)[v(t)x(t)))- ~(~(~)] v ( ~ ) x ( ~  
T 

Replace V, So and T by theft expansion (3.8) about Z. The terms proportion~ to h -~ are independent 
of x and combine to ~ve as before the general solution ~(~, b) of the Hamilton-Jacobi equation w~h 
Cauchy data So at G. The terms propo~ion~ to h -~n cancel, not readily as before, but by v~tue of eq. 
(3.10), ~ving 

f f 
Y+ T 

+ V~V(Z(t~82y~(t, x)] 

+~m[V.V,So(Z(t.))~Y~(t., x)~Y"(t., x)+ V.So(Z(t.))&2y"(t., x~} T(Z(t.)). (3.11) 

Following Elworthy we show that 
t b tb 

t f = 
t t 

t~ 

+ f dr(llV~Y(~ x)ll 2- IIx(r)ll=). (3.12) 
t 

For t = t,, the left hand side of eq. (3.12) is precisely the combination which enters eq. (3.11). The 
quadra~c term in ~Y comNnes Mt~ t~e ot~er quadratic terms in eq. O.11) and enters the cNculation 

*E~l~r c~c~aaons of path m t e ~ s  had ~ntmduced app~ently m~acu~us canceHaaon b~ween facm~ of ~e undefined quantlff ~(0), [B S 
~ W ~ ,  ~rwa~ commun~aao~] The ~(~) ~rms a~ m~Muced by ~e ume denvatwes of ~Y(, x) and vx, ~ey canc~ because ~e m~grand ~s 
~ t  a f~nc~on ~f ~Y(, x) and vx b~ of ~ r  ~fference 



306 C D e ~ - M o ~  ~ d ,  Pa~ mtegratton m ~ n - ~  qua~um m~hanws 

of the wave funcaon on curved spaces (3.11) ~ a stratghtforward generalization of the c M c ~ n  in 
fiat space. The rem~ning terms are eliminated by the change of var~b~ x ~ ~Y(., x). 

Proof of equat~n (3.12). Compu~ V , 0 , ~ Y ( a  x,  )11 at g = 0 in two ~fferent ways. On the one 
hand 

V.a.fl~Y(t, x,  )11 = ~v .v , a .  Y(~ x, g) l <Y(~ m ~)) + ~v~.Y(< x, u)l v,o.Y(L x, ~)) 

V'o"H<Y(h ~ ~ [  . :o = 2(V'a= Y(C x) [ Z(t~ + aR( a Y, 2(t,a Y 1 2(t)) + ~V a Y(  

where the argument of aY is (C x). On the other hand, since the ~ames are o~hogon~, (3 9) gives 

v~e~ngY(g x, #~:1 ~:o =  x<t)ll: 

Equation (3.12) foRows. • 

Insert (3.1~ into the wave equation (3.11) and map x ~ S Y ( , x )  by the derivative of the 
devdopment mapp~g at q. Let w be the image under Dev'(q) of the W~ner gaussian w w on Y+. Then 
according to the Cameron-Martin form~a 

dw(aY)=dwW(SyRD~Dev'(q))-'exP{½ f ~x(t)llz-IlV~Y(t)l~dt} 
T 

where we have s~mpl~ed the notation and wnaen Dev'(q)x = BY. In the aY-vanab~, the wave 
function (3.11) reads 

~wxs(~, b, g )=  exp(~ ~(~, b))(Oet Oev~q))-'T(Z(~))I (3.13) 

where 

I =  f dwW(SY)exp{~ ~ [~ v~vzV(Z(t~Y~(O~Y~(~-(R(Z(t)'~Y(t) ~(t))l$Y(t~]dt 
~ M  T 

The computation of the p~h ~ g r M  I is sw~ghfforward and proceeds as m the fin case. 

I = (det/('(~, ~ d e t  g'(~, ~ , n  

where/('(~ ~) ~s the s~utmn of the Jacob~ equa~on such th~ 

/(-~a(~, ~ )=  g ~ ( Z ( ~  and mV,R ~" (t = ~, ~)=  V~V'So(Z(~9 

Let V, ~ T ~ M ,  and ~(t)  =/((~ G) V, ~ T zmM, then 

mV,V,H~) + V~V~V(Z(t))H~(t) + R~a"n*~)ZS~)2"(t) = O. 

We prove that 

g~(~, ~) = a Z ~ ( ~ a Z " ( ~  
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Indeed cons~er an n parame~r flow of c h s s ~  p~hs {A(~ u~.. .  u~)= A(~ u~ ori~nating ~ a 
ne~hborhood of a = Z(~) such th~ A(~ ~ = Z(t) and mA~(~, u) = V~So(A(ta, u)). 
Cons~er the group of ~andormations ~ genera~d by this flow: 

~ : T x M ~ M  

in such a way that (~, A(~, u ~ , A ( ~ ,  u). Its derivative ~'(~ Z(~)) maps a vector V~ ~ Tzt~M into a 
vector in V(t)~ Tz,)M such that 

V~(t) = (~Z ~( t~ Z~ (~  V~. 

V(t) is a Jacobi fie~ wh~h can be obtained by a varia~on through the fam~y {A(~ u~ such that 

~A(~, u) I ~=o = V~. 

Its covanant derivative gong Z(t) is ~(t)=(D~(t)/dZ~(to~V~ and ~ the orion ~ ( ~ ) =  
VaV~So(Z(G))lm. Hence 

V(t) = ffI(t) = ~(h ~) V~. • 

Thus the ~tegr~ I in eq. (3.11) is gNen by 

12 = det(~Z~(~0Z~(~)).  

It ~ves the rate at which a flow of chss~fl  paths ori~nating ~ a ne~hborhood N(a) of So(Z(~)) 
diverges or converges. It reflects both the cho~e of the initi~ wave function and the dynamicfl 
properties of the sys~m. 

If we choose V~V~So(Z(~D = 0, i.e. ff N(a) has first order contact with its tangent space at Z(~), 
the matrix / ~ ( ~ ,  ~) ~s equ~ to K~(~, ~) defined in appendix B. The matrix K~(&, ~) is not the 
apparently fimihr matrix ( c ~ d  D -~) cons~ucted by B.S. DeWiR D7, p. 150] from the geodetic 
m~rvfl (alias the world function), nor the matrix ~ d  A) used by Hawing  and E~is D7, p. 9~ to 
define the vorticity, shear and expans~n of a family of geodes~s. The~ matrix satisfies flso the 
equation of geodetic deviat~n but with the boundary condit~ns defin~g the matrix cfl~d here 
J~(~, ~). The determ~ant of J~(~, ~) ~ves the rate at which geodes~s emanating from a fixed po~t 
diverge laser or dower than stra~ht lin~s emanating from a fixed p o ~  

The determ~ant of K ~ves the rate at wh~h a flow of geodes~s ori~nating in a ne~hborhood of 
b C M ~verges or converges. More predsdy, ~t V~ ~ T~M and H(t) = K(~ ~) V~, then H is a Jacobi 
fie~ ~ong Z such that H(~)  = V~,/-/(~) = 0. This Jacobi fie~ can be generated by a variat~n through 
geodefics ori~nating ~ a ne~hborhood N(b) of b such that N(b) C M and 

{~bfl)ohwaSoffi~S~o%r2~/~ff~thoW2~Ist~a~vgffb~t. space at b: 
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In flat space for V = 0, K~(~, ~) = K ~v~(~, ~) = 8~ In curved space, det K~(~, ~) gives the rate at which 
geodes~s diverge faster or slower than paraHd ~nes o~hogonai to the tangent space to N(b) at b. 

In conclu~on, the WKB approximation of the wave function in curved space is 

~w~(t~,b, , ) =  exp{~ ~(t~, b)}(det OZ~(~OZ~(~'~(Det  Dev'(q))-tT(Z(~)). (3.14) 

It remains to compute Det Dev'(q). First some general properties of Dev'(q). 
1. The mapping Dev~q): Y÷~ TzM by x ~ Y ( . , x )  can be decomposed into two mappings: 

Dev'(q)= v op where P :  Y ÷ ~ Y ÷  by x ~ z =  v-~Y( . ,x ) .  P is the essence of the development 
mapping. It maps a vector x(t)~ T~M which parallel ~anspo~ed from b to Z(t) is equal to ~Y(L x): 

v(t)z(t) = ~Y(~ x) = Dev ' (q)x~ 

The mapping P ~nduces a mapping P~ 

Po : TzM ~ TzM by vx ~ ~Y(., x). 

Since parallel ~anspo~ is norm preserving, 

Det Dev~q) = Det P = Det Po. (3.15) 

2. We have previou~y measured the difference ~Y(., x) - vx by gY(., x): 

P ~ = I  ~ gY( . ,x )=0  

D e t P o # l  ¢~ DetDev ' (q )~ l  

De tDev~q)~ l  ~ ~ ( - , x ) # 0  but not v~e versa. 

It follows that a family of paths wah both ends fixed in T~M does not develop ~nto a family of paths 
in M w~h both ends fixed. Indeed, the vector fields generated by a family of paths w~h both ends 
fixed vanishes at t~ and ~. If x (~ )=0 ,  then v(~)x(~)=0. But v (~)x(~)=0  does not imply 

- -  

SY(~, x) = 0; ~ impfies SY(~, x) = ~Y(~, x). See p. 313 under wh~h conditions a fam~y of paths on 
T~M develops into a family on M with both ends fixed. 

Lemma. When q devdops into a class~al path, Det Dev~q)= 1. (3.16) 

ProoL We shall prove the result first when V = 0, i.e. when q is a s~aight fine. 

Det Dev'(q)= Det P (eq. 3.15) where P : x ~ z  w~h 

z(t) - x(t) = v-'(t)gY(t, x), V,V,gY(~ x) = R(;2(t~ ~ ( t ,  x ~ ( t ~  

Hence, since x(~) = z(~) = 0 and ~(~) = y(~), 

x(t) = z(t) - f O(s - t)(s - t)R(2(sL z(s~2(O ds, 
T 

where the integral is assumed to be wfiUen in Ferm~ coordinates so that the Rieman tensor can be 
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contracted with vectors at different points.* This ~near mapping is of the form 
tb 

x(t) = z(t) - f k(~ s)z(s) d~ 
t 

S~nce k(L s) vanishes on the diagonal, ~ is continuous on T x T and its determinant ~s simply 
~ 

¢ 

When V# 0, the following relationship** can be used to prove the resu~ by an argument similar to 
the prevmus one: 

Cb 

x, .=o= - f R(Z(r), ~Y(r))2(t) dr (3.17) 
t 

where v(L x, ~)q(t) is the parallel transport of q(t) along q(t) + i~x(t) and where the right hand side is 
assumed to be written in Fermi coordinates.* • 

The WKB ap~oximation of the wave function for a particle ~ curved space is 

ffwKB(~ b ) :  (det OZ~(G~Z~(G~ ~ exp{~ ~ ( ~  b)} T(Z(G~. O.I  

The me~od dev~oped here can be used to go beyond the WKB ap~oximation. Terms such as 
#")Y enter the calc~auon and have to be e xposed  by recurrence formu~e in terms of ~Y (see eq. 
3.12). The ~ a l l e d  "two-loop" app~ximation is being ~ v e ~ e d .  

£~ The ~miclass~M expans~n o[ ~e pwpagawr X(B; A) 

The probability am~ffude X(B; A) thin the sy~em wh~h is known to be in the state a ~ M at ~ be 
found ~ the state b ~ M at ~ can be obtained from the Feynman-Kac formMa (3.1), by choos~g the 
inMM wave function $(b + ~ y ( ~ =  6(b + ~ y ( ~ ) - a ) .  T~s cho~e makes the compmation of the 
Feynman-Kac formMa simpM ~ pr~c~M to any order in ~ and we shall show that 

X(B;A,=  f dw~(y, e x p I ~ - ~  f V(b+~y, t~dt lS(b+~y,G)-a ) 
Y+ T 

= ffdWK.'B; A,( I  + n=,~ Oh,Mn). 

where M. are finite dimensional integrals. The fight hand side of eq. 
semklasskai expan~on of X(B; A). 

0.2  

(3.19) 

O.2  

~ known as the 

*If one w~shes not to use Ferm~ coordmates one can parallel ~anspo~ vectors along Z back and fo~h to Z(~), and the equauon reads 
x(t) = Z(t)-§/~ (s - t)R(Z(sL z(s))v(s)v-~(t)Z(~ds where §~b means v(t)f/~ v-~(s) ds 

**Reference [49] and Elwo~hy private commumcauon 
- -  
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To compu~ (3.20), proceed as m section 3.2: 
1. Change of v a r ~ e  b + ~y = q + ~x such th~ q ~ the class~M p~h 

m~(t) + V V(q(t)) = 0, q(~) = a, q(~) = b. (3.21) 

In this section the end pomB of the das~c~  p~h q(~) = a and q(~) = b are w~h~ foc~ d ~ n c e  of 
each other. T~s  re,fiction is ~moved in the f ~ w i n g  section. 
2. In~gr~e f~ (~(t) ] x(tD dt by par~ and use the equation of motmn. 
3. Expand V(q(t) + ~x(tD in poweB of ~: 

V(q(t) + ~x(t)) = V(q(t~ + ~x~)V~V(q~D + ½~:x~)xO~)V~V,V(q(t)) + ~Z~(q(t), px(t)) 
(3.22) 

~zO(q(t), ~x(tD = i~,~.~_ ~l~.V(q~))(x(t))~n! 

where n ~ a multi index.* Then 

f f 
~ T 

~(q(t), ~ ( t ~ }  $ ( g x ( ~  (3.23) + 

where ~B~ A) = $(q). 
We can ag~n use the Cam~on-Ma~n  formu~ to find a new gauss~n ~+ wh~h " ~ ~ "  the 

exponent: 
Let G+(& s) be the ~ m ~ y  kern~ of the Jaco~ e q u ~ n  

~ G ~ ( L  s) - ~ % ~ G ~ ~  s) = ~, G+(~, s) = O, O G ~  s~O~ = 0. (3.24) 

h has been shown ~ section 1.5 ~a t  the gaussmn w+ of covafiance G+ sa~sfies the ~ u ~  

dw+(x~dw~(x)=(detK(~,~det K(G, ~D+'~exp{~-m ~ f V~,V(q(t))x~(t)x~(t)dt} (3.25) 
T 

where K(~ ~) ~ the solution of the homogeneous Jacobi equation corresponding to eq. (3.24), such 
that K=o(G, ~) = g~O and such that ~s derivative ranches at t = ~. Hence 

Y{(B; A) = e x p ~ ( B ;  A~fi~det K(~, ~ d e t  K(~, ~ ) ) - ~ I  (3 26) 

where 

I= f d w ~ w ) ~ x ( ~ D e ~ ( ~  f dt~(q(t),~(t~) 
~ T 

I can be reexpressed as an ~ e g r N  over the space X of p~hs vamsh~g both at ~ and ~. Let w be 

*n ~ a mulu index n={n~, ~L Inl=n~+ +n.  n~=n~ ~ ' ,7 .=Dl" / (Oq"~ t ) :  ' (Oq~(t)) ", (x( t ):=(x~'( tD ~ (x~(t)) ~ 



C DeWttt-Morette ~ al, Pa~ mtegra~on m non-relattvtsttc quan~m mechanws 311 

the gaussian on X, Leray related to w+ on X.. The gaussian w is normalized to (see p. 283): 

w(X) = I dw+(x)8(x(GD = (2ri)-"/z ~et G~o(G, ~)1-'~. (3.27) 
X+ 

Its covafiance G is the e~mentary kernel of the Jacobi equation (3.24) vanishing on the boundary 
and is known as the Feynman-Green function. Since ~(~x(G~ = ~-"6(x(t,)), 

f d  )exp{  f dtO(q(t),.x(t))}. 
X T 

The WKB approximation consists ~ setting O ~ 0. Using eq. (3.27) and the express~n for G÷ ~ven ~ 
appen~x B ~ g e ~  w~h ~e  fact ~ (J(~, ~))-~ is ~e  Van V~ck m~fix ~ff ~agon~ bbck of the 
hesshn of the action function, eq. B9) we obtain* 

Xwg~(B; A) = exp{i~(B; A~h~2~ih~"/2~ 02~(B; AyOb~Oa ~11/2, (3.28) 

X(B; A)= Xwgs(B; A ) f  dw.) exp{  f dt a(q(t), ~x(t))}/w(X). 
X T 

To compu~ this p~h ~ g r ~ ,  expand the exponenu~ and regroup the terms m powe~ of 
~ = (~m) 'n. A t y p ~  ~rm is of the f d b w ~ g  form 

f d w ~ ) f  dt V,V(q(t~x,)) ~ .. f ds V~V(~s))(~s)) ~. (3.2~ 
X T T 

If we can ln~rchange the order of integration then the prob~m is reduced to comput~g cyfindfic~ 
integr~s 

f dw(x) F~ ~(~...s)x~(t)...x~(s) 
X 

i.e. finke dimensional integrals. The integr~ of an odd polynomial in x vanishes and the expansion of 
(3.28) is an expansion in powers of ~2, i.e. an expansion in powers of ~ Its terms have been computed 
in section 1.3 (eq. 1.7). The integration of the Feynman-Kac formula (3.19) gives the sem~lasfic~ 
expansion (3.20). Equation (3.20) is known to be a solution of the Schrodinger equation ~6, Mso 108]. 

The lat~ce approximation of Yf(B; A). We shgl relate eq. (3.28) to the path integr~ definition 
proposed by Feynman. Equation (3.28) has been obt~ned from the Feynman-Kac formuh for the 
sy~em whose action is 

[:T-~R*wRhf(h)=a,  / (h)  = b. 
T 

*~nce eq (3 2~ has been computed from fir~ principles, the n o r m M ~ m n  comes in a m o m ~  and we a n  spared ~e  c o m O ~ e d  
a~umen~  used m ItS prevmus derivations 
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Let q be the c h ~  p~h, f = q + ~ ,  

Sff) = S(q) + ½S~q)xx - ~ f O(q(t), x(t~ dt 
T 

Let ~ = t o < t ~ "  . < & < . . - ~ + ~ = ~ .  Without loss of g e n e r ~ y  we assume ~ + ~ - h =  
( ~ -  E)/(p + 1)= ~ and to avoid unwieldy notations we assume the system to be one d~mension~, 
[ T ~ R. Replace f r  O(q(t), x(t))dt by ~s ~t~ce approximation 

f O(q(t), x(t~ dt ~ ~ ~=~o J2(q~" x~)" 
T 

where q~ = q(&), x ~ = x(&). 

Equation (3.28) becomes a cylindnc~ mtegr~ which can immediatdy (eq. 1.5) be expressed as an 
mtegr~ over R "÷~ under the mapping P :x-~{x °, .. x"}, namdy 

~{(B; A ) = ~rwx~B; A ) f ~(gx °)(2~O-~+'~ ldet ~S'l'n exp {~ ~S'x~'}  dx° . . . dxO 
RP +1 

x exp {-~- ~__o ~(q*, x~) } 

where ~ " =  W(~, ~ ) =  G(~, 6). The ~nverse and the de~rmmam of ~ has been computed in a 
prevmus paper ~0, p. 391 -39~  Set ff = q~ + ~x ~. It has been shown ~ that 

P 

~ ( a , . .  f t . . .  b) = ~( B, A) + ½ ~,~ °WS'x ~' - ~ ~, O( q ~, x~). 
k = O  

In the limit e = 0 the de~rminam of ~S '  takes a ~m~e form (eqs BI7, BI~  

det ~ '  = e ~ + ~ M ( ~  ~) 

Since dx * = d f ~  

~(B; A) = f e x p { ~ ( a  . . . .  ff . . . .  b)}~(q°-a)~rI=o ~ (dff(m/2zrihe)~n). 
RP +1 

Feynma~s o r ~ f l  p~h i m e ~  ~ v ~ e m a t i o n  is 

~(B; A) = lira ~(B; A). 
p = ~  

~ m ~ a ~ a l  expansion, q u ~ g ~ l  repres~mtio~ a~mpmtic expansio~ The fi~t s~ps in the 
c~cu~Oon of ~(B; A) fol~w the m~hod ~ o d u c e d  by Truman [135, 13~ ~ his dedva~on of the 
s~uOon of the d~usmn equation, w~h i n ~  v~ue ~ven by eq. (3.2), wh~h he c~led the quas~ 
c ~ s s ~  ~ p ~ m a t i o n .  A~usfing for ~e  d ~ e m  i n i ~  v~ue of the wave funcBon, eq. (3.23) is the 
q u ~ s ~  ~ e ~ m a t i o n  ~ ~ e  S c ~ f i d ~ r  ~uation. The c~c~afion ~a~ng from eq. (3.~) ~ 
~ e  fin~ ~ s ~ t  ~q. 3.2~ shows how ~ e  ~ m i ~ s ~  ~ n ~ o n  ~ n  ~ o ~ d  from ~ e  q u ~ s s ~  

*See eq (B20) for det ~ '~ 
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representation. Truman has ~ven the conditions under which the qua~c~s~c~ representation is vMid 
as well as the WKB approximation of the solution of the Schrodinger equation and we refer to his 
papers for a precise discussion of these matters. 

Gerv~s and Sak~a [63]* have devdoped an improved WKB method where the potenti~ ~ not assumed 
to vary slowly in all directions of the configuration space. 

The WKB approximation o[ the propagator on curved space~ With the notation of section 3.3, p. 
301, the propagator ~ can be wfiuen on curved spaces as 

Yg(B;A)= f dw~(y)exp{-~mf V(X(~b+~yDdt}6(X(ta, b+~y)-aL 
Y~ T 

It can be compu~d as before; the ~ r e s f i n g  point is th~ the expans~n in powe~ of ~ Lads to 

6(Y(~,  ~ u ) -  a) = 6(u6Y(to, x) + ½~6 ~ Y(to, x) + • .), 
and the term 

e x p { ~ ( 2 ( ~ )  l O(ta)X(~))}6(~6g(ta ,  X)+ ½~262y(ta, X)+ . . .) 

com~nes prec~dy wi~ the terms arising ~om the change of variab~s y~-->x~>6Y to gNe, a~er a 
c~cdat ion ~mflar Io the one ~ad~g ~om e q u ~ n  (3.1~ W 0.2~,  

Yfw~(B; A) = exp0g(B; ayh~Z~F"~21det 0'g(B; ayOb"OaOl ~ (3.3~ 

where now ~(B; A) = S(Z) whe~ Z is the d a ~  p~h on M such th~ Z(~) = a, Z(~) = b. 
Equation (3.3~ shows th~ the WKB a p p r o ~ m ~ n  of ~(B;  A) is equ~ to the lim~ of Y{(B; A) 

when ~ - ~ goes to zero [11~. 

Remark. It has Mready been noted that the devdopment of a closed loop is not a closed loop, or 
that the development of a family of paths w~h both ends fixed is not a family of paths with both ends 
fixed. We can now comp~te the ~atement made on p. 301. 

1. Given a family of paths on TbM with both ends fixed, it develops into a family of paths on M 
such that 6Y(G, x)= flY(G, x). 

2. Given a family of paths on M w~h both ends fixed, it ~s obtained from a family {q + ~x} of paths 
on TbM such that 

Dev~q)x(G) = - ½~62 Y(ta, x) + O(# ~. (3.3 l) 

Z~ On and beyond the caus~cs 

The results derived in sections 3.2-3.4 are valid only when ~ - ~ is suffic~nfly small for the end 
points a and b of the classical path to be within focal distance of each other. We examine now 
situations in wh~h q(~) and q(~) are conjugate** along q, or in wh~h there are conjugate points q(to) 
for t~ < to < ~. 

*Th~ m~hod has been apphed ~ b~n~ peneR~n pm~ems and ~ m~an~ns ~ 
**See appen&x B for ~ definmon and properties of caus~cs and co~ug~e pm~s 
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On the caus~6 Cons~er first the case ~ which q(~) and q(~) are conjugate but there ~ no other 
co~ugate po~t  ~ong q between q(~) and q(~). Notice that ff q(~) is on the caustic of q(G) formed 
by the family of c ~ s s ~  paths w~h common ofi~n, then* det J(t~, G) = 0, its inverse det M(~, G) ~s 
~finite and the WKB approximation of ~((B; A) is not defined. Similarly ff q(~) is on the caustic of 
q(~) formed by the family of ~ass~M paths w~h equM initi~ vdocities,** then det K(t~, G) = 0 and 
the WKB appro~mation of the wave function @(~, b) ~ not defined. These resul~ cou~ have been 
antic~ated: geometric~ optics is not a good appro~mation of wave optics ~ the ne~hborhood of a 
caustic [e.g. 86, p. 146; 16, p. 6~. 

To compu~t  ~ (B ;A)  when a and b are conlugate ~ong q we need to go beyond the WKB 
approximation. Following an ~ea of Schulman ~,  p. 152] we shall make a change of vadab~ of m ~ g r ~ n  
wh~h ~agonalizes the variance. This procedure is o~en useful [5~ and we present ~ ~ a more gener~ 
context. 

Diagond~ation o[ the va~anc~ Let X be the space of continuous paths x : T  ~ R" vanishing on 
the boundary x (~)=  x(~)=  0. Cons~er an lntegr~ over X with respect to a gausfian w whose 
covafiance G is the e~mentary kernel of a ~fferenfi~ operator D, that vanishes on the boundary: 

D,G(g s) = ~(t - s), G(g s) = 0 for t or s equal to ~ or ~. 

Let {~} be a c o m p ~  o~hogon~ set of e~enfuncUons of D" 

D~7(t) = a ~ ( t ) ,  ~ ( ~ )  = ~ ( ~ )  = O, f l ¢,~(t)) dt = 6~. (3.32) 
T 

Expand x and G ~ the basis {~;  k = 1,.. ~}: 

x~(t) = ~ u~ff~(t), u ~ = f (x(t) [ ~ ( t ~  dt (3.33) 
T 

G~(~ s) = ~ u ~ $ ~ ) ~ )  (3.34) 

f f 
T T 

The change of vafia~e x~*{u~; k = 1 . . . .  ~} is a Hnear change of vafia~e w~ch can be weated by the 
m~hods devdoped ~ section 1.3. Let P : X ~ R ® by x ~-~ u = {u~}, and ~t  ~ = {~} be ~ the duff of 
~ .  

Lemm~ The image w, o[ w under P ~ a gaussian o[ cova~ance 8% ~ ~. ~s normalization ~ the 
same as that o[ w. 

Pmof. The ~mage of w under P ~ a gausfian of variance 

f f 
T T 

= Y (3.37) 

*See appendix B for the definmon and p r o p e ~ s  of causOcs and conjugate pom~ 
**See p 353 for the meamng to be g~ven to th~ condmon on a curved space 

?We can fist compu~ the wave function when b ~ on the caus~cs formed by the family of chss~fl paths w~h equfl mmfl vdocmes 
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The inverse of U, in the sense defined in section 1.5, is a bflinear form on R ~ 

U-'(m u) = ~ u ~ u ~  ~th ~ uOu~ I= ~ 

It can be obtained from the inverse of the variance of w. Indeed 

t 

W-'(~ x) = I (Dx(t) [ x(tD dt = ~ u ~ u % ~  = U- ' (~ U~ 

T 

Hence u L~ = a~6,~, and the first pa~ of the ~mma is proved. A Hnear mapp~g ~ways preserves the 
normalization. Indeed 

= o 

We mention ex#~itly the normalization of w e because w, in contrast to w±, is not normM~ed to 
un~y.* • 

It fo~ows from eq. (3.34) that 

G~'(L s) = ~'~ ~;'~(t)~(s~ (3.38) 

SimiMr resdU can be derived for G± by choos~g appropri~dy the boundary conditions of the bas~ 

Remark. The ~agonalization of the variance shows that the gauss~n method ~ defined for space 
of pmhs X and po~ntiMs V such that ~(4) ~ a Sturm-L~uv~e operMor on X. 

Returning to the study of X(B; A) near the caustics, we compute X(B'; A') where B' = (b', ~) and 
A'= (a', ~), but expand all quantit~s around the class~M path q such that q(G)= a, q (~ )=  ~ 
According to the Feynman-Kac formuM 

X(B':A')= f dw (y)exP{ mf V(b'+ 
Y+ T 

Since in the basis (~} we can expand only functions wh~h vanish at ta and ~, we have to choose a' 
and b' such that a ' -  a = b ' -  K Set 

a ' - a  = b ' - b = ~ A  

and make the change of vanab~ y ~-)x such that 

b '+  #y(t) = q(t) + ~(x(t) + A). 

Then 

~m i ~ f 0.3~ 
T 

*See Leray assocmted gausmns, p 283 
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w~h* 

' =  f d w ' ( x '  exp{-2- ~ f [ ~,V(q",,(x"(t,x'(,,+ 2x~(t,A ", 

To compute I we have the chome of two routes: 
(a) Proceed as in section 3.4. Use the Cameron-Martin formula to in~oduce a new gaussian w÷ 

wh~h incorporates the terms quadrat~ in ~ Then rewrite I as an integrN over the space Y of paths 
which vanish at both ends, using the gausslan ~ associated in the Leray sense to ~÷. Or, vice versa. 

(b) Rewrite I as an integral over Y, using the gaussian ~w Leray related to ~ ,  then introduce a 
new gaussian ~ wh~h incorporates the terms quadratic in ~ The resu~s can be shown to be identical 
although ~(Y) e ~(Y). 

We shall fo~ow the second route wh~h is mmpler in this case. The essen~al steps are: 

f dw~(x~(x(~DF(x) = f dwW(x)F(x) 
Y+ Y 

where the W~ner gau~n w w on Y (p. 283) is normalized to 

wW(y) = ~D-"/2(det  G~(~, ~))- '~ = ~rD-"/2(det MW(h, ~))1~ 
= ( 2 ~  - ~))-./2 det g~. 

Use the Camion-Mart in  form~a, ~ g e ~  w~h the ra~o of the covarlances G and G w eq. (B.I~, to 
~corpor~e the quadratic terms 

dff(x)=dwW(x)exp{-~m m f V~V~V(~t))x~"~(t)dt} 
T 

x (det Mw(G ~ ) ~  M ( ~  ~ / 2 .  

Make the change of variaNe x ~  u w~ch d~gonM~es the variance. WRh ~ defined p. 315, set 

d ~ f ~ q ~ G ~ d t  = d~Gk 
T 

f ~ G V v ~ q ~ D G ~ ~  ~ = Vg~. 
T 

Then 

I = (det M(~, ~de t  MW(~, ~D'~ f dwp(u)exp(~ml~=V~uk-~m V~,,u~u'ut ) 
where ~ 

dwp(u)=(2~-"/2(detMW(~,~D~aexp(~,akuguk}O(ad2rO~dug. (3.40) 

*Some ~gumems not written expert ly are obvmus 
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The ~ g r a t i o n  over u ~ when all ak#O is s~a~hfforward; in the limit a =0  and # =0, I =  
~rb-"t=(det M(~, ~D'~. 

ConsMer now the case where one and o~y one e~envMue, say ~,, is zero; then $7(t) ~s a non zero 
Jacobi fie~ vanishing on the boundary, q(~) and q(~) are co~ugate, det J(~, ~) = 0 and we have to 
compu~ the apparently undefined quantity e, det M(~, G) = a,/det J(t~, ~). Each c~umn of J~(h ~) 
consists of the components of a Jacobi fi~d h ~ t )  = J~(h ~) such thin h ~ )  = 0 and h ~ )  = 6~. 
After a ~milarity ~an~ormation wh~h does not change the determinant we can assume that 
det J(~, ~ ) =  0 impl~s JT(~, ~ ) =  0. S~ce we have assumed only one r a i s i n g  e~envMue, there is 
only one non zero Jacobi fidd va~shMg on the boundary. This one fie~ is Mso a cdumn of J~(h ~) 
agMn p o s s ~  a~er a similarity ~an~ormation. The three fields $,(t), ~(h ~) and ~(h ~) satisfy the 
same equation and the same boundary conditions: 

$,(t) = Z(~ ~)  = Z(h  ~). 

Choose the sy~em of coordinates such that J7 ~ 6~, i.e. the 1-axis is perpend~ular to the caustics. 
Near the caustics Jl(~, ~) = ~ then Mt~(~, G) = ~-~, M~(~,  ~) = 0 and 

~m G~(L s) = O(s - t)J~'(~ ~)M,t(t~, ~ )J'a(t~, s ) -  O(t - s)J~'(~ ~ )M,,(t~, ~)J'a(t~, s~ 
~=O 

On the other hand when a~ tends to zero, eq. (3.38) #ves 

Hm G~a(h s) = a 7 ' ~ ~ L  
~1=0 

Hence M~l = a~ ~ and a~ d e t M ( ~ , ~ )  = cofactor Ml~. ~ e  ~ e ~ M  over ut is an A~y ~nctiom Set 
u ' = ~ ;  

v = - V,,,/2h, 

Then 

c = - 2 ( b ' -  b ~ l / ~ l l ,  and I(~ c) = f du exp i ~ u  3 - cu). 
R 

X(B';,,~=a=oA') = exp{~ ~(B;A)}(m/2~ih)~+'~cofactor Ml l I (~c )  (3.41) 

in the system of coordinates where the 1-axis is perpendicular to the caustic. A similar analyfis gives 
the value of X(B'; A') when there is more than one zero eigenvalue. Since there can be at most n 
nonzero Jacobi fields vanishing on the boundary, the zero eigenvalue is at most n-degenerate. When 
there are k nonzero Jacobi fields vanishing on the boundary, b is said to be a conjugate point of 
multiplicity k The behavior of X near the caustics had been obtained by Schulman [5, p. 152], largdy 
from qual~ative arguments. Equation (3.41) confirms his results and gives aU the factors explicitly. 

The Aky regime of the propagator near the caustics has an immediate phyfical interpretation. When h 
tends to zero, the Lading contribution to I (~  c) is found by making the argument of the exponential 
stationary, i.e. by solving 

U2-c=O.  

The sign of ~ i.e. the sign ( b ' -  b)~V~,, has a dramat~ effect or as we shall see a catas~oph~ effect in 
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the ~chnmM sense of the term: A s y m p W ~ y  

~(~/~'/~)m cxp~'~ ÷ ~ / 1 ~ 1 ~  ~ ~_ ~3/~) 

l ( ~ c ) ~  

For c < 0 we 

for c > 0 

(~]~cll]2) 112 exp(-k lcl for c < O. 

are m the "shadow" region of exponential decay, while for 

(3.42) 

c > 0  we are m the 
Sumhated  re ,on .  

Chss~ally, k has been shown* that the caustics are the projections of the catas~ophe sets on the 
control space of sy~em: here a st~e of the sys~m is a particular so~tion of the Hamflton-Jacobi 
equation ~(B; A), the control space ~s the space of points B ~ M x ~ Given B there may be 0, 1 . . .  n 
~ationary paths from A to B. If there is one and o~y one, A and B are w ~ n  foc~ ~ a n c e  of each other 
If there is none, B is ~ the shadow reg~n of A; if there ~ more than one B is m the ~um~ated  re ,on .  The 
boundaries between re~ons wRh different ~um~ations are the caustics. If there are k stationary p~hs 
from A to B, the c a u ~ s  relative to A is an n - k dimen~on~ surface. 

Set ~ ( B :  A) lhe v~ue of the action f u n ~ n  compu~d along the stationary path q~ Let 2 be the set of 
pom~ {B, ~k(B; A~ for all B ~ M × ~ The catas~ophe set of [he sy~em m the set of p o ~  a ~ ~ where 
the projection H: Z ~ M x T is ~nguhr, ~.e. the set of po~ts where/ / ' (a) :  T.2 ~ Tm~)(M x T) is not 
one-one. Th~ means that {~} ~ ~so the set of points where T~Z is "vertic~", hence the set of points where 
an "upper" and a "~we~'  sheet of Z coMesce. Th~s occu~ prec~dy at the p o ~  B where two stationary 
paths coMesce. The caustics are ~deed the projections of the sets {a}. We see that quantum mechan~s 
softens the boundaries between re~ons of different d~m~afions 

Beyond the causgc~ In 1890 Gouy** observed and exN~ned the phase ga~ed by a wave as ~t goes 
through a focus. Similar phase shifts occur ~ the wave funct~n of quantum sy~ems; they have been 
derived by Ke~er ~ from the sm~e v~uedness of the wave f u n ~ n  and by Gu~w~er  ~ who 
established thek relationship w~h the Morse index of the co~esponding d a s s ~  ~ajectory. A recent 
caref~ an~y~s [2~ of [he path ~ g r ~  so~tions of the harmon~ o s c ~ o r  disphy the ~ner 
wor~ngs of these phase shifts. 

The Mo~et ~dex. Once ag~n we be~n at the second variation S~q)xx from which MI b~ssmgs 
flow. Here q is a stationary path defined by ~s end po~ts q(G)= a, q (~)=  b and X is the space of 
vector f iefs  x Mong q vanishing at the end po~ts x(~) = x(~) = 0, 

S~q)xx = f 
T 

whe~ ~(q~))~(¢) 
S~q)xx > 0 for 
S~q)hh = 0 for 

(~(q(t))x(~ I x(t~ dt 

= Dh(t) = 0 is the Jacob~ equation.tt 
every x E X ¢~ a and b whhin focM d~tance of each other. 
s o m e h E X  ¢~ a a n d b  are conjugateMongq. 

*DeWttt-Morette m ref [133], see ~so appendix B 
**"Les ondes en traversant ~ foyer prennent une avance d'une demt ondulatlon '" See ~so ref [16] p 60 
fMa~ov [96] has obtmned the Morse index by an ent~rdy different approach For the prec~e relahonsh~p between the Ma~ov index and 

the Morse index see refs [4] and [95] 
ffSee appendix B 
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The Morse ~dex A of the hesshn S~q) ~ defined to be the m ~ u m  ~mens~n  of a subspace of X 
on w~ch S"(q) is ~ g ~  d e f i ~ .  

Morse theorem. The ind~ A ~ S"( q) ~ ~ual ~ ~e ~ m ~ r  ~ points q~ ,  wRh ~ ~ t ~ ~ ~ ~ q~ ) 
~ ~njuga~ ~ q(~) a ~  q; ~ ~ n j u ~  point b~ing ~ t e d  with ~ mul@licit~ ~ ~dex A ~ 
always finR~ 

Proof.* Let {~} be a c o m p ~  oghogon~ set of e~enfunctions of D van~h~g on lhe 
boundary and ~t  {~} be the co~esponding e~env~ues. Set x~(t) = 2 u'~7~), then 

S"(q)xx = ~, ~(u'~. ~.43) 

a and b within foc~ di~ance of each other ~ ~ > 0 for every j 

a and b co~ugate ~ong q wRh m~tipfioty k ¢~ ~ = 0 for k v~ues of ~ 
say, j = 1 . . . .  ~ 

We shall prove that 

we~h~d number of conjugate points between a and b equ~ [o A ¢~ ~ ~ 0 for A v~ues of ~ 

Assume that there ~ one co~ugate point between a and b wRh m u R ~ c ~ y  L then A = ~ Let v be 
a unR vector perpendicular to the caustic at b and set J~(~, ~) = u,J~(G, ~). It has been shown that 
near the caustic 

j~(~, ~) = ~ ~.44) 

It suffices to prove that ~J~(~, ~) # 0. Indeed, ff ~J~(~, ~) = 0, the Jacobi fie~ J~(h ~) van~hes at 
~ as well as ~s first derivative, hence is ~entically zero ~f. for ~ance eq. B20) wh~h con~ad~B 
eq. ~.44). • 

We shall show th~ the propag~or X(B;A) ~ses a phase equfl to ik~2 when B goes ~rough a 
co~ug~e  point of multiOicity ~ Indeed, accordhg to eqs. ~ .3~  and ~ .4~  

~<~; f... f . . .  exp{½i ~. a , ( u ~  1 ~I~ ~a~]/2w)exp(i~/4') m du% ,~ >0. 0.45) 

Set B ± = (q(t~), t~  where q(~) is co~ug~e  to a wi~ m ~ t i ~ R y  k Then 

~(B+; A) = ~(B- ;  A) ex~ - iku /~ ,  

s~ce f~ ex~±Oalu~  du = ex~±i~4)(2w/laD t/=. 
In concMs~n ff B is not on the caustic of A 

Xw~(B;A)=~/flexp{~g(B:A~(det[M,(t~,G~'/~(2~8)-"t~ex~-~/4-iA,#/~ (3.46) 

the sum b e r g  performed over all s~t~nary p~hs ~ such that ~ (h )  = b and ~(~)  = a. 

The case "B on a caustic with conjugate points between q(~) and q(hY' is obtained by combining 
in a s~aightforward fashion the two previous cases. 

*By dmgon~lzmg S~q)xx the proof ~ven by Mflnor [105, p 83] ~ sho~ened 
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Lev~ and Smilansky [90] have cons~ucted a semidassic~ uniform approximation for path mtegr~s 
wh~h approaches both the WKB approximation at and away ~om conjugate points. It is based on the 
resul~ ~ven by Connor [28] for the uniform asymptotic ev~uation of fin~e dimens~on~ integr~s. 

• ~ Pe~urbation and g a u ~ n  mahods comb~ed 

The two ~chn~ues w~ch have been devdoped so far for compu~ng p~h ~ g r ~ s  are the 
Feynman ~agram ~ch~que (p. 267) and the gauss~n m~hod. They can eas~y and fru~fu~y be 
comNned. The gauss~an m~hod is based on the assump~on that one can salve the E~er-Lagrange 
equation of the sy~em S'(q) = 0. If th~s is not p o s s ~  one can decompose the act~n 

S= So+ S~ 

so that the equation S~q~ = 0 ~s so~Me and treat St as a pe~urbation of the Sesy~em. We shall 
show on a simp~ examp~ but wahout loss of generaliff how to proceed when the action has been 
decomposed into an unpe~urbed plus a pe~urbed action. 

The forced harmon~ oscillator 

S([)= f [~ll](t)ll2 dt-½~f(t)l l2 + g~,)f~(t)] d~ 
T 

This case can obviously be computed wahout decomposing the action, since, for a quadratic action, 
the propagator is equ~ to as WKB approximation: 

~(B; A) = (2~lh)  -"/2 exp{i~(B; A~h}~et 02~(B;  A~Ob°OaOl'12 (3.47) 

where ~(B; A) = S(q) with 

- q(t) - w2q(t) + g(t) = O, q(~) = a, q(~) = b. (3.48) 

We shall now compute ~(B; A) by decomposing S = So+ S~ where 

s,q): f V , ( f ( t ~ d t :  f g~(t)f~(t)dt. (3.49) 
T T 

Proceed as in section 3.4 but make the change of varmb~ b + ~y = qo + ~x where qo is the c l a s s ~  
path 

-qd t )  - ~2qo(t) = 0, qdG) = a, qd~) = b. (3.50) 

Let K ~  ~) be the solution of Do = - d2/dt ~ - w2 such that K~o(~, ~) = g~O, VtK~t = ~, ~) = 0. Let Go+ 
and Go be the e~mentary kernels of Do such that 

Go+(~, s) = 0, OGo+(ta, s~Ot, = O, Go+(~ s) = Go+(~ t) (3.51) 

Gdh s)= 0 for t or s equ~ to ~ or ~. 

Let Wo be the gauss~n of covafiance* Go n o r m ~ e d  to 

w~X) = (2~)-"~ldet Go+(~, ~)1 ~n, 

*See appendix B 
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then 

~(B;A)=exp{~ ~o{B; A)-~ f V~(qo(t~dt}(det KW(&, &)~et Ko(&, G~'a~-U 
T 

(3.52) 

where 

I= f dwdx)exp{-- m f V V,(qo(t))x (t)dt }. 
X T 

I is a c ~ d d c ~  ~ f f M  w~ch can be compu~d by mapp~g x ~  u = -(ll~m)fr V~V~(qo(t))x~(t) dt. 
The image of Wo under ~is mapp~g ~ a gauss~n wRh the same normalization as w~ Its covafiance is 

o/¢= ~ - , f  dt f 
T T 

~wo(X)= (2ri'lt/')-m f du expOu)exp(~u2~t/'-~)=exp(-i°l([2) 
R 

and 

~(B;A)=~ih~*/~exp{~$o(B;A)-~ f Vt(qo(t))dt-½~r}~d2~o(B;A~db~3aa[m. 0.53) 
T 

One recognizes the propagator ~6, eq. 3.66, p. 6~ which has played a key ro~ In the Feynman 
formulation of Quantum Elec~odynam~s. In generM this express~n wouM not be the propagator but 
~s WKB approximation. The subsequent terms world be ~ g r ~ s  w~h respect to the gauss~n wo. 

Although one knows that both cMculations ~qs. (3.47) and (3.53)) must g~e the same result for 
~((B; A), R is gratffy~g to check it for the chosen examp~. 

Here q~t)= q(t)+ frg(s)Go(t, s)ds and a simple c~culation ~ves 

S(q)= S(qo)-f  (g(t)l qo(t~dt-½ f dt f dsg~(t)g~(s)GZ~(t,s~ 
T T T 

The hessian of ~ is equ~ to the hess~n of ~o and the equiv~ence of both methods ~ proved. 
Obviou~y the first one is the fimple~; the more information is put in the gaussian the simper is the 
integrM. In the case of the forced harmonic oscillator the covafiance of the gaussian wh~h enters the 
first c~culation is an dementary kernel of - d2/dt ~ - ~ + g(t) whereas the covariance of the gauss~n 
wh~h enters the second c~culation is an elementary kernel of - d ~ d t  : -  ~2. 

Remark: In some cases the gaussian method can give resul~ where a pe~urbation method is 
meanin~es~ For instance consider the anharmonic oscillator S(f)= fr [~f2(t)-½~212(t)+ Af~(t~ dt; 
one is tempted, and many have succumbed to the temptation of decompofing the action S = So + S~ 
and Weating St(f)= A fr[4(t)dt as a pe~urbation. It ~ a d~a~er because the propagator is not 
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anflytic in A. The ~mi~lassicfl expans~n on the con~ary gives a mean~gf~ expan~on [108] m 
powe~ of h. 

4. Path integration in phase space 

• 1. Introduction 

P~h integrMs on the configurat~n space of a system are not the only pmh h~grMs of m~re~ in 
quantum phys~s. The arena of nonrdafi~stic quantum mecha~cs ~s phase space; indeed the 
uncertMnty pfinc~M ~s a relation b~ween measu~ments of position and momentum. The ~mement 
"sum over all p~hs q such that q(G)= a and q(~)= b" w~ch im#~s infinffe precis~n of position 
measurements ~ ~ and ~ shodd imp~ lotM unce~Mnty on the measurement cf the momentum ~ ~ 
and ~. How does if? Moreover inflate p r e c ~ n  of position measurement is not Mways the best 
assump~on and we need a form~ation of quantum phys~s wffh gremer flex~il~y. S~ce the early 
days of the Feynman pmh integrM formalism of quantum phys~s, the potentiM and the challenges of 
phase space pmh integration have come up many times. To mention o~y a few Mndmarks m the 
subje~ we recall the following remarks. 

1. Feynman has noted [54, p. 37~ that the normM~m~n of the sho~ rime m~rvM propagmor ~s the 
square root of "the densffy m coordmme space of particMs u~formly ~ f i b u t e d  ~ momentum 
space." A similar remark has been made by Ga~od [58]: for a free particle, the normalization factors 
needed ~ pMh m~grMs over q can be obtMned by formM~hg pmh in~grMs over (q,p) using the 
product of L~uv~e  measures H(dq~(~) dp~(~h) ;  ~deed, setting q(~) = q', p(~) = p,, and ~.t - ~ = 
~ we have for a one ~mens~nM sys~m 

f . . '  f 2 ~  exp~(P , q ' -~mP~)  = f dq'(2-~)~e×p(-i~/4)exp~(~')~e. 
R R R 

2. CluRon-Brock [25] derived interesting properties of path integrals by means of canonic~ 
~ansforma~ons. But Gerv~s and Jev~ki [62] have shown that the use of canonic~ ~ansformations in 
path integrMs is not wffhout pitfalls. Theft example, however, points out more to the pfffalls of the 
lattice approximation of path integratmn than to the sho~comings of c a n o n ~  ~ansformat~ons. 
Indeed, theft c a n o n ~  ~ansformafion q ~ Q(q) in~oduces a kinetic energy term g~(Q)O~O~ which 
cannot be ~eated by the latt~e approximation and must be handed by methods suitab~ for stochastic 
vafiab~s on curved spaces. 

3. Faddeev ~I]  has shown that the phase space formu~tion of Feynman integr~s is very 
appropriate for sy~ems w~h con~rain~. In a recent paper [41] we have devdoped a method for path 
integration on phase spaces similar to the method presented in sections 3.2 to 3.6 for path integration 
on configuration spaces. We present here the m~n resuRs, as well as new ones, and ~ve an improved 
discusfion of the no rm~a t ion  of the prod~tribuuons. Since m th~s monograph all equations have 
been derived from first principles there ~ no more looseness in determining the normalizations. Path 
integration in phase space will be used in section 5 for the computation of energy ~vds  and decay 
rate of bound sy~ems. 
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The computation of the propagator ~(B;A)  ~n flat space started w~h the Feynman-Kac formula 
wh~h, a~er the change of variab~ y ~ x such that b + ~y = q + ~ is a path integral wkh respect to 
the Wiener gaussian w~ on the space X÷ of vector fields x along q vanishing at ~. It is then 
reexpressed w~h respect to a new gaussian w÷ on X÷ which absorbs all quadrat~ terms in ~ Finally k 
is stated in terms of the gaussian w on X, Leray-related to w÷ on X÷ (eq. 1.31). The gaus~ans w± and 
w are elementary kernels of the Jacobi equation. It is possib~ to express ~r(B; A) as a path integral in 
phase space ~n terms of gaussians whose covariances are e~mentary kernels of the Jacobi equation in 
phase space. 

<Z The Jacobi equation in phase space* 

The action 

S(q, p) = ~ [(p(t), ~(t)) - H(p(t),  q(t)~ dt 
T 

(4.1) 

can be expanded around the sdu t~n  (~ if) of the Hamilton equations by a two parame~r variation 
m~hod similar to the one parame~r variation m~hod used ~ the ~grang~n case. Let the configur~ 
tion space M be an n dimens~nfl fiemann~n ma~fo~  with metric ~ The p~hs (~ p) map T ~ the 
cotangent bundle** T*M. Let U be the htervfl  ~,  1], ~t  u, v ~ U and let {q(~ v~ be a two parame~r 
family of p~hs: 

~(u, v): T ~ T*M 

Set 6(u~t )= a(u, t) and ~(u, v~t) = fl(u, v, t) ~ T~t~.,)M. (4.2) 

We c o n s ~  first o~y v ~ s  a(u) keeping ~e  end poims fixed, a(u, ~) = a, a(u, ~) = b for every 
u ~ ~ Set 

~u(U = O, t) = x(t) and ~v(0, v = 0, t) = y(t). (4.3) 

(x, y) is a vector field, hencefo~h called ~ ~ong (~ p) such that x(G) = x(~) = 0. 
When M is R ~, ~(u, v) does not depend on u; position and momentum are vaned independently. 

But when M is a riemannian manifo~, chan~ng u means chan~ng the fiber T~¢~.,)M and the 
momentum ~(~ ~ t) has to be parall~ Wanspo~ed accordin~y. To define the paralld Wanspo~ of 
~(u, v, t) when u Mone varies we have to choose the path a(',  t) : u ~ a (~  t). A natur~ cho~e ~s for 
a(., t) to be the geodes~ generated by exponentiating x(t). G~en ~(0, v, t), ~(u, v, t) is un~u~y 
defined by the equation 

= 0 .  

*In ~ r ~  ~ e  ~e  lett~ q w~ ~ e d  Mr a s ~ m n  of ~© E~©r-La~an~ ~uauon, a ~tter s~h  ~ [ des~n~mg an ~ r ~ y  p~h 
F~  ~ m ~ y  ~ ~ p )  m ~ ~b~t~ff patg ( ~ )  m a solu~n of the Hamdton ~ n  

**S~ of co~nge~ sp ies  T~M Mr ~ m ~ M See for ~n~ance ref ~ for ~e  ~fimUon ~ b u n ~  
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Since T]~...M ~s a linear space, the dependence of fl(u, v, t) on v can be chosen to be finear: 

~(u, v, t) = ~(u, O, t)+ vOW(u, o, t)/Ov[ ~=o (4.5) 

The Taylor expansion of the action (4.1) around the class~fl path can be expressed as an ordinary 
Tay~r  expans~n wah respect to (u, v) ~ R 2" 

So 

The first variation va~shes for p~hs s a t ~ y ~ g  ~ e  Hamflmn ~ u ~ s .  T ~  s e ~ n d  v ~ m n  
(S o q)"(0, 0) can, a~er an ~ g r a t i o n  by pans, be w r ~ n  

0,: f 
T 

where z is the 2n dimension~ vector (n con~avanant, n covariant component)  

and ¢ ( ~  if) is a 2n x 2n first order finear operator, hencefoah cf l~d the Jacolfi operator in phase 
space. 

The second variation is a bilinear form on the space Z of vector fields z and, once again, It can be 
used to define a gausshn w on Z. Note that Z ~s the space of vector fields z such that x(~) = x(~) = 0, 
no condition on y(~) or y(~). No conditions were imposed on y because no integraUon by pa~s were 
performed on p since S does not depend on p. The uncertainty principle could not have been 
formulated ff the ac~on had been a function of p ! 

The duff Z' of Z is the space of 2n dimenfionfl vector vflued measure p = (g, v): 

f f dv (t)y (t  
T T 

The variance W of w is the inverse, m the sense defined m section 1.5, of the second variation. The 
covanance G of w is the e~mentary kernel of ~(~, ~) w~h the appropriate boundary conditions for W 
to be the inverse of (S o ~)~0, 0) (see below). It is some~mes conven~nt to wrhe 

;i:t(::/ 
where ~ is understood that 

~ G ~ a =  f f d~(t) d ~ ) G ~ s ) ,  etc..  
T T 

We shall show that G, ~s the eovanance defined by the second variation of the ~granghn action 
S(q) = frL(q(t), q(t))dt and that 02, G 3, G 4 are c o m p ~  de~rmined by GI. Hence the boundary 
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conditions of G are the boundary conditions of G~, a resuh which can be anticipated from the fact 
that the boundary values of y do not enter eq. (4.7). It ~s more ~luminating to prove these p r o p e ~ s  
first on an examp~. We shall sketch the general case a~erwards. 

~ a m p ~  A ~ e  pa~Me on a c u ~  ~ a ~  

T 

The bracket ( . ) ~s used for the duchy between T~.)M and T~,)M and the parentheses ( [ ) are used for 
the sc~ar product on T~,)M defined by the metric g-t. Using the properties of covadant derivatives 
~ven ~ appendix B we obtain readily 

÷ - -  °/) 

= f dt I - ~ ( p ,  R(x, g~)x)+ (y, V~x)-(V~y, x ) -~ - (y  [y)] 
T 

and the Jacobi equation* 

This sys~m of coupled equations is readily shown to be equ~Ment 

(4.8) 

= O. (4.9) 

to the equation of geodetic 
devotion: 

V~h ~ + R:v,q~hV~ ~ = O. ~.10) 

The components G~, G2, G 3, G 4 of the demen~ry kernel G satldy two sys~ms of two coup~d vector 
vflued equations: 

s )  = 

By ~im~ation and subsfitut~n these equations can be ~expressed as f ~ w s :  

- m2V~G~(~ s) -  g~g~R~p,p~G~(~ s) = mg'~(O,  

G~(~ s) = mg~VrG~(~ s), G~(~ s) = mg~V,G~(~ s), ~.12) 

G~(~ s) = m2g~g~V,V~G~(~ s ) -  m g ~ ( O .  

Thus G~ is an elementary kernel of the e q u ~ n  of geodetic d e v ~ o n  and the three other functions 
G 3, G2, G 4 are fully d~erm~ed** by and real ly  obt~ned ~om G). For instance let GI be the 

*As before we give a dlstmcuve label to a Jacob~ field, here k = (h,I) 

**Note that for a free panicle m flat space G~o(~ s) = 0 and G~(~ s) ~s not umquely determined by G *~ from the first set of equauons It ~s 
umqudy determined ff one ~eats  the fiat space solutions as the hmg of the curved space solutton~ or ff one uses the symmeUy properUes of the 
covanance G~(~ s) = G~(~ r) 
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covanance over the space X of vector fie~s x va~shmg on the boundary (eq. B l~ ,  then, abbreviating 
g(~(r)) to g(~, we obt~n 

G3(~ s) = mg(r)(~s - ~I~(~ ~)M(t~, G)J(~, s ) -  O(r- s)~(~ ~)M(t~, ~)J(~, s)). 

G2 is obt~ned ~om G ~ by the symme~y relation G~(~ s) = G~(s, r). 

G ~  s) = m2 g(r)(~s - ~I~(~ ~)M(G, ~)/~(t~, s) 
- O(r- s)I~(~ ~)M(tb, ~)~(~ ,  s))g(s)- m g ( ~ ( r -  s). 

~ a m p ~  ~ ~ ~  ~ phase ~ac~ The W~ner covafiances in phase space are the Green 
functions of the Jacobi o p ~ o r  

~ ~ ( ~  ~ ' ) .  

~ (~  if), fike ~(~), is obt~ned from the action of a free p a ~ c ~  of mass 1. We record b row the 
covariances for the action of a free p a ~ c ~  of mass m. One must ~ m e m b ~  to set m = 1 when us~g 
the W~ner covariances. 

-oo  c, 
We now return to the c ~ c ~  of the second variation ~ the gener~ case. It ~ m ~ n s  s ~ p ~  ff 

one uses covariant derivatives ~roughom. The ham~on~n H is a function of sc~a~.  Since V ~  = 0, 
V,V~a = 0 and ~2~0v2 = 0, the var~tions of H come a m o m ~ c ~ y  ~ the~ des~ed form as mdtfl~ear 
forms of x and y. ~ u  is a ~near form of ~ d u ,  and a ~ v  is a finear form of ~ v  wh~h we s h ~  

~ u  = ~ a ,  ~d~u), and ~ O v  = ( ~ 0 ~  D ~ f l )  

These e x p ~ m n s  define un~udy  D~Oa  and D~Ofl. It ~ conven~nt to define f i ~ y  ~ 2 ,  
~ ~ ,  etc . . . .  by 

(2;o 
When the Legendre matrix A~(t) = O ~ O ~ ~  is ~ ~ ,  O : ~  = A-~(t). 

Set R ~ )  the matrix defined by R ~ ) =  R ~ g ~  The ~ v ~  ~ ~ven by the coufled 
~ u ~ s  

( - R ~ ) -  ~ ~ R ~ G ~  s ) -  i f ,  + ~ ~ R O G ¾ ~  s) = ~ ( ~  0.15~ 
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~ ,  - D 2 H / @ ~ G ~  s) - (02H[O:O~)(OG~ s) = 0 ~.lSb) 

( -R~  ) -  WHlOqaq)(r)G~(~ s) -  (V, + D~HI ~ ~ G ~  s) = o ~.15~ 

~ , -  D~HI~)(r)G~(~ s)-(O~Hl~OoO)(r)~'(r, s) = ~(r). ~.15~ 

Equation ~.lSb) can be solved for G ~ in terms of G~. Then this ~ f i o n  for G ~ is subsfim~d ~to 
~.15~ ~v~g  a d ~ e n f i ~  equat~n for G, wh~h can be shown to be the Jacobi equation of the 
La~anghn ~rmdafiom The symme~y p~peay  G3(~ s) = G:& ~ is used ~ de~rm~e Gz ~ ~rms of 
G~. ~n~ ly  one uses eq ~.15~ to obt~n G 4 in terms of G~. 

We shall label G~, G the covarmnces of the gausshns on the spaces Z±, Z of paths z = (x, y) 
defined by the following conditions: 

Z÷: x(~) = 0 no restrictions on x(~), y(~), y(~) 
Z_: x(~) = 0 no restrictions on x(~), y(~), y(~) 
Z: x(~) = x(~) = 0 no restrictions on y(~), y ( ~  

The fact that the set of eqs. (4.15) define covariances whose G~ component is the covariance in 
configuration space has been proved by Bryce DeW~t for the covafiances G on Z (Feynman-Green 
function) using a different approach. M~rahi [109] has worked out the covafiances of the gaussian 
prodhtributions for arbRrary time dependent quadratic hamfltonians. 

• ~ ~ a ~ a ~ n  ~ phase ~ a ~  

Let w+ on ~ be the n o r m ~ e d  gauss~n of covafiance G+, the ~ m y ~  gausshn w on Z is 
~ r m ~ d  m 

w~)= f ~x~dw~z). 

w~) is a c:~dric~ ~gr~ and can be ~ d  as an ~gr~ over R ~ where n is the Smens~n of 
the configur~n space. Indeed ~t P:~R~ by u ~= (~,x), v~ = (~, y) ~r an arb~rary t# ~, 
then 

w ~  = ~ ~-"6(u)du d v ~ ~  ~ ' ) ~  ~ ~  v)(u, v)) 

where ~-~ is the h v e ~ e  of 

and ~-~(~  v)(u, v) the b~inear form cons~ucted wffh ~-~. S~ce 

6(u) ~p{½i74/'-~m v)(~ v~ = ~ u ) ~ p ~ O ~ ( ~  ~ ) ~ d ~  ~ 

we obtMn 

w(Z) = ~ 2 ) - ' 2 ( d e t  G~(~ ,  ~))'~. (4.16) 
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Lemma. The normahzation* o[ w on Z ~ equal to the normalization o[ the correspon~ng g a u ~ n  
on X ( ~  g a u ~ n  on X Leray-rela~d to the gauss~n on X+ o[ covadance G~+) 

Note that the integrations on p-space and q-space cannot be peqormed ~dependenfly o[ one 
anothe~ Here the integrand d~  not depend on y, neve~hdess we had to h ~ g r a ~  w~h respect to y 
and this was accomphshed v~ the matrix 7g -~ wh~h couples the x and the y ~ g r a t i o n .  In the papers 
on phase space path h~grat ion based on Feynmaffs origin~ definition, one often reads the prescription 
' )er form the 'p' ~tegrat~n before the 'q' integratioff'. This procedure h~oduces undefined terms 
proportlon~ to 6~) wh~h are eaher discarded or shown to cancel other undefined ~rms. 

~ ~ Phys&al interpretation o[ the cova~ance in phase space 

Proceeding as m the previous section, we can show that 

~ f x(t)x(s) dw(zFw(Z) = ~hG~(~ s)/m 
Z 

f 
~z / x(t)y~) d w ~ w ( Z )  = ihGd~ s)/m = ihGa(~ t)/m. 

Z 

f y u l e )  d w ~ w ( Z )  = ihG~  s~m. ~ 

No~ th~ Gz and G 3 a re  ~sconfinuous at t = s The~ d~sconUnmty 
u n c e ~ n t y  p r i n c ~ .  For ~s~nce  let S be a ~ee p a r t ~ :  then 

is a manffe~ation of the 

f [q"~+)po~)- q ~  ) p , ~  dw(z~w(Z) = ~h6~ 
Z 

G 4 is continuous ~ r = s. For a ~ee partic~ G~o(~ s) = g~d(~ - ~): ~ does not depend on r or s. 

• ~ The LMuville measu~ 

It has often been conjectured that the "measure" for phase space path integratmn is an "~f im~ 
d~mens~nM L~uville measure". We shMl compu~ the propagmor X(B; A) for a free p a ~ M  m fiat 
space and give a precise mea~ng to this co~e~ure:  

Y{(B; A) = exp{iS(~ pyh}I 

I = f d w ~ x ( ~  
Z+ 

*In ref ~1] ~e  gau~mns on ~ are not normflged to 1, the normfl~aaon of ~ ~ mo&fied accordm#y ~ one ~me, ~ had ~emed 
~ m # ~  ~ cho~e  ~ e  ~ r m ~ z ~  of ~ e  gau~mns on X± such that a absorbs the de~rmma~s m ~  by ~e  C a m e ~ M a ~ m  ~rmf la  The 
denva~ons presen~d here ~a~ ~om ~ ~ m c ~ e s  and ~ad vm product m t e ~  and the ~ m a n - K ~  formula ~ gaussmns on X~ normfl~ed 
~ t n t y  
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where w+ is the gausshn on Z+ of covariance G+ #yen  by eq. (4.14). 
Let us consider a particM at rest at the ori6n, ~(t) = 0, ~(t) = 0, then S(~ ~) = 0, ~x = q and ~y = p. 

Let G = to< t~ • • • <~+~ = ~ and ~ < 0k < ~+t. Let P :Z+->R ~p ÷t~ by 

u k = (~k ,  x )  = (~+,-- ~,,, x)  = x ( ~ + , ) -  x ( ~ )  ~ x k+' - x k 

wffh x(~)  arbRrary and x(~)  = 0. Let 

v~ = (~,, y) = (8~, y) = y(Ok) = Yk. 

Since p is discontinuous at the partition times ~, Ok has been chosen so that p is evfluated at points Ok 
where ~ is continuous. Regard~ss of how fine the div~ion is, there w~l flways be a point Ok between 
two points ~+t and t~ Under the mapping P, 

I = R2f, ' 6(~x~ J-Jo ((2~i) - ' p  du k dvk~det °W-')m exp{½i°W-'(~ v)(u, v)} 

where 

~#" = ( ~ ( ~ ; :  .,)~')W2(""W~(v,,~I ) ~ j = l  . . . .  p + l  

w , ( ~ \  ~ k )  = ~ + ,  _ ~ ,  w ~ ( ~ k ,  ~ )  = w ~ ( ~ ,  ~ k )  = m. 

A~ the other components vanish and the matrix is easy to inve~: 

2 m A m  

= h--I 2 ( q k * l -  qk)p k -(2m)-'(~+,- ~)p~, 

p P 
I-Ik=o ( ( 2 ~  - '  du g dvk~det ~/,-,)m = J~--o dqk dpkJh 

and* 

Note that dq k dpk = dq(~)dp(Ok) with ~ < Ok. dq k dpdh is a "d~ected" LiouviHe measure when ~ 
tends to Ok from below. If we had worked wffh the space Z_ of vector fields characterized by 
x(&) = O, no other restrictions, we would have been ~d to a d~ected Liouvfl~ measure wh~h tends to 
the Liouville measure when ~ tends to Ok from above [e.g. 41]. In conclusion, the propagator for a 
free p a R ~  at rest at the origin is 

(4.~7) 
*In ~¢ p ~ o ~  hne ~ f~m ~¢ d¢~rmmam com~ne wah ~ exphc~y w ~ ¢ n  ~ ~ve a ~M quanu~ 
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We have establ~hed 

Pwpositbm The "infinite ~ a e d  L~uv~e measu~ from brow" 

lipm=~I__o p ( d q * d p d h ) mul fip lied b y ex p ~ f ( p q - -~m P ~ ) d t 
T 

~ the normalized prodistdbution w÷ on Z÷ of covadance G÷ ~q. 4.14) obta~ed from the Wiener 
prodistdbu~on w~÷ on X÷ ~xample 5, p. 26~. A sim~ar proposition holds for the directed L~uv~e 
measu~ "from above". 

• ~ Path ~tegration ~ phase space 

We shall proceed* as in secUons 3.2 and 3.4, and ~eat o~y the flat case. Now the Feynman-Kac 
form~a reads 

~r(B;A)= I dw'(z)exp{~--~m f V(b+~x(t) ,m~y(t))dt}~(b+~x(~)-a~ 
Z+ T 

Let (~ ~) be the c ~ s s ~  p~h such that 

~( t )  = g ~OOa(t)/m + OV[Op"(t), ~( t )  = -OV]Oq"(t), ~(~) = a, ~(~) = b 

Make the change of variable 

b + ~x = ~ + ~X, m~y = O + m~Y. 

Then (y,x)-(y I y)/2 becomes ~ ) - ( ~  aV/ap)+(Y,X)-(YIY). 
The first two ~rms will contnbu~ to the d a s s ~  action, the ~st two ~rms will be "~c~deC '  ~ the 
new gauss~n w~(Z) where Z = (X, Y). In.grate by paas: 

f ( ~ , m ~ , ~ ( , d t = - ( ~ ( ~ m ~ , X ( ~ + m ~  f (VV(q(t~,X(t))dt. 
T T 

Expand V(~ + ~X, ff + m~ Y) ~ powe~ of ~: 

V(~ + ~X, ~ + m~Y) = V(~ ~) + ~(OV]O~)X + ~m(OV]Op)Y + ~2~(~ ~)ZZ + ~2~(~ ~X) 

where 

~(~ ~)ZZ = O ~ X ~ X ~  + m ~ X ~ Y ~  + m ~  02V Y~X ~ + m~o~O~ -02V Y~Y~. 

It is assumed that the thud derivatives of V(q, p) do not depend on p. Then 

*A minor change of notation is mtroduced,  whereas m secuon 3 2 the f i~t  ~ep  ~ a change of v a n a ~ e  b + ~y ~ ,  q + px  here the firm ~ep  ~ a 
change of v a n a ~ e  (b + ~x ~,  ~ + ~X, m~y ~ ~ + m~ Y) 



C ~ ~  ~ ~ ,  ~ ~ w n  ~ n o n - r e l a ~  ~an~m m ~  331 

~ B ; A ) = ~ S ~ }  f d w ~ ) ~ p { - ~  f ~ [ ~ f f ~ t ~ )  
~ F 

+ 

By an ~gume~ s~flar to the one devdoped in section 1.5 one can make a finear change of varia~e 
of ~ ~  such that the covafiance of the new gauss~n w÷ is the Green function of the Jacobi 
o p ~ o r  s ~ y ~ g  the boundary cond~ons app~pfi~e to ~ .  This change of vafa~e of in~g~t~n 
~oduces  a de~rm~a~ w~ch can be shown to be equ~ to ~ e t K ( ~  G~detK(~,G~-~n as 
before (eq. 1.1~. ~ n ~ y  one can i ~ d u c e  the gauss~n w on ~ Leray ~ d  to w÷ on ~ .  Its 
~ r m ~  has been compu~d in section 4.3 and found equM to the norm~ation of the 
corresponding gauss~n in ~ r ~ o n  space. Then 

~ B ;  A)= ~ B ; A )  f e ~  f O(O(t),,X(t))dt} d w ~ / w ~  
z T 

~ Z a ~ ;  A) = ~ ~  f f ~ h ~ ~  M(~, ~))~. 

It has been shown ~ sections 4.3 and 4.5 how to c~ry on ~ e ~ s  over ~ Here n ~ n g  has been 
g~ned by w o ~ g  ~ phase space. We sh~ see ~ the next section, howeveL ~ ,  for bound sysmms, 
~ is preferable to work in phase space than ~ configuration space. 

5. Bound s ~ s ,  ~a~e  and un~a~e 

£1. Introdua~n 

Some ~s~ht ~ the pMh integrM formalism is gMned by examMMg ~ ~ the broader context of 
dynamicM sys~ms. Indeed the roM pMyed by cMss~M pMhs ~ the study of quantum sys~ms is 
anMogous to the rAe #ayed by equilibrium poMts ~ the study of cM~M dynamicM sy~ems: 
Cons~er a c ~ s s ~  dynam~M sy~em dx(t~dt = [(x(t~, for exam~e 

An equil~fium p~nt Xo of the sy~em is a pan,Mar "motion" of the sys~m w~ch satisfies [(xD = O. 
The nature of an equSbfium pant is d~erm~ed by the Mngtime behaver of the nearby motions. 
The, in turn, is d~erm~ed to a greta extent* by the nature of the e~envMues of the derivative ff(xo) 
of/M the equ~bfium pant Xo, com#ex or reM w~h positive or negative reM pa~s ~.g. 68, p. 92-9~. In the 
#ven exampM the equil~fium p~nt (qo~ M, Vo is a cfificM point of the po~ntiM function V, 
grad V(qo) = 0. Its nature and the Mngtime behaver of nearby motions are determ~ed by the hess~n 
_ ~2 V/Oq~qg of V ~ qo ~ M. 

The p~h h~grM formalism of quantum phys~s has brought out a similar pa~ern. Con~der the 
quantum d y n a m ~  sys~m 

dO(x, t~Ot = -iHO(~ t~h ~.~ 

*See for mstance ref [143] p 412, the effects of the htgher order denvatwes 
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cor~spond~g to the chss~fl  sys~m ~ven above. Cons~er the dasficfl flow ~ , : M ~  M ~ven by 
a ~ q(~ a, v~). It has been shown (p. 29~ th~ ~ the lim~ h = 0 the probab~ty of fining ~ O C M at 
time t the system, known lo be ~ ~ O  ~ time ~, is unity. Thus ~ Ihe fimR h = 0, lhe probability of 
fining the sy~em at b E M at time ~ is peaked Mong the chss~fl  p~h q(~ a, v~) such th~ 
q(~, a, Va) = b. The dass~fl  p~h q can be consflered as an "equilibrium point" ~ the space of paths 
gong ~om (a, ~) to (b, ~), reached by the sys~m when S~)/h tends to ~finity. q is the criticfl po~t 
of the action S'(q)= 0 and the qualitative fe~ures of the quantum sy~em whose ~m~ is q are 
de~rm~ed by the second variation of the action S~q)xx. 

In th~ section we shall investigate the quantum systems whose limk q is a periodic orbS. The 
presence and the qual~ative features of other class~fl periodic and quasi-periodic orbhs in the 
neighborhood of a chosen periodic orb~ ~s feR by the quantum system and many of ~s properties can 
be obtained from the properties of the neighboring families of classxal orbks. 

The rdation between the period~ orbks of a chss~fl  sys~m and the energy ~vds  of the 
co~esponding quantum sy~em was first discovered ~.g. 147, p. 6, 7] by E i n s ~ ,  Bohr and Sommer- 
fe~. The extent to which the "Old Quantum Theory" was succe~ful ~ mag~ficently preserved by Born's 
book, the Mechanics of the Atom, whose preface to the German edition beans by these words: "The tire 
Atommechan~ ~ven to these ~ctures wh~h I delivered ~ G6ttingen during the sess~n 1923-24 was 
chosen to correspond to the designation Himmelsmechan~... I have called the present book 'Vol. I'; the 
second vo~me is to contfin a closer approximation to the 'finfl' mechanics of the atom. I know that the 
promise of such a second volume is bo~, for at present we have only a few hazy ~dications as to the 
depa~ures which mu~ be made from the chss~fl  mecha~cs to explfin atom~ phenomena" The year 
was 1924. When the second volume [1~ appeared the b~th of Quantum Mechanics had re,gated the 
Mechanics of the Atom to a work of h~oricf l  interest. 

Much l a i r  Keller (195~ ~ obtfined a generalization of the Bohr-Sommerfeld quantum condition 
by requiting the wave function to be s ~ e  vflued, and Gutzw~er (1971) ~ ~ail blaz~g artic~s ~4; 
65, p. 351] ~ o d u c e d  the Morse ~dex and the charac te r i~  exponents of cdestifl methanes ~ the 
WKB quantizations. But he made some unwa~anted simplifications and h~ finfl express~n ~ not 
correct. Voros [14~ obtained the correct result by an entirely different approach ufing g e o m e ~  
quanfizat~n and the Ma~ov method. Miller [10~ showed how the Gutzwiller procedure should be 
corrected to obt~n the tight formula for sy~ems w~h chsfic~ per~dic orb~s. 

The path integrfl formalism of quantum mechanics ~corporates naturfl~ the charac~risfic 
exponents and the Morse ~dex ~ the de~rmination of the bound state energy spectrum and prov~es 
a s~mple proof of the Gutzw~er-Voros reset. Dashen, Hasflacher and Neveu [33] derived similar 
formdae ~ modal fie~ theories. Conjectures they made for sy~ems with n degrees of ~eedom 
are justified and factors b ~  undeterm~ed ~ thor express~ns are obtfined explicitly. 

We first turn to Po~car6 to ~arn the properties of families of stat~nary paths O.e. solutions of 
Hamiltoffs equation~ ~ the ne~hborhood of a periodic crbR. Some new resul~ 0emmas 1, 2, 3 and ~ 
of ~ r e ~  for path ~ g r a t ~ n  are direct applications of Po~car6's work. 

~Z Charac~dstic exponents, alias stability angl~s 

The Jacobi fi~ds ~ong per~dic orb~s have been an~yzed by Poincar6 ~ a beautiful chap~r* of 
"Les M6thodes Nouvelles de ~ M6canique C ~e~( ' .  The Jacobi equation defined by equations (4.7), 

*"L~ exp~a~s c~a~6ns~qu~" [12~ p 17~ See ~so ~f  [143] p 3~ ~ d  ~f  [10~ 
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N.~ and ~.15) 

~ ( ~ ) k ( t )  = =0 (5.3) 

is wn~en by P o ~ c a ~  ~n the fo~ow~g form 

~ t l - ~ ~  = ~ :  ` ~,) + ~ I~ ;~P~  a 

wh~h defines ~ 6  ~). 

=o ~.~ 

Let G be the Green functions of ~ ( $  ~) and G~ be the Green functions of (VA - ~ ( $  ~)), then 

The sys~ms (5.3) or ~.4) of 2n first order linear coup~d differenfi~ equations w~h period~ 
coeffic~nts of per~d • adm~s ~n general [120, p. 67] 2n l~eady ~dependent solutions of the form 

~( t )  = exp(a~)Sk~L k = ±1 . . . .  ±n (5.6) 

where the functions {S~(t~ are p e r ~ c  ~ t with period ~ and the ag are 2n constants called the 
charactedak exponents or the stabfl~y a n ~ .  

If two charac~fishc exponents are equM, say a. = a_~, then 

kl(t) = exp(a~DSt(D 

k_t(t) = exp(a~t~tS~(t) + T(tD, S~ and T period~ of period ~ (5.7) 

are solutions of the Jacobi equation. Similarly ff n exponents are equM the corresponding solutions of 
the Jacobi equation are of the form exp(at) multiplied by polynomials in t with pefiod~ coeflic~nts. 
k, ~s called a fundamentM solution of first kind, the polynomial solutions such as k_t are called 
fundamentM solutions of second kind. 

Poincar6 cMMd stable a solution (~ if) such that all ffs Jacobi fields are bounded ~k(t~[ < ~. The 
Poincar6 stability is Mso called finear stability because equations (5.3) or (5.4) are the equations of a 
linear flow. 

Po~car(  StabH#y Lemm~ A so~ tbn  ~ linearly stab~ ~ and on~ ~ aH ~s charac~dsfic exponen~ 

are purely imaginary. 
If some am have a refl pa~ ~k(t~[ tends to ~finity for e~her t = +~  or t = - ~ .  Future [pasq 

stab~ty is p o s s ~  only ff Re ak ~ 0 Of Re ak ~ ~ .  We shall see ~ter that charac~nstic exponents 
come ~ p~rs (a, and ~s complex conjugate 6) and ( a , -  a). It follows that the future and the past 
stabfl~y conditions become ~entic~, namdy a solution ~ ~ab~ ff and o~y ff {Re a~ = 0 for all k}. • 

Under a small pe~urbation, a stabM period~ orbit becomes quas~efiod~, ffs charac~fisfic 
exponents be rg  the normM modes of osc~ation about the period~ orbR. 
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The P~ncar~ map, ~so called the fundament~ m~fix, ~s the 2n x 2n matrix R(r) defined by 

k(t + r) = R ( ~ .  

It ~ves the dewat~n from a period~ orba (~ 0) after a period has elapsed. 

(5.8) 

Lemm~ The e ~ v d u ~  ~ ~e Po~ca~ m ~  a~ ~xp ~ r ;  k = ±1 . . . .  ±n}. The ~ndam~tal 
so~ons  ~ fi~t Mnd ~ ~e ~ b i  ~ t i o n  a~ e ~ e ~ c t i o ~  ~ ~e P o ~  map. 

ProoL The fundamental so~fions of first ~nd sat~gy the equ~mn 

k~(t + r) = exp (a~&~L • 

The e~env~ues of the Po~car6 map are o~en called the charactefi~k rooB or the charac~dak 
multip~ers of the so~tion (~ 0). No~ th~ fundament~ sdufions of second hnd are not e ~ e n f u n ~ n s .  

Lemma The Po~ca~ map ~ v~ume prese~ing. 

Proo[. S~ce R(z) is re~, the charac~fistic exponents come ~ pmrs (a~ 6~). Po~car6 has proved 
[120, p. 193] that for a hamfltonhn sys~m they come ~so in p~rs ( a ~ -  a~). This prope~y fo~ows 
after some arguments from the fact that E~=~h~(t)i~(t)-i~(t)hT(t)=constant~exp(a~+a3~ 
E ~ = 0 impfies det R(z) = 1, hence the Po~car~ map ~s v~ume preserv~g. • 

Remark. When a vanishes, a pair of characteristic exponents vanish and one (o~y one) of the two 
co~esponding fundament~ solutions is pefiod~. 

Lemma 1. The e ~ v a ~  of ~ ~(~s) ,  O(s)) ds a~ {~r} whe~ {~} a~ ~e cha~c~sHc e x p o n ~  
of ~e soht~n (~ 0). 

P m ~  It f~ows  from eq. (5.~ and from ~ e  ~ f i ~ n  ~ ~ e  Pohca~  map ~ m  
~ + t  

k(t + U) = ~ ~ ~ s ) ,  ~ s ~  ~ )  (5.9) 

R(z) = I:'[ exp ~(~(s), 0(s~ ds (5.10) 
0 

V~(~) = ~ 0 ~  (5.11) 

Let all the exponen~ be distinct, then ~(~, 0) can be diagonafized by a similarity ~ansformation. 
Set~ the diagonal form of ~ and ~(z) the product integrfl of ~, 

~(z) = exp i ~ ( ~ L  0(s~ ds. 
O 

The proof when all the exponents are not d~tinct is more eNbor~e. 

(5 12) 

• 
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Lemma* Z The eigenfuna~ns and e ~ e n v a ~  of V,1 - ~ ( ~ )  am 

~k,(t) = ~(t)  ex~-ak t  + 2~ivt[r), k = ±1 . . . .  ±n, 

A~. = - a~ + 2 ~ i ~  

v = ± l , ± 2  . . . .  
(5.13) 

where ~ am ~e  ~ n ~ m ~ m l  ~ ~  ~ ~ , 1 - ~(  ~ ~ ) )~ ~ = 0 and ~ am ~e  ~ a r a c t e ~  e x p ~  

The nu# subspace of the Jacobi operator We recall that the nufl subspace of the Jacobi operator 
,,~(~) where ~ is a stationary path from (a, ~) to (b, ~) is spanned by the nonvanishing Jacobi fields h 
such that h(~) = h(~) = 0. The number of such linearly independent Jacobi fidds is c ~ d  the nullity 
of the Jacobi operato~ It is equ~ to the mul t ip l~y of the conjugate points a and b Mong ~ - t h e  
mul t ip l~y being zero ff a and b are not conjugate. The null subspace of the Jacobi operator 
V,I - ~(~, if) where (~ ~) is a period~ orbit of period ~ will play the same ro~ in the study of bound 
states as the null subspace of ~(~) in scattering states. The period~ orb~s, like the conjugate points, 
are not generic. But the~ impo~ances far outwe~h the~ numbers: Without conjugate point,  many 
opfic~ inMruments could not be built, and wRhout periodic orbits many bound states would not exisL 

Lemma ~ ~ e  n ~ y  ~ VA - ~ if) and ~ ~ ( ~  if) ~ equal to ~e  number ~ p e ~  ~cobi  
 e ds. 

Proof. The equations (7 ,1-~(#, f f~¢~.( t )=O and ~(~,~)O~(t)=O have the same solutions, 
namdy O~.(t)= k~(t) where k~(t) are the fundamental solutions wh~h correspond to zero charac- 
teristic exponents since ~k~ = 0 impl~s ak~ = 2~i~ • 

P r o p ~  ~ ~e  ~ a m c t e ~  e x p ~  ~ r  systems ~ i c h  posses ~ n s ~ n ~  ~ ~ tegm~n** 

~ ( ~ ( ~  O(t) = constan~ ~ = 1 . . . .  p ~ 2n 

~ r e m .  ~ a s~tem a d m ~  p ~ m m n t s  ~ Mtegmtion and ~ all Poiss~ bmcke~ [ ~,  ~ ] = O, ~ 
e#her 2p ~ a m a e ~  e x p o n ~  ranch 
or the ~ × 2n) mat~x ( o ~ I ~ O L  o~loO~(t~ ~ ~ rank ~ss than p. 

Proof: First a qu~k proof for time independent hamfltonians. If (#(t), ff(t~ is a solution so is 
(~(t + to), ff(t + to)), hence (h(t)= d~(t + to)[d~, ~t)= d~(t + to)lSto) is a Jacobi field. Since (~ if) is 
periodic so is ~s derivative (h, j). The Jacobi field (h, j) is a fundamentfl solution corresponding to a 
zero characteristic exponent. 

The gener~ proof rests on the fact that ff there is a constant of integration for a hamiltonisn system, 
there is a co~esponding constant of integration for its Jacobi fields, namdy 

d~_~t) h(O + ~ t )  = constant. 

*The~ e~en~nctmns w e ~  obtained m ~ f  ~3], p 3440, by ~qmnng  O,,(t) m be pcno~c 

~ P ~ n c a ~  ~b~s  ~e  c o r s e t s  ~ m ~ a t ~ o n  ( l n ~ a l e s  du mouvemem) ~ follows no ~bel Dr  ~ e  hamdmnmn, ~ = I, 
~m~nmg ones 

p -  1 for the 
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Hence 

~( t t  = oF, l ~ ( t ) ,  ~(t) = - ~ F , l ~ )  (5.141 

is a Jacobi fidd. It is a penod~ Jacob~ field, hence ~, = 0 There are np ~nearly independent pa~rs 
(h~ ,~ )  solu~on of the system (5.14) unless the p × 2n matrix 

(OF, I~4°(O, ~F,l~(t~ 

IS of rank ~ss than p. • 
See Poincar6 for a discus~on of the case m wh~h all the Po~sson brackets [F, F~] do not vanish. 
Since constants of integration express conservation laws, and since conservation laws are related 

v~ Noethe~s theorem to invariance of the system under group of Wansformatmns, ~.e. to symmetries 
of the system, this theorm is of great pracfic~ v~ue as will be seen for instance (p. 342) when the 
hamdtonmn is a constant of the motion. 

Cons~er a family of peno~c  orbas ~(~ z~A)) wh~h can be param~fized by thew permds r(a) Let 

2(t + r(A), Zo(A)) = 2(~ z~X)) 

~(0, zda))  = zda)  

e(., zdO~ = (~  ~ 

There is an ~ r e s t m g  relationship, gNen by the f d ~ w ~ g  ~mma, between the variation of the l m t ~  
po~t  dzo(~)/d~A)l~=o and the velocky ~ong the basic orb~ at the m i ~  time. 

Broucke Lemma* 

( l-  )il = ,1,=o (5.|5) 
I 

Proof. Expand ~(t + r(A), z~A)) in powers r(h) - r(O) and z~A)- z~O), set t = O: 

~(z(~), Zo(~ ~ = ~(r(o), z~O)) + (r(~) - r(o))0~/0t I,-o + (Zo(~ ) zo(O))o~/ Ozo(O) +. 

Since {O2~/Oz~(O); ~ fixed, a = 1 , . . .  2n} is a Jacobi field along (~,~) and since R ~s a matrix whose 
columns are the Jacob~ fields ~ong (~, ~), 

(zd~ ) -  zdO)~ - R) = (r(~ ) -  r(O))~/~t I ,-o +'" 

Take the lim~ ~ = 0 and the ~mma is proved. • 

The operator 1 - R(r) appears ~ the densky of energy states ~qs. 5.37 and 5.46). 
There is ~ ~ast  one period~ Jacobi fidd ~ong a pefiod~ orbh and the determinant of R - I  

vanishes. This corresponds to the fact that any point ~ong an orbh can be used as the mitl~ po~t  zo. 
Let the charac~ristic exponents be ~ ,  0, a~z, . . ,  a~,), then 1 - R is ehher of rank 2n - 1 or 2n - 2 
according to whether the Jordan cano~c~  form of 1 - R  is nondiagon~ or dmgon~. It is in gener~ 
nondiagon~ and there is a one-parame~r family of pefio~c orbhs in the ne~hborhood of (~  p) 

*R Broucke, unpubhshed Le~ure Notes, Department of Aerospace Sconce and En~neenng Mechamcs, Umverstty of Texas m Aus~n 
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H there is more than one p~r of vafishing characteristic exponents there is ~ generil more than 
one one-parameter family of perio~c orbits. Thus the charac~fistic exponents of a perio~c s~ution are 
impo~ant because they #ve ~formation not o~y on the stab~ty of the orbit but ilso on the s~ucture 
of the manifo~ of periodic solutions. Broucke has made numericil experiments with eq. (5.15) and 
has discovered bifurcation p o ~  for the famil~s of solutions of the spring-pendu~m sys~m. 

Other properties of the charac~rist~ exponen~ and the~ ex#~R cilculation for the three body 
probMm have been deveMped by Poincar6 and can be found in ~eatises of CeMstiil Mecha~cs and 
AnMyticil Dynamics.* 

The cha rac~r i~  exponents have been called "the dynam~il general~ation of the normil mode 
~equenc~s" [104, p. 998]. Indeed, the role played by dass~il  dosed pefiod~ orbRs is anilogous to 
the role played by equ~bfium points in the study of d a ~ i l  dynam~il sy~ems)* Consider a 
dasficil dynamicil sys~m whose time evolut~n is governed by the dynam~il e q u ~ n  dX(t~dt = 
f(X(t~. For examp~ 

dq(t~dt = v(t), dv(t)/dt = -grad V(q(t). 

An equ~brium point )~ = (qo, vO of lhe sys~m is a particular "mofioff' wh~h satisfies lhe equation 
dfi,/dt = f(~')= 0. The small displacements x(t)= q(t)-qo ~om equ~brium are obtfined ~om a 
lagrangian L = ½E(m~ox~R ~ -k~ox~x ~) whose diagonil form L = ½ ~ ( O ~ - ~ Q ~  is called the normil 
form.t The normil coord~ates Q~ execute simple period~ motions Q~(t)= e x p ( ± i ~ ) .  The normil 
mode ~equenc~s ~ are the so~tions of the equation detlk~ - ~m~ol = 0. 

A similar pa~ern appears in the study of chss~fl paths around a c~sed orbit (~o, if&. Let (~ if) be 
a nearby dass~il  orbR; the smfll deviation (4 - qo, ~ - p d  is a Jacobi fidd. The 2n Jacobi fi~ds ilong 
(~o, ~o) form the co~mn of the matrix R(t) whose vilue for t = • is the Poincar6 map ~q. ~.11~. The 
~agonil form of R(t) is obtained ~om eq. ~.1~: 

~(t) = exp i ~(~o(S), p~s~ d~ 
o 

~ is the dhgonal form of ~ wh~h in the case of a particM of mass m in a potential V readst? 

~(~(s),,(s~= (O~O~(~(s ~ - ~ - ' ) .  

If the closed orb~ reduces to an equilibrium point (qo, PO, the period~ function ~ reduces to a 
constanL and the eMmen~ of the d~gonil matrix ~(t) are ~kk(t) = exp ad where the eigenvilues {ak} 
of ~ are the solutions of the equation detl~V+a2m~ool=O. Thus when Z is constant, the 
characteristic exponents are pre6sely§ the normil mode ~equenc~s. The reader may enjoy the 
portraits of families of cMss~il paths drawn by H~sch and Smile [68] when ~ is constanL 

*In p ~ t ~  ~ [143], [12~ and [ID] 
**On p ~ e  ~1  we ~ m s  ~ e  role ~ ~ e  c ~ ¢ ~  p ~  m ~e  ~udy ~ quamum ~ s ~ m s  H~e  we ~ u s s  ~ e  role ~ a c ~ d  ~ b ~  m a ~mdy 

~ d~smcfl q ~ s l ~ n o d ¢  ~b~ts 
tSee ~ r  m~ance ref ~ p ~ ,  ~e  norm~ mode an~yms of sm~l o~dlmmns a ~ d  ~ ~ n u m  prom 

~ T ~  ~gument apO~s ~so ~ a many part,de sy~em 
§ M ~ o  a ~cmr  m ~ n ~  on convenaons Here a = ± ~  
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£3. Dens~y of energy states 

To set up the stage we recall [e.g. 10] briefly how the dens~y of energy states of a bound system 

p(E) = ~ 8 ( E -  ~)  

can be obtained ~om the ~ace of the propag~or Y/'(~G; a,~). Cons~er a time independent* 
ham~ton~n whose discrete e i g e n ~ e s  can be used to form a c o m p ~ * *  o~hogon~ basis for the wave 
functions: 

= f dx = 
M 

~(~ t,= ~ ~ ~ ~ )  ~ . , .  

= - y )  
f l = l  

0.1  

Feynman [56, p. 88] has shown that 

~(b, t~; a, t.) = O(t) ~., ~(b)cb~(a) exp(-iE~t/h) w ~  t = ~ - ~  

Assuming that ~ exists, ~t  ~ ~ be the function of t defined by 

tr ~(t) = f da ~(a, t~; a, t~) = O(t) ~.~ exp(-iE.Hh~ 
M 

and let ~ be the func~on of E defined by the Fourier ~andormt ~ ~ ~ of ~ g as follows 

(5.17) 

~ E )  = ~ ' ( ~  ~ ~)(-E/~) = (i~)-' ~ ( ~ 0 ) ~  - E) /~  

~(E) is o~en wfiRen formally 

( 5 . 1 8 )  

~(E) = Off)-' f dt O(t) ~ exp KE - E.)fl~. 
R 

T~s equation is mea~n~ess because the Fourier ~andorm of the ~ep function cannot be defined ~n 
the sense of function but o~y ~ the sense of ~r ibuf ion .  ~ one ~eaB ~0 as a function one is forced 
to ~ o d u c e  ±i~ to ~ve mea~ng to otherw~e mea~n~ess express~ns; ff one ~ea~ ~0 as a 
~stribution all factors are automatically and unambiguous~ de~rmined. Let P ~and for p f i n c ~  
v~ue 

~(E) = ~'~ (P(E - E,) -~ - iwS(E - E.~. (5.19) 

R ~s convefiem sometimes m wfi~ 

*To an~yze the case of ume dependent hamdtomans, Mart for instance with Po~ncar~ [120] or with WhRtaker [14~ pp 386-399 
**n may be a mulUqndex 
?See appendix C for the normahzauon convenuon To see qu~kly how dtfferent conventions for the Fourier ~ansform change ~0 see for 

m~ance the denvaUon of .~0 m ref [23] p 452 
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O 

The dens~y of energy states can thus be obtained from ~(E), 

O.2~ 

p(E)= ~, 6 ( E -  ~ )  = i ~ - ' ( ~ -  ~ P ( E -  ~ ) .  0.21) 

Mt~n~ve ly  ff we introduce another function ~ defined by ~ ( E  + i~) = Z. (E - ~ + i~) -~ we can 
write 

p ~ )  = ~ - ' ~  + i~) - ~ - i ~ .  (5.22) 

If the ~e ra t~n  Fourier ~andorm and trace commu~, then k is conve~em to compu~ first the 
Fourier ~andorm of ~ ~ + t; a, ~). F o r m ~  

(~(b, a, E) = Oh)-' ~ dt exp(iEt[h)3{(b, ~ + t; a, ~ 
R 

(5.23) 

The WKB approximation of ~(b, a, E) is 

= (ih) -~ f dt exp(iEt[h)(2~ih) -"~ ~K~(b, a ,  E) 
R 

× ~, [det O~,lOb~OaOl'~exp~(~,(b, ~ + t; a, ~ ) -  hA,14) (5.24) 

where the sum over j is the sum over all stationary paths ~ from (a, ~) to (b, t, + t), ~ is the Morse 
index of ~, $,(b, ~ + t; a, ~) is the integral of the lagrangian for ~,. It ~ consistent with the WKB 
approximation to compute (5.24) by the stationary phase method. Let r be the value of t that 
minimizes the exponent in (5.24), i.e. let ~ be the function of b, a and E solution of 

O ~ + t ; ~ [  , = , + E = 0  

then 

~wK.(b, a, E) = 2~(2~ih) -'"+'''2 Y/ID~(~ a, E)I'~ exp~(~(~ a, E)- h(~ + ~  

(5.25) 

0 .2~ 

where 

ff',(b, a, E) = ~,(b, ~ + ~(b, a, E); a, ~) + E~,(b, a, E) = f p,(~(s), E) d ~ ( s )  (5.27) 

the integral being evaluated along the classical path ~ from a to b traversed in time ~(b, a, E), 

O~v(b, a,E) = detQO;2ff'~/O/:~ a 0;~2~]:~2E ) (5.28) 

p~ are the number of "turning points" [e.g. 87, p. 158] or "libration points" [147, p. 49] defined below. 
*The correct meamng m as ~ven by eq 0 1~ 
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Proof of eq. (5.26). Since (5.26) is the staaonary phase value of (5.25) 

D~(b, a, E) = det(a2g(~ ~ + t; a, ~Eab~aaO~a2g(b, ~ + t; a, ~ a t ~ - ~ l  ,=~  ' ~. ~i (5.29) 

It follows from eqs. (5.27) and (5.25) that 

al~'/aE = ~O~/a~) + E) a~aE + ~ 
off'(b, a, E)/ OE = ~(b, a, E). (5.30) 

It fo~ows from eqs. (5.30) and (5.25) that ~2ff'/OE~ = d~dE and (02~[O~2)Of/~E + 1 = 0, hence 

~2~(b, ~ + ~(b, a, E); a, ~ 2  = _ (02 ff,(b, a, E~OE~ -~ (5.31) 

Let b' be a point on ~ between a and b, ~wra(b' ,  a ,E)  loses a phase equal to ~ /2  each ~me 
O~l~'(b ' , a , E ~ E  2 changes sign (p. 319). d2ff '(b' ,a,  E y 0 E  2 changes sign each time 
( ~ f f ' ( ~  a, E ~ d E ~  -~ vanishes, i.e. at the so-called turning poin~ or ~bration poin~. For examp~, [e.g. 
87, p. 142], let the system be a pa r tx~  of mass m in a potential V 

ff'(b, a, E) = ± / (2m(E - V(~(s))))~2]]d~(s~ 

(~2I~'/~E2)-~ vamshes when V(~(s~ = E. Finally we have to compute the other second denva~ves of 
• (b, a, E) using eqs. (5 27) and (5.25): 

odb 2 ~O a - ~b a 2 ~ + ~ a 2 ~ O0 eb - ~b a 2 ~ O ~ a 2 ~ ~ / ~ 2_~, 
a ff 

a~a~ - a~a~ a ~ '  a~a~ - a~a~ a ~ "  

Hence 

/ 
and a follows, after some easy algebraic manipulations, that eq. (5.29) is equal to (5.28). • 

Equation (5.26) suggests that there exists a path integral representation of ~(b, a, E). We shall 
return to this point in section 5.5. 

A deeper insight into the phase gain of the action at a turning point can be obtained by examining 
[83] the fo~owing example: Consider the reflection of a particle of mass m by the potential 
V(x) = E(xo[X~. The equation of motion of the particle is x(t) = (xg+ 2Et~m) I/2. The particle reaches 
a minimum distance Xo from the origin at time t = 0. Its total energy is E. The action along the path 
from a to b which bounces off the potential barrier is 

tb 

~(b, ~;a ,  ~) = m(b + a)2(~ - ~ ) -~ -  2E l (At)2(4t2 + (Ate)-1 dL At = Xo(2m/E) ~ 
ta 
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As the potential is made increasingly more abrupt, the action tends to 

lim ~(b, ~; a,  ~ )  = m ( b  + a ) ~  - ~ ) - ~  - n E ~ t .  
xo=O 

~t can be considered as the "time of interaction" and according to the unce~alnty princip~ Edt > h. 
Roughly speaking the action is equal to the sum of the action of a free partic~ from a to Xo = 0, then 
from Xo to b, plus a contribution at the turning point due to the fact that we cannot measure 
~muRaneou~y whh infin~e prec~ion the energy of the system and the time of interaction. This 
argument should of course be taken with a grain of sMt since the Einstein relation dE = h ~  together 
with the purely clas~cM relation d~dt  ~ 1, IS not a Heisenberg unce~ainty relation [e.g. 18]. 

To comp~te the cMculation of the dens~y of states, we need to compute 

~(E)= f ~(b = a ,a ,E)  da (5.32) 
M 

whose WKB approximation can be ev~uated like (5.24) by the stationary phase approximation. Let 
a* be the value of a that mimm~es the exponent in eq. (5.26): 

0 = ( ~ ( b ,  a, E)/~a + ~ff'(b, a, E)/~b)l,=~=~" =-p~(a*,  E)+p~n(a*, E) (5.33) 

Pm and p~, are the inRial and final momenta of the ~ationary path wh~h sta~s at a* and ends up at 
a*. A closed stationary path wh~h satisfies eq. (5.33) is a pefiod~ orbh. Hence period~ orbRs ~ they 
exit  are the only closed stationary paths which contribute to ~wKB(E). 

L < Systems w~h class~al periodic orb~s 

The cflculation of ~wKB(E) requ~es the evfluation of the action ff'(E) = ff'(a*, a*, E) and of the 
hessian of the action ff'(b, a, E) at a = b = a* which IS related to the Poincar6 map R(r) by some 
pretty formulae: The Jacobl fields k = (h, j) can be obt~ned by variation through stationary paths, 
thus to first order in (h, j) 

p(~) + ~ )  = -Off'(b + h(~), a + h(~), E ~ a  

p(~)+ j(~) = ~ff'(b + h(~), a + h(~),E)]~b 

hence 

~(~)  = - ~ h ~ ( ~ ) - ~ h ~ ( ~  ~(~)  = ~ h ~ ( ~ )  + ~ h ~ ( ~ ) .  (5.34) 

~ now a = b = a*, the system (5.34) of 2n linear equations can be rewri~en in the form 

If (5.34) were invertible, comparison of (5.34) and (5.35) would y~ld 

- det(~ff'[~b~aO)[ = det R(r) = 1 0.36) / ~ m ~ *  
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Equations (5.3~ and (5.37) are eas~y checked ~ one ~men~o~  the p~of  is a more involved p~ce of 
l~ear ~geb~  for sys~ms whh more than one degree of freedom. We shall show that (5.3~ ~s not 
~verti~e,  but the hess~n of the action can be ~ock ~ a g o n ~ e d  in~ a va~sh~g m~rix and a 
nowva~sh~g m~fix and equatio~ (5.36) and (5.37) become 

- d e t  ~" 02~/Ob~Oa~ I ~ : ~ .  = det R(r) = 1 (5.38) 

det' ( ~  + ~ +  ~ + ~ ) [  ,=~=,. = det(R(r) - ~  1) (5.39) 

where det ~" means the d e ~ r m ~ a ~  of the nonva~s~ng m~rix. 
Equation (5.34) is n ~  ~v~ t ib~  because the sys~m has at ~ast one constant of the m~mn,  namdy 

the hamflton~n. Indeed take the derivatives of the two Hamil ton4~oN equations 

H ~ O ~ ( ~  a, E)/Oa, a) = ~ H(Off'(~ a, E~0b, b) = E (5.40) 

wah respect to b ~ and a ~ and use Hamfl~n's equations 

- 0 ~ ( ~ ) ~ =  O, - 0 ~ ( ~ ) ~ -  ~ ( ~ )  = 0, 

~ ( ~ ) ~ =  0, ~ ( ~ ) ~ -  ~ ( ~ )  = 0. 

It fo~ows that the de~ rm~a~s  on the ~ft  hand s~e of (5.3~ and (5.37) vamsh. Choose an arias* on 
M such that ~ every c o o r d ~ e  p~ch the componems of ~(t) are ~ t ) l [ ,  ~ . . .  0) then 

~ / ~ a  ~ = ~ / ~ a ~  ' = 0 ~5.4~) 

d~[Oa~Oa ~ = - ~ ( ~ ( ~ ,  d~/Ob~Ob ' = ~( t~) / l l~(~ .  (5 42) 

On the other hand because the ham~o~an ~s a constant of ~e  moron, there is at ~ast one p ~ c  
Jacobi fidd, namdy (~, ~), and one p~r of va~s~ng ch~ac~f is t~  exponems. Set k~ = (~ ~), then 
a~ = a_~ = 0. If there are no other constants of ~ a t i o n  eqs. (5.3~ and (5.3~ are satisfied whh the 
d e~ r m~a ~s  being taken w~h respect to a, ~ = 2 . . . .  n ~ the chosen sys~m of coor~n~es,  or w~h 
respect to the nonvamsh~g ch~ac~6sfic exponems. 

If there are j > 1 constants of the mot~n 

~,(#(t~ #(t~ = constant ]' = 1 . . . .  j 

then there are ~ pefiod~ Jacobi fidds ~ven by equation (5.1~ and j p~rs of va~sh~g characteristic 
expone~s. Choose an aOas on M such that ~ every coordinate p~ch h'~t) has o~y one nonva~sh~g 
componem Mong the ~-ax~ equ~ to ks norm. By an argume~ similar to the ~ e v ~ u s  one we see that 
eqs. (5.38) and ~ .3~  are satisfied whh the d e ~ r m ~ a ~ s  token w~h ~ e ~  ~ a, ~ = ~ + 1 . . . .  n or with 
respect to the nonva~sh~g characteristic exponent .  

*~ th~ reqmres a change of coordinate system, see for instance ref [23] p 149 how to con~ruct the coordinate sy~em such that a ~ven field 
has only one nonvamshmg component 
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We shall complete [he c~c~ation of ~w~n(E) assum~g Ih~ the hamilto~an is the only con~ant of 
the motion.* We a~ume ~so that the charac~rist~ exponents are all distinct and different ~om 2~[ir 
(mod 4r/it). The e~men~ of the null subspace of the JacoN oper~or have components o~y ~ong 
(~(t), ~(H)). In the chosen sys~m of c o o r d ~ e s ,  the ~ g r ~ n  over da2. . ,  da" is read~y obt~ned 
by the s~t~nary phase approximation, the ~ g r a t i o n  over da ~= da* has to be done exp~citly. 

We first ev~u~e D~(a*, a*, E). Take the derivatives of 0.40) wkh respect to E and use 
Hamilton's equations. ~ ~ves ~ the chosen sys~m of c o o r d ~ e s  0~ff'/OEOb~=l[~(t~)[[ -~, 
~2ff'[Oa~E = -[[~(t,)][ -~. It fd~ws from eqs. 0.28) and 0.41) that 

D~(b ,a ,E)=- l l~ ) [ l -2d~O2f f ' (~¢E) /Ob~Oa k with L k = 2  . . . .  n (5.43) 

wh~h together with 0.38) ~ves 

O~(a*,  a*, E) = ~(t)l[ -z 

where t is the time such that ~(t) = a*. 
The ~ g r a t ~ n  over da2. . ,  da * in~oduces the fo~ow~g factors (see eq. ~.3~) 

~ih)O-"/2(det(R(r) - ID -'/2 exp(- ~ / ~  ~.4~ 

where k is the number of negative e~envMues of R(r) -1 .  It will be conven~nt to reexpress the 
de~rm~ant as fo~ows. 

1) = ~-+__~+_~" ~xp(a~r)- 1)= ~'[ 4 ~n ~ ia~H2 deffR(~ ~" _ 

(det(R(~-  1 ,  - i n =  ~ '~ m~__ ° exp(mk + ~akr 

= ~ ~ exp ~ ( m ~ + ~  0.45) 
m2=O mn=O k = 2  

The in~grat~n over da ~ reduces to ~ I [ ~  -~ da* = r whether the perio~c motion is a rotation or a 
l~rm~n ~.g. 1~. FinMly 

~3wgn(E) : Oh)-' ~o~,¢ %]~et(R(r)- 1~ - ~  exp(~ ff'~(E) - h(h~ + p~ + k~)/4) (5.46) 
orb~s 

C~w~n(E' = Oh' -1 Z %(E) m~O " " " ,,~--oeXp~ l~'~(E, m~ . . . m. ,  (5.47, 
~ o d ~  

o r ~  

where 

W~(E, 2 . . .  m,) = ff'~(E) - h ~  + ~ + ~ 4 -  i ~ (mk + ~ a k ( E ) % ( E ) ~ ) .  ~ .4~  
k=2 

The sum ov~ ~e  pefio~c orbhs consists of an ~ f i ~  sum over the multiple ~averses of a bas~ t ro t  
and a fin~e sum over bas~ o r ~ .  Recall that ~ eq. ~.4~, %(E) came ~om f~ ~(b = a, a, E) d~ i.e. 
from an ~ g r ~  over the configuration space, whereas ~ ( E )  came from a time ~ g r ~  

*For the use of col~cuve coordinate methods when a system has conunuous symmetries see refs [61] and [63] 
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f ((~, ~) - H ( ~  ff~ d~ 

~w~s(E) = (ih)-' 

: (ih) -~ 

hence 

b a ~ c  n = 1 m 2 = O  
o r ~ t s  

2 
b a s i c  m2=O 

o r ~ t s  

"" ~°:° ~ exp[~ I~'~(E, m: . . . .  m.) 

"'=° ~ exp~l~'(E,m~...m~)/(1-exp~l~'~(E.m~...m~)). 

(5.49) 

The poles of ~(E) are the energy e~dnvflues of the sy~em; they occur for I~'~(E, m2 . . . .  m,) = hn, Le. for 

ff'(E, = ~ ff~(~,E, d0 ~ :  h(n+(A+p+k,]4+i~=~ (m~+~a~(E)z(E),2~ (5.50, 
4 

This is the genera ted  Bohr-Sommerfeld quantization condition.* 
Two cases: 1. Each a~ is purely ima~nary, the sy~em ~ stable, the energy ~s re~. 2. Some a~ are 
complex, the system is unstable, the energy is comp~x, the wave function (5.16) has a decaying term 
whose decay rate is ~ven by the imaginary pa~ of the energy. The characteristic exponents are, of 
course, only partly responsible for the fine breadths. The primary reason for the decay of bound states 
is the interaction of the dectrons w~h the e~ctromagnetic field. 

Remark. L~punov has shown that the norm ~s not the oily function on the Jacob~ fie~s wh~h can 
be used to define stability. The second variation of the action ~s cenfifly a good candidate to 
investigate stability in the sense of Lmpunov 

Rema~ on complex c ~ & d  pa~s. We started whh the reM c h s s ~  energ~s and real das~c~ 
p~hs. The characteristic exponents have ~ o d u c e d  comp~x v~ued chsfic~ ~ e c ~ n e s  and 
comp~x energies ~ the Bohr-Somm~fdd con~tion. Com~ex v~ued d a s s ~  ~ e c ~ n e s  were first 
~ o d u c e d  by Keller ~8] ~n his '~eometric~ ~eory of diff~ctioC'. W~h M c L a u g ~  he has shown 
~ how the c h s s ~  p~hs of all ~ p e s - ~ d u d ~ g  the c h s s ~  d~ffrac~d p ~ h s - e ~  the WKB 
approximation. B~hn and B~ch ~, 7] have sys~matically ~vestig~ed the com~ex Hamilton-Jacobi 
equation when the po~nti~ is an~yfic and devdoped qua~um mechan~s ~ terms of compbx 
c h s s ~  p~hs. Balian, Parisi and Voros [8] have shown ~ an exampb how asymp~tic expans~ns 
can fail ff the dasfic~ com~ex ~ e c ~ r i e s  are not ~c~ded ~ the WKB appro~mation. 

In conclusion, the WKB approximation of the energy spectrum is obtained from the dosed orb~s 
of the system, ff any, and the nearby family of quasipenodic** orbksL the characteristic exponents of 
a closed orb~ (4, ~) are obtained from the Poincar6 map R(r) where the matrix R(t) consists of the 
Jacobi fields along 4, ~, and the Jacobi fields are obtained by 2n parameter variations of the classical 
paths which can be deformed continuously into (4, if). 

If the system does not admit periodic orbffs, then X(a, to + t; a, ~) cannot be computed by the 
WKB approximation and some other method has to be invesUgated If the system adm~s 

*See ref ~ for me cue m w~ch me energy is not the o~y constant of mot~n 

**A vector vflued funchon is stud to qu~iperiodk or mu~p~ periodic ff as compon¢~s can be ~ v e ~ e d  by a series of me form 
Ek C~ exp t(k [ ~) where (k I ~) = E~-~ ~ with ~ U R" and k ~ Z ~ (m~g~ c o m p o n e ~  E~ C ~ ~ assumed ~ be conv~ge~ 

tThe o~ecaon made by Bevy and Tabor ~ ~e  Gu~wfler-Voros result rests on me ~sumpt~on th~ me c~sed or~ts are md~ed ~s not 
su~mned 



C DeWt~-Morette ~ al, Path mtegratwn m non-relattwstw quantum mechamcs 345 

quas~efiod~ orb~s, Berry and Tabor [11] have proposed th~ the action be writmn in terms of 
acfion-an~e variables (L 0) rather than ~ the naturM phase space coord~ates (gp) .  The paths 
are closed in the (I, 0) space and the computation proceeds bas~M~ as before. The Berry-Tabor 
result is justified by the fact that, according to Carruthers and Nieto ~2], cano~cM ~an~ormations 
do not affect WKB appro~matlons. 

Little is known about generic no~nmgrab~ sysmms and thek quantum properties. It is hoped that 
new ~s~ht  ~to quantum properties wffi come ~om the recent stud,s of chs~cM dynam~M sys~ms. 
As we have seen in this section, the bridge cons~ucted between quantum and d a s s ~  mecha~cs by 
Wen~d,  Krame~ and Brillou~ is very beneficial to quantum mechamcs.* 

~ On the e x ~ n c e  o[ path ~tegrai representations of ~(b, a, E) and ~(E) 

ih~(b, a, E) has been defined as the Fourier ~andorm of Yf(b, ~ + t; a, h) and ih~wga is the 
stat~nary phase approximat~n of the Fourier ~andorm of Yfw~a. The result, wri~en for a and b 
within focM distance 

a, a, a, (~.~1) 

is very striking. ~ is the WKB approximation one wo~d have formally wri~en down for 

 orma.y,. 
E 

where 
b 

W(q, E) : f ~m(E - V(q,),l 'e(~ g.o dq~ dq~) 1~ , 

and where ~ is the space of p~hs from a to b with a~e~age energy 
~ r  

E ~ ~-' I (~q(t)ll~/~ ÷ v(q(t))) dt 
ta 

~(~) ~ a, ~(~ ÷ ~) ~ b. ~ . ~ )  

Indeed, ~ t  4 be the chsfic~ path from a to b w~h constant energy E. Then l~'(b, a, E) = W(~ E). 
We now show th~ D~(~  a, E) is the Van V~ck determ~ant of ~'(b, a, E). Let us parametrize the 

; ~ S ~ i ~  ~hT~eb~a°nn~l~dt:e;~;~ri~i~:e~i ~ / ~ b ~  ~ a  ~ l ~ ' d a : t ~ f ~ ; ' ~ : ! ~ n ~ i L ~ ' ~ t ~ ) n ~  

the sys~m of co-ord~Mes where 4'(t)=~4~, D~(b,a,E) is ~ven by eq. ~.43). In the ~' 
parametrization where ~(4 ' )  ~ 1, ~ reads 

D ~ (  b, a, E )  = de t  O~ ~// ~b' da ". • 

W h e r e a s  the  p ~ h  ~ g r M  r e p r e s e n t a t i o n  o f  )/ ' (b,  ~ ;  a, G) is o v e r  the  s p a c e  o f  pMhs  going  f rom a to 

*h should ~so be benefioal to classical raechan~s since class~al mechamcs ~ the hm~t of quantum mechamcs But th~ is another ~ory 
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b in a ~ven amount of time ~ - ~, the formal path integral representation of ~(b, a, E) is over the 
space of paths going from a to b wffh a given amount of average energy E. The action W(q, E) is the 
action of a free particM on a curved space M wffh metric 

d/2 = 2m(E- V(q~g~ dq ~ dq ~. (5.54) 

Can we define a prodistrlbution w e on E such that 

~(b, a, E) = ~ dwe(q)? 

E 

The best we can hope for, at the present time, is an impl~ff definition. Two approaches suggest 
themsdves, both very ~flicdt:  

1. A prodistribution on the space of pmhs from a to b c o n s i g n e d  on the Rieman~an manffo~ M 
can be defined implicitly, via the devdopment mapp~g, from a pro~stributmn on the tangent space at 
one end point, TaM or T~M. 

2. It may be posslbM to define implicitly w e by a random process {q(t~ on R". Recall that the Winner 
g a u ~ n  w~ on X_ was first known, not explicitly as the normalized g a u ~ n  of covafiance ~ t  - G, 
s - ~), but implicitly as the g a u ~ n  such that the random process {x(t)} ~ brow~an (see exam~e 6, p 
266; and appen~x D). The p r o ~ s ~ u t i o n  w r on ~ must be such that ~ defines a random proce~ {q(t~ 
wffh the fo~ow~g charac~ristics: 

q(~) = a, q(G + r) = b 

r is a stochastic vanabM such that eq. (5.53) is satisfied. 

f ~ q ( ~ ) -  q ( ~ _ , ) ] ] ~ -  2 m ( E  - V(q( t~_ , ) ) ) (~  - ~_ , )~)  d w ~ ( q )  = O. 

E 

(5.55) 

Note that the last condition says that E is the average energy along the path. Indeed, since q is not 
differentiabM, we cannot write Ildq(t)l[ 2 -  2re(E- V(q(t)))dt 2= 0, but we can write that the expec- 
tation value of the MR-hand side vanishes. This sffuation was recognized by Garrod ~8, p. 488] and 
Gutzwiller [64, p. 1984] who wrote down a formal path integral representation of @(b, a, E) using 
spaces of paths wAh given average energy and computed ~wKB(~ a, E). 

We do not know ff the conditions (5.55) given for the random process {q(t~ are sutficmnt to 
determine a prodis~ibution w e on E. The fact that a random process wnh brownian motion 
characteristics does determine a promeasure w_ on X_ is not a trivial result but a great achievement 
of W~ner. ~ does not seem that random processes of type (5.55) have been studied, nothing can be 
said about the ex~tence of a promeasure they might define, Mt alone the exhtence of a prodistribu- 
fion. 

The WKB approximation of @(E) is also very ~riking and fimflar considerations can be made on the 
posslbM ex~tence of a path integral representation of @(E). 
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Conc~s~n 

The world is ~ob~ and s~chastic and p h y s ~  hws are ~ c ~  and d e ~ r m ~ t i c .  The beautiful ~ing 
is that these comp~men~ry de~riptions of nature can be brought ~ g e ~ :  A p~h ~ g r ~  is a ~ob~ 
and s~cbast~ e x p l a i n ,  h is ~so the s~ut~n of a ~cM and de~rm~istic partiM diff~enfiM 
equation. 

In this monograph we have compu~d p~h ~ g r ~ s  in t~ms of solutions of o r d ~ y  differe~ial 
equations, and ~ e b y  produced solut~ns of parti~ diff~enti~ equations of parabd~ type wi~ 
Cauchy d~a. The cornerstones have been 

1. The Fourier ~an~orm of ~ e  gauss~n w~ on X_ e ~ s  ~ souse of delig~ for m~hematic~ns) and 
is known expfic~y (a source of dd~ht  for phy~cist~ 

= exp(-  
T T 

s - ~)).  

2. Linear mapp~gs of spaces of paths ~ o d u c e  gausshns whose covariance are elementary kernds 
of the JacoM equation. So much ~ known about the Jacobi equation ~om many branches of phys~s and 
mathematics that the prodistribution formalism can bo~ow a weMth of r e s ~  derived by Jacobi, Sturm, 
LiouvSe, Poincar6, to name but a few. 

Many more problems can be investigated wffh the methods developed here. Some of them we had 
hoped to incorporate, some others came to our attention when this monograph was in the la~ stages 
of completion. We shall use the size lim~ation of Phyfics Repots as an excuse to stop here for the time 
being. 

Appendix A. Some differences between in~grafion on R ~ and funcfion~ integrat~n 

' ~ h y s ~  ~ntultmn o~en b o ~ s  on w~shfd ~mhn~ ~ 

Theo~m I. On a ~n#e dimensional spac~ lineadty implies continuity; not so on an in~n#e 
dimensional spac~ 

Theorem Z The compaa subse~ o[ R n a~ the c~sed bounded subsas of R ~. A c~sed bounded 
subset, w~h nonemp~ ~ o ~  of an in~n~e dimens~nal normed space ~ never compaa under the 
norm topo~g~ (Rough~ speak~g a compa~ set has no ~ r i o ~ )  

Theorem • L a  X be an in~n~e dimensional normed space. Any continuous [una~n(al) on X w~h 
compact support ~ identically zero. 

Theorem ~ The~ ~ no measure ~va~ant under trandat~n on a Hilbe~ space H such that the 
measu~ of every bounded open ba~ 1~ < ~ ~ f i n ~  

~ W ~ n  ~ w~h ~ ~m~e ~ d  ~ r e t e  ~uat~ons, p h ~  m t ~ c n  ~ ~ss relmb~ ~ d  ~ n  b o r ~  on ~ s ~  ~ m ~ "  ~ G V~  
Kampe~ 
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These striking differences between finite and infinRe dimen~on~ spaces are an radiat ion of the 
p i f f ~  Into wh~h our intuition, based on the prope~ms of R n, can lead us. 

Before d~cussmg these theorems, recfll some definitions. A subset A C is s~d to be compact ff 
every coveting of A by open sets has a fin~e subcovering. Note that a compact subspace of a 
Hausdorff space is necessarily closed. 

The i n~ r~ r  of a set A is the largest open set contained in A 
The houndary OA is the set of M1 points contained both in the closure of A and in the closure of the 

complement of A: 

def -- - -  
OA = A ~CA. 

These definitions generahze to topolo~cM spaces the familiar notion on R':  to see why they imply 
different properties on R ~ and on infinRe dimensionM spaces we sh~l consider some simp~ examples. 

One of the s~mp~st general~ations of R" is the space H of sequences {x'; i = 1 . . . .  ) such that 
E~(x'f is fin~e, together w~h the topology induced by the metr~ 

d ( ~ y ) = ( ~ l  ( x ' - y ' ~ )  I~. 

In R" a closed un~ ball IS a compact set w~h nonempty interior. A compact set m R" w~h empty 
interior is for instance a closed subset of R "-~. If we ~y to construct in H a compact set with 
nonempty interior we succeed in cons~ucting either a noncompact set (examp~ 1), or a set wh~h 
does not belong to H (example 2), or a set with empty interior (examp~ 3). 

Examp~ 1. The obvious generalization of the closed unR ball in R n IS the set of points {x'} ~ H 
such that E (x')2 ~ 1. Its interior E(x')2 < 1 is nonempty. We shall show that this set ~s not compact: If 
the ball were compacL any infinite sequence of points in the b~l would have an accumulation point in 
the ball. Consider the sequence of points a~ ~ H such that a~ = 8~. This sequence is in the closed unR 
ball, no subsequence converges to anything, the b~l is not compact. 

Examp~ Z Consfler the un~ cube in R xR × . . . ,  i.e the set of po~ts whose coordinates 
0 ~  x ' ~  1. This set is compa~ ~ the space R × R × . . .  wRh ~ts usu~ infin~e produ~ topology 
(Tychonoff topo~gy). But all the po~ts of the cube are not ~ H. The corner point {1, l . . . .  } is not 
square summa~e. 

Examp~ & Cons~er the Hflbe~ cube in H. This is the set of sequences {x'} such that 0 ~ x' ~ 1/h 
i.e. the paralle~p~ed whose edges have ~ngth l, 1/2, 1/3 . . . . .  The Hflbe~ cube is compa~ because ~t 
is the infinRe product of compact sets w~h a metr~ topo~gy that is equiv~ent to the Tychonoff 
top~ogy. But the Hflbe~ cube has an empty ~ n o r :  it cont~ns no open set. 

Proo~ The open bMls in H form a basis for the topology induced by the metric d on H. Let B,(xD 
be the open ball of radius 2~ centered at Xo. For any Xo E H and any e > 0 there is a point y E B,(xo) 
wh~h is not in the Hflbe~ cube. Indeed, Mt n > 1/~ The point y = {x~ . . . .  xg -1, xg + ~, x~ +t} is in 
B,(xo) but is not in the Hflbeg cube. The Hflbe~ cube ~ too cramped to put any open set reside it. • 

These examples explain the contents of theorem 2: A compact subset of an infinite dimensional 
space X IS all boundary, fike a closed subset of R n-I in R n. 
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We shall now use theorem 2 to prove theorem 3. Cons~er a continuous funcfion(~) on X which is 
zero outs~e a compact set. The set of x E X with [(x) ~ 0 is open and is contMned in a compact set 
and is hence voW. Thus [(x) = 0 for all ~ • 

We would expect any measure on X to have the usu~ reasonab~ properties of measures on R ". 
Theorem 4 shows that no such measure exists. 

Proof of Theo~m ~ Let a be the measu~ of the unR ball, let b be the measu~ of balls of radius 
e < 1. Let {~} be an o~honorm~ ~f i f i~  subset ~ H. Let x~ = ~ and cons~er  ~ e  balls ~ ;  1~ - ~l] < 
e} They are ~ c ~ d e d  in the unit bill ~ A + ~ < 1. They are ~ o ~ t  ff A~/~ > 2~ There is an ~ f i ~  
number of ~ o ~ t  b~ls of measu~ b included in the unit ball, therefore add~v~y wo~d imply ~ 
the measu~ of the un~ bill be ~nfin~e. 

~g 10 

Remark. The expression "invariant" measure is ~so used in a different sense from theorem 4. A 
measure # on X is sfid to be invarant under a ~ansformation T : X  ~ X if the sets of measure zero 
are the same for ~ and for its image under T. 

Append~ B. Jacobi fidds and rdated topics 

When the covafiance of a gausshn prodistribution is identified as the e~mentary kernel of a Jacobi 
equation, the work is ~n a very advanced stage of completion: the properties of the Jacobi equation 
have been investigated, under different names, in various branches of phys~s and mechan~s and 
many theorems can be used for computing path integrfls w~h respect to gausshn prodistributions 
w~h such covafiances. 

Some other names for the Jacobi equation are: variational equation [e~. 143, p. 268], 6quatioa aux 
variations [120, p. 163], small disturbance equation ~7, p. 165] and, in the context of Riemannian spaces, 
equation of geodetic deviation. 
An dementary kernel is often called a Green function, ~though, strictly speaking, a Green function is 
an e~mentary kernel satisfying a particular set of properties. Many properties derived in this 
appendix apply obvioufly to the dementary kernels of any homogeneous second-order linear 
differential operato~ 

Consider a lagrangian system S. Its action 

S([) = I L(f(t), f ( t~  d~ T = [to, ~l 
T 
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can be expanded around a dass~f l  p~h 

s ~  = ~ q )  + ~ + a(q, x). (B1) 

If [ :  T ~ R " ,  then x = [ -  q. The s ~ p ~ t  m~hod to compme the expansmn (B1) is the o n e ~ a m e ~ r  
v ~ i ~ n  m~hod ~0, 41, 105]. It ~ v ~ d  when [:  T ~  M where M is a ~ e m ~  manffdd with 
metric g equM to the L ~ d ~  m ~ * ,  assumed here to be ~ b ~  

~ ( q ( t ~  = m- '  ~ ~ ~  (S~ 

L~  U be the h~rvM ~,  1], ~t  u G ~ and ~t  {6(u); u ~ U} be a one p~ame~r  hmfly of p~hs 

6 ( u ) : T ~ M s u c h t h a t ~ @ = q  and if(l) = fi 

Set 

a(u~t)  = a(u, t), Oa(u, t)/Ou = 6~u~t)  and ~'(0) = ~ 

funcUon a : U  x T ~ M  defines a parametrized two dimensionfl surface. We use primes for The 
covafiant derivatives gong the curves a(., t): U ~ M  and do~ for covariam ~ ~ s  gong the 
curves a ( u , . ) : T ~  We use e~her of the ~ l ~ w ~ g  nomt~ns accor~ng to ~ ~ c ~  con- 
ven~nce: 

V.a(u,  t) = Oa(u, t)lou = O.a(u, t) = a'(u, t) 

V,a(u, t) = Oa(u, t)10t = a~(u, t) = a(u, t). 

Note that a'(u, t) = 7 . 7 ~ ( ~  t) = 7,V.a(u, t). 
Let V be a vector field on the p ~ a m e ~ d  surface a; the ~ e m ~ n  tensor R is defined by 

~ . V ,  - V t V . )  V = R ( ~ a ,  0~)  ~ 

The expans~n (B1) ~ e~fly comp~ed as a Taylor expans~n w~h respect to the p~ame~r  u: 

S ~ =  So~(1)= ~ ( 1 / n ~ S o a ~  (B3) 
~ = O  

(so  ~y(u) = ~ ~ )  

(S o a ~ u )  = ~ u ~ ~ )  + S~a(u~a~u~ ~c. 

S~ce S o 6 is a function wkh v~ues ~ R, ~s derivatives can be under~ood as o r k n e y  ~ f i v ~ s  or 
as ~ v ~ a ~  derNafives. They are c o n s ~ e d  here to be covariant derivatives for s ~ y  and 
conve~ence, and so are the derivatives on the rig~ hand s~e. 

TM ~ s t  v ~ n  is 

(S o ~ ( u ) =  f ( L , - ~ ) a ~ t ) d t +  L ~ a ~ t ) [ , = ~  (B~ 
T 

where L~ and L2 are the derivatives of L w~h respect to ~s first and second ~gumem, understood to 

*The L ~ & e  m~nx ~, mo~ o~en, defined ~ be ~ = - ~ ~  For ~ s  reason, m p~vmus p ~ s ,  we have som~mes 
used ~o  = ~ h  The ch~ce (B~ ~ ~ d ~ a ~ e  ~ c ~  ~ ~ s  ~o  = ~o m fl~ sp~e  Mo~ov~,  ~ bnngs om exphc~y ~e  dependence of ~e  
wave funcuon on h and on # = (~m~ ~ 
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be a(~ t) and 6(u, t) respecfivd~ Set 

&eq(t) = L~(q(t), q(t)) - ff--~ L2(q(t), q(t)). 

The Eukr-Lagrange equation IS 

~q(t) = O. 
The term S"(~(u~ ~ the second vafiat~n is a symmetric b~near form* on the space of vector fie~s 

tong d(u), wh~h a~er ~gra t ion  by pa~s, reads 

s"(a(u))~'(u)a'(u) : f {~(~(u))a'(u, t ) } a ~  0 dt 
T 

+ 

where L:~ and L2~ are the derivatives of L~ w~h respect to i~ first and second argument, more prec~dy 
L~( = O~L[O&~(~ t)Oa"(u, t) ~ L~, and where 

~(6(u,  = -L~ff-~ + (L,~- L~,-dL~/d0d~ + (L,~-dL~,ldt). 

The Jacobi equation is 

p ( a ( u ~  t) = 0. (BS) 

A solution of the Jacobi equation is called a Jacobi fidd Mong d(u). In general we shall set: 

a~O, t) = h(t) ff h is a Jacobi fie~ ~ong @ 

Jacobi matdces and related matdces. The mapping J~(~ ~): TAM-> Tq,>M such that 

{~!((~.~v~,= h"(tV)~h~(~)is=the v~a,-componefontranyO~JaCObTaiM field ~ongq (B6) 

defines a matrix J~(~ G), called a Jacobi matrix; each column of J~(~ ~) consists of the componen~ 
h ~  of the Jacobi fidd h~) vanishing at ~ and whose derivatives ~ G ) =  8~ 
The mapping K~(h ~): TAM--> Tq.>M such that 

{hK~ti')t~);:? h~t,)oh~t~a-c°mp°neo n t ,  for an~a~JaC°bTa iM fidd flongq (B7) 

defines a matrix K~(~ ~), called a Jacobi matrix; each column of K~(6 ~) consists of the components 
h~) of the Jacobi field h~), whose derivative vanishes at ~ and such that h ~ )  = 8~. 

The Jacobi matrices J(~ ~) and K(~ G) are known respectively as the commutator function and the 
Hadamard function. We shall show that J is indeed the commutator function (modulo -m-~. Namdy 

-m-~J~(~ s)= Oq~(to Oq°(so Oq~(s)Oq~(o Op.. ' 

*Ohen c ~ d  the hessian of S at 5(u) 
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where q(t) is the staaonary* pMh q(~ a,p,) defined by as lniUM position q(~)=  a and lmtial 
momen tum Pa. 

Thus J(a &) defined by 
boundary conditions as 

Definition. Let ~(a, 
q(&) = a and q(g) = b. 

Van VMck matrix 

Lemma. The revere 

Proof.** The deriva~ves of q wkh respect to a and Pa are Jacob~ fields.* Set s = t, ~n the above 
equation, a turns out that 

m- tJ ~ ( ~  ~) = aq~(t~apo~ 

the Polsson bracket (modulo - m - ' )  sansfies the same equation and the same 
the Jacobi matrix defined by (B6). Note m-~J~a(~, t) = -aq~(t)lap~. 

~: b, ~)= S(q) be the action funcnon for the stat~nary p a h  q such that 
The off diagonM block of the hess~n of g is called the Van V~ck matrix. 

= o ~ l ~ b L  

o[ the ~cobi  matrix Y d~ned by 

~ ( ~ ,  ~ ' ( ~  ~/= ~ 
-1 ~ equal to ~e Van ~eck m a t ~ ,  moduM m 

~ ( ~ ,  ~) = - m  -~ O2~a, ~; b, ~ O a ~ b ~  

P r o ~ t  The inverse of the Po~sson bracket is 
La~ange brackeL mod~o -m,  

- m ~ ( & ,  &) = - ~  = a 2 ~ b ~  

The advanced and retarded G r i n  functions 

(B8) 

(89) 

the Lagrange bracket, hence M(~, t) is the 

• 

are, respectively, G~U~(~ s) = - O(s - t)J(~ s), 
G*"(L s) = O(t - s)J(~ s). The advanced and retarded Green functions are often MbelMd G ~ and not to 
be confused wah the same symbols used here for the covariances. 

The Jacob~ matrix J ~s obviouNy antisymmetrlc since k ~s equal to the commutation function 

J"a(~ s) = -Ja~(~ t). 

So is the Van VMck matrix. The other Jacob~ matrix, K, does not have, m general, any symme~y 
prope~y. We shall label/~(~, t) the matrix w~h entries 

/ ~ ( ~ ,  t) = K~(K ~). 

We shall label N and /q  the inverses of K and/~, respectively, 

N~(G, t)K~'(~ ~) = ~ ,  / ~ ( ~ ,  t)/~/'~(~ ~) = ~ .  (B10) 

*We use the expresmon "stauonary path" to refer to a soluaon of the E~er-Lagrange equation, usually reserwng the term '2~ss~M path" 
for a solutton wh~h minimizes the ac~on 

**These simple proofs are due to Mlzraht [ 107] See other properties of the Jacobl matrices m [108] More e~borate proofs and other resulB can be 
found m ref [40] p 373 See flso ref [12~ 

*See next paragraph a detailed anflyms of one-parameter variations through clasmcM paths 
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One-paramaer variations through stationary paths. The dimens~n of the configuration space 
being n, there are at most 2n linearly ~dependent Jacobi fields along ~ They are easily compu~d ff 
one knows the generM so~fion of the Eu~r-Lagrange equation. Indeed [73, 40] the set of derivatives of 
the gener~ s o f t e n  of the Euler-Lagrange equation wRh respect to Rs 2n constants of ~ g r a t i o n  is a 
com~e~  set of Jacobl fields. Thus one way of obtai~ng a Jacobi field is to make what is known as a 
"ou~parame~r vadat~n through solutions of the Eukr-Lagrauge equation"; i.e. a variation ff (u) such that 
~a(u, t) = O. 

If this variation keeps one end fixed, say a (~  ~) = a for every u ~ U, then ~a(u = O, .)/du is a Jacobi 
fidd Mong q va~sh~g at ~. The condition thM the family of paths {~a(m .); u E U} has a fixed end point 
a (~  ~) = a de~rm~es  n of the 2n constants of M~gration of the generM s~ut~n  of the EuMr-Lagrange 
equation, Maving n unde~rm~ed constants wh~h can be varied to obtMn n Jacobi fields vaMshing at ~. 
These n Jacobi fields are the c~umns of the Jacobi matrix J(~ ~). 

Remark. This construcUon of J ~ ( ~ ,  ~) pro~des a very fim#e method for computing the Van 
Vleck determ~ant. 

In flat space one can obtain the rem~ning n Jacobi fie~s by makhg n one-parame~r variations 
through ramies  of stat~nary p~hs w~h the same initi~ ve~c~y. If one thinks of such a family as a 
family of stationary paths w~h initial ve~cities p e r p e n d ~ a r  to a ~ven phne 0 = So(a) = g~a~v~ 
one can general~e this cons~uction to curved spaces: Let So(a)= 0 be an in~hl wave front, for 
hstance So(a) can be the initi~ v~ue of a so~fion of the Hamilton-Jacobi equation, or 
exp(iSo(ayh)T(a) can be the i~t i~ wave function of a sys~m (sect~n 3.2). Let So(a) have first order 
contact with ~s tangent space at q(~) 

= o 

where the covariant derivative V~ = D/~q~(~). Cons~er a family of stationary paths {d(u~ wRh initiM 
veMcities 6~(u, ~) = V~So(a(~ ~)). Then the Jacobi fie~ h Mong ~(u) such that 

h(~)= ~a(u,~)]~=o and ~(G)=0 

is obtained by mak~g n one-parame~r variat~ns through the family {ff(u~. Indeed 

O. • 

Causgcs and con]uga~ p o ~ .  We shall ~ve three equNflent definitions of a caustic. 
1. R can happen that an n-parame~r family of stationary paths has an enve~pe. The enve~pe is 

the caustic with respect to the n initifl data wh~h define the family. 
2. It can happen that there are k nonzero Jacobi fields t o n g  q w~h vanish~g boundary conditions 

at q(G)= a and q (~ )=  b. The two points a and b are then sa~ to be conjugate t o n g  q w~h 
mulfiflk~y L A¢austtc is a set ~f conjugate points. 

The vanish~g boundary condemns can be eRher Dific~et h(G)= h (~ )=0 ,  or yon Neuman 
conditions h(G) = h(~) = 0, or a m~ture of both (k components of h(~) and n - k components of 
h(b) va~s~ng). A Jacobi fidd wRh vafishing Cauchy data ~ flways ~entically null (see be~w~ 

3. It can happen that there are fewer than 2n fineafly independent Jacobi f iefs  defined by 
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boundary condit~ns at ~ and h. ~ there are 2 n -  k lheafly independent Jacobi fidds, a and b are 
s~d to be conjugate t ong  q with muRiplkRy L 

The equN~ence of these three definitions is proved h ref. ~0, p. 375]. Mflnor [105, Th 18.1, p. 98] 
~ves still another equN~ent definition ~ the case of geodes~s. We shall only make a few commen~ 
to ~ d ~ e  how one definition is related to the others. 

1. Rec~l that two curves f~ and A have an intersection of order k at t ff f~(t) = A(t) as well as thek 
first k derivatives. An envelope ~s the limit of the ~ e c t i o n s  of a fam~y of "infinite~mally close" 
curves. In the limR these m ~ e c t i o n s  are of order k ~ 1. Hence the Jacobi fidd ~ong q obtmned by a one 
parameter variation of stat~nary p~hs va~shes when q touches ~s c a u ~ .  And a caustic defined as an 
envdope ~ ~deed a set of conjugate points w~h respe~ to the ~it i~ conditions wh~h define the fam~y of 
stationary p~hs 

Note that ff two stationary p~hs wah common ofig~ have an ~ e c f i o n  of order k = 0, then the 
~ e c f i o n  is not a conjugate po~t  of the origin. 

2. Let a and b be conjug~e ~ong q and let h~ be a nonzero Jacob~ field such that h~(~) = h~(~) = 0, 
then ff h2 is a Jacobi fidd defined by ks v~ues at ~ and ~, h2 and h~ + h2 are two different Jacobi f iefs  
sati~y~g the same boundary conditions It f ~ b w s  that definit~n 2 imp~es definition 3. 

Cdtedon ~ r  identifying ~njuga~ p o ~  Co~ider a ~ m ~  ~ s t a t i o ~  paths ema~ting from a f x ~  
p o ~  q(t) ~ ~njuga~ ~ q(~) ~ and on~ ~ ~et J(~ ~) = 0 

Co~ider a ~ m ~  ~ sm~ona~ pa~s ~th  equal ~t3ial velocities.* q(t) ~ co~uga~ ~ q(~) ~ and on~ 
~ Det K(~ ~) = 0. This c~efion follows ~ m m e ~ d y  ~om the thud deflation. 

Example. Su~ace a~a of a soap ~lm hdd by two ~opg** The properties of caus~cs and their 
~lationsh~ to cMaMrophes can be ~sphyed  ~ the fol~w~g exam~e, o~en used in the cMc~us of 
varlat~ns. 

Dip two ~ops of rad~s r and R ~ a soap s~ution. Remove them. Assume that the ~ops, originally 
concentric, are gradually pulled apa~ so that thek phnes remMn perpend~ular to the a~s joi~ng thek 
cen~es. The soap ~ m  forms a surface of rev~uUon of mi~mum area and eventually breaks into two 
ckc~ar discs hdd by the ~ops. When does the film break9 

Answer: The area of the surface of revolu~on generated by the curve f Is 

lb 

= f t) l dt.  s(f) 
ta 

Here t b - h  is the distance between the two loops. S(f) is minimum for q such that S'(q)= 0. The 
Euler-Lagrange equation and the Jacobi equation are, respectively, 

~q(t) = - q(t)q(t) + ~2(t) + 1 = O, 

p(q)h(t) = (1 + ~2(t~-3t2(- q(t)h(t) + 2~(t)h(t) - ~(t)h(t)) = O. 

*See p 353 for the meamng to be given to this phrase when the configuration space ~s a nemannlan mamfold 
**DeWm-Morette and Tschum~ m ref [133] 
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The general solution of the Eu~r-Lagrange equation ~ the two-parameter family of catenaries 

a(u, ~ t) = u cosh((t - v)lu), u, v > O. 

The derivatives of a wRh respect to u and wRh respect to v are Jacobi fields. The most general Jacobi 
field ~ong if(u, v) ~ thus 

h(u, v, t) = ~ a / ~ u  + ~Oa/O~ 

where A and ~ are two constan~ of integration. 
The fam~y of catenaries keeping one end fixed ~ a one-parameter family of catenafies defined by 

r = a(u, ~ ~) = u cosh(~u). Th~ equation determines ehher v as a function of u or u as a function of 
~ Say v(u). The Jacobi field along a(~  v(u), t) ~ h(u, t)= A(OalOu + (Oa/Ov~dv/Ou)). ~ van~hes at 
t = G since a(~  v(u), G) = constant for all u's 

On the other hand, the envelope of the one-parameter fam~y of catenafies {a(¢ v(u~ ~ by 
definition the set of points on {a(u, v(u), t~ such that Oa/Ou +(Oa[Ov~O~Ou)=O (limff of the 
intersection of infinitesimally close curves of order k > 1). The Jacobi field h(u, t) ~ a nonzero Jacobi 
field vanishing at the origin and on the envelope of {~(~ v(y~. The point where a (~  v(u), t) touches 
the envelope of {6(m v(u))} is conjugate to a(m v(u), ~): the envelope is the caustic defined as the set of 
conjugate points of a(u, v(u), ~) = ~ 

The Jacobi m~rices J and K 
respectivdy, 

J(h ~) = finh t - ~ + t - & finh t - v(u) finh t-'~a - -  fl(U), 
~ ~ ~ ~ 

have oily one en~y. A~ng the curve a (~  v(u),t) ~ey  are, 

Note that J(~ ~) ~ not function of ~ - h). But J(~ h)  = - J (~ ,  t). The Jacobi matrix K(~ h)  has no 
symmetry prope~y. 

The condition J(~ ~) = 0 determines the caustic with respect to a fixed initifl vflue a ( ¢  ~ ~) = 
con~anL The condition K(~ h ) =  0 determines the caustic wRh respect to a fixed initi~ t ope  
aa(~ ~ ~ 0 ~  = con~ant. 

ta  t b 

~ g  1 i A ~ y  ~ c a r n e y  w~h fixed o ~ m  

G~en ~ ~ T ~ere  are two ~ s ,  or one ~ n ,  or no s~ution, depend~g on wh~her ~ ~) ~ 
above, on or be~w the env~ope. A ~ u m ~ g  R fixed, the bub~e breaks when ~ ~ such that ~ ~) ~ 
~ ~ e  ~ u ~ .  
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Example. The equation o[ geoda~ dedatiom 

Cons~er a free part~le m curved space, Lq(t)) = ~](t)l[ z. 

6(u) = f ga(u,  t) [ a(u, t)) So dt 
T 

o [ f 
T T 

(Sot)"(u):(V,O,a(~ t)I a ' (u , /~1[+  (a(u, t)IV~a ~u, t~l~ 

- f (VtVta~ t) + R(a~u, t), a(u, tD&(u, t))[ a'(u, t)) dt 

- f (V,Vta(~ t) [ V~a~u, t)) dL 
T 

This examp~ shows how one can work entirely w~h covafiant derivatives. In practise, one is 
interested e~her in a variation {~(u~ keeping the end points fixed, or keeping one end point fixed, or 
keep~g the in.M, or finM, veloc~y ~ovariantl~ constant, 
accordingly. 

The Jacobi equation is 

VtV,h(t) + R ~ ( ~ ~ )  = 0 

known as the equation of geodetic devotion. 
Constru~n o[ Jaco~ ~dds by vadat~n ~rough geodes~s: 
a) Geodes~s emanating from a p~nt. 

In flat space J ~ ( ~ ) = 6 ~ ( t - ~ ) .  In generM 
J~ (~  ~) te~s how a fam~y of geodes~s emanating 
from a po~t a at ~ d~e~e.  

b) Geodefics w~h equfl ve~cities. 

and the above express~ns sim#ffy 

(BI1) 

Fig 12 

In flat space K~(~  ~ ) =  6~. In generfl one can use 
the construction described prev~ufly (p. 353) to build 
a family of geodes~s w~h '~qufl" lnitifl ve~cities. 
K~o(~ ~) tdls how such a family of geodes~s dNerge. 

~ g  13 

Elementary kernds. The e~mentary kernels of the Jacobi operator are the naturfl covariances for 
lagrangian and hamiltonian sy~ems. They are easily constructed [40] in terms of the Jacobl matrices. 
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All the elementary kernels are symmetric; G~'(~ s) = G'~(s, t). 
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G(~ s) is known as the Feynman Green function. 

G+(~ s) = O(s - ~ K ( ~  G)N(t, ,  b)J(~,  s) - O(r-  s)J(~ ~ )I~(tn, ~)I~(ta, S), (B12) 

G_(~ s) = O(s - ~J(~ ~)l~(ta, ~ )I~(t~, S) -- O(r-  s )K(~ g)N(t~, 5)J(~,  s), (B13) 

G(~ s) = O(s - ~J(~  G)M(t,, ~)J(~,  s ) -  O(r-  s)J(~ ~)M(tn, ~)J(~,  s). (BI~ 

See note III added in proof for the boundary condk~ns of K when the po~nfi~ is veloc~y dependenL 

Examples. 
1. The covariances of the W~ner gauss~ns are dementary kernds of -d~/dt  z. They are con- 

structed from J~O(~ G) = g~O(t - ~) and K*o(~ G) = g~O. (BI~ 
2. The covafiances of the O r n s ~ - U ~ e n b e c k  gauss~ns are e~mentary kernels of - d~/d~ + wz. See 

note III added in prooL 

J~O(~ ~) is ~ways antisymmetric. In gener~ K"o(~ ~) is not symmetric. 

Some propeaies* of  the cova~ances most o[ten needed ~ path ~tegratio~ 
1. If the po~nti~ does not depend on the ve~c~y, the Van V~ck matrix for a sho~ time ~ r v ~  is 

M ~ ( ~ ,  ~ )  = ( g ~ d ( ~  - ~ ) ~ 1  + O ( ( ~  - G):)). (B16) 

Proof: ff  the po~ntiM does not depend on the vdodty,  ~ is of the form ~, = - V ~ +  R(t). The 
Tabor expans~n of J(~ s) is 

J(~ s) = J(& s) + (t - s)V~(t = ~ s) + ~t  - s)2V~J(t = ~ s) + . . . .  

= (t - s ~ - ~ )  + O(t  - s )  ~, 

where we have used V~J(t = s , s ) = R ( s ) J ( ~ s ) = O .  Equation (B16) follows. Equation (B16) ~ no 
longer ~ue for veloc~y dependent potentials as can easily be seen from the action function of a 
partic~ in a constant magnetic field [56, p. 64]. • 

2. Let {tl . . . .  G} define a p div~ion of T = [G, ~] 

~ = ~ < t l < " "  " < ~  < ~ + 1  = ~ .  

*For other properties also used m path integratmn and for the calculaUons and proofs of the results quoted m secUons 2 to 4 see ref [~] pp 
389-393 and p 373 
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The image of the gauss~ns of covafiances G, G~ under the mappings P : X  ~ R ~, P÷ :X÷ ~ R ~+~m by 

p : x ~ { u  ~ = x~(~); i=  1 . . . .  p}, P + : x ~ ( u  ~ = x~(~); i= 0 . . . .  P}, 

p_:x~-){u~=x~(L); i = 1 . . . .  p + l }  

are respecUvdy the gausfians on R ~# and R ~+'~ of covafiances °W~ = G~(~, ~), ~ *  = G~#(~, ~). 
To compM~ the computation of an integrM whose ~ g r ~ o r  is a gauss~n known by ~s covarlance °W, 
or ~ ,  one needs the inverse matrices °W-~, °W~ and the~ de~rminants. They can be computed from 
G, G± ufing the properties of the Jacobl fidds, they are gNen in ~0, pp. 391, 39~. The determ~ants are 
needed for the computatmn of the Fredholm determ~ants ~ section 1.5: 

det ~ - t  = det M(~, ~) det M(G, ~ - 0 .  • • det M(tt, ~ d e t  M(8, ~), 

det ~¢~ = det M(8, ~ ) . . .  det M(tl, ~)/det K(to, ~) det N(~, ~), 

det 7#'S' = det M(8, ~ ) . . .  det M(tt, ~ d e t  K(to, ~) det N(~, ~). (B17) 

3. In secaon 1.5, ff has been established that the Fredholm determinant of the finear mapp~g 
M: Y ~ X, where Y and X are spaces of L 2'1 paths va~sh~g eaher at t~ or at ~ IS 

(Det M - ~  = Det G~(~ s~Det G~(~ s). 

Ga is the covariance of the gaussmn w~ on Y, image under M -l of an arbffrarfly chosen gauss~n w~ on 
X of covariance GA. Let °W~ = G~a(L, ~) and °W~ = G~o(~, ~) 

Det Ga(~ s~D~ G ~  s) = 1~ det ~ O M e t  ~ T ~  
p = ~  

S~ce* for a short time ~ r v M  M~(~, ~_t) = M~(~ ~_~) + O(~ - ~_ )~  one o b ~ n s  

(Det MZ~) 2 = det K~(~, ~Fdet Ks(G, ~), (Det M ~ )  2 = det KA(t~, ~ d e t  Ks(~, ~). (BI~ 

4. A Jacobi fidd h can be specked by ffs Difichlet data {h(~), h ( ~ ,  its Cauchy data {h(G), h(G~ 
or {h(~), ~(~)} or its von Neumann data {h(~), ~ ( ~  or {h(~), h ( ~ :  

h(t) = -J(~ G)M(to, ~)h(~) - J(h ~)M(tb, ~)h(G) (BI~ 

h(t) = K(g G)g(q(to))h(t~) + K(L ~)g(q(~))h(to) (B2~ 

and three other simiMr equations. From these five equations one obtains many ~near relatlonsh~s 
between J(h ~), J(g ~), K(g ~), and K(g ~). Tak~g derivatives of these relationships Mads to other 
relationships, ~ particular for veMc~y independent po~nfiMs** 

Vd(~ ~) =/~(~ ~) where / ~ ( ~  ~) = K~(t~, t). (B21) 

Note that ~(~) = h(~) = 0 impl~s h(t) = 0 ~q. B20), but h(~) = h(~) = 0 does not imply h(t) = 0 s~ce 

M(~, ~) can be ~ f i ~ .  
In th~ appen~x we have constructed Jacobi fields by taking deriva~ves of the stat~nary paths wffh 

respect to constants of integration. Conversdy, ff ~ sometimes convement to salve the dass~M boundary 

*Although (BIG ~ not true for veloctty dependent potemmls, (Bin ~mmns true B Sheek~ pnvMe commumcmmn 
**See note III added m proof for v e b o ~  dependent po~nuMs 
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v~ue prob~m in terms of the Jacobi matrices J and K. Indeed, the c h s s ~  path q(~ a, b) such that 
q(G) = a, q(~) = b can be obt~ned as the average path over the space of paths from (a, G) to (b, ~). 
M~rahi [108]* has derived sever~ formuhe which soNe the boundary v~ue problem and ~ve conven~nt 
expresfions for ~(a, ~; b, 5). 

Appendix C. Index of ~gn conventions and ba~c formulae 

1. Fouder  transform~ The norm~a t ion  of the Fourier ~andorm is chosen so th~ ~-(~ • A) = 
( ~ A )  = ~A. The s~n convention is: 

(~f~y) = f ex~-~5 xD~x) d~ 
R ~ 

f oxp<i< x, <y) r 
R • 

Note that ff (~f~y) is defined to be fR~ exp(i(~ x) ) f (x )  dx then the ro~s of the lowe~ and uppe~hMf 
com~ex phnes are reversed. 

2. Riemann curvature tensor The definition of the curvature tensor is the same as of ref. [67]. The 
s~n is ~e  same as th~ of re~ ~ and the o p p o ~  of th~ of ref. [105]. Thus ff Y(~ ~) is a surface 
parametrized by t and p and Z is a vector ~ the surface, then the commut~or of covafiant 
derivatives is 

V , V ~ Z -  V~ V ,Z  = R ( ~ Y / ~  ~ Y / ~ ) Z .  

In component form 

Z ' . ~  - Z~ .~  = R ~ Z  ~. 

3. The Jacobi operator For a lagrangian L = ½m[12(t)[I z -  v ( z ( t D ,  the Jacobi operaor Mong a 
so~tion 2(t) of the Eu~r-Lagrange equations is 

- mV~ - g-'  (2(t))VY V(~(tD + (R(., ~(tD,. [~(yD. 

~ Jacobi matdces.  U~ess otherwhe stated, the Jacobi matrices are solutions of 

~ j ( ~  s) = 0, ~ ,K(~  s) = 0 

w~h the boundary conditions 

V~(t = s, s) = g-~(s), J ( t  = ~ s) = O, V~K(t = s, s) = O, K ( t  = ~ s) : g-~(s). 

Thor inverses are M and N: 

J(~ s ) M ( ~  t) = 1, K ( a  s ) M ( g  t) = 1. 

(These s~ns differ from ref. ~ . )  
If the JacoN equation is the small ~sturbance equation of a d a s s ~  mecha~c~ sys~m, then M is 

*[108] pp 63 and 74 See ~so p 7 5 - a  cn~non for the n o n ~ x ~ n c e  of a c~s~c~  path 
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the Van V~ck matrix of the sys~m: 

M ~ ( ~  ~) = _ m-1 O2~Oa~ObO 

where ~ is the ~ a s s ~  action from (a, ~) to (b, ~). 
5. ~ e m e n ~  kemds ~ the ~cobi opem~r 

~G±(L s) = 8(t - s ~ - ' ~ k  

AH of the e ~ m e ~ y  kern~s are ~mme~c: G~'(Ls) = G~(s,t) .  On con~urat~n space, the 
bound~y c o n ~ n s ,  u~ess o ~ w ~ e  stated, are: 

{V,:~::t~,t~'s)S)~: ~,:~:::~'~,S)s):O 0 {~i: ~ ~'8, S's) = 0= 0. 

G(& s) is known as the Feynman-Green ~n~on .  The e ~ m e n ~  kernels on c o l o r . o n  space can 
be e x p ~ e d  ~n terms of the Jacobi m~fices: 

G÷(~ s) = o(s - ~ K ( ~  ~ ) N ( ~  ~)J(~ ,  s ) -  O(r-  s ~ ( ~  ~ ) ~ ( ~  ~ ) ~ ( ~ ,  s), 

G_(~ s) = O(s - OJ(~ ~ ) ~ ( ~ ,  ~ ) ~ ( ~  s ) -  O(r-  s )K(~  ~ ) N ( ~  ~)J(~ ,  s~ 

G(~ s) = O(s - ~J (~  ~ ) M ( ~ ,  ~ )J(~, s) - O(r-  s ~ ( ~  ~ ) M ( ~  ~ ( ~ ,  s). 

For a free pa~de on flat space, ~ = -g(t)V~ and 

G ÷ ( ~  s)  = ~ - ~ ~ - s),  

G_(~ s) = ~ f ( r -  ~, s - ~), 

G(~ s) = O(s - O ( r -  ~) (~  - ~)-~(~ - s) + O(r-  s ~  - ~ - ~) - ' ( s  - ~). 

On phase space, the b~cks of the e ~ m e n ~  kernels are obt~ned from the e ~ m e n ~  kernd on 
c o l o r . o n  space. For a free pa~c~ 

where G~(~ s) is the e~mem~y kernel of the free p a r t ~  on coMgur~on space, and: 

G_"~(~ s) = mV.G~(~ s ~ )  = -mS~O( r -  s) 

G_~(~ s) = m g ~ V ~  s) = - m ~ O ( s  - ~ 

G _ ~ ( ~  s) = m ~ ( ~  S ~  s ) ~ ( s )  - m ~ ( ~ -  s) = O. 

Thus, ~n car lson coord~es ,  

° 
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Similarly, 

G ~ L s , = ( 8 ~ ( O ( s - r ~ : ~ _ s O  )(r-s'(~-~' -m~eO(o s - r ' ) .  

6. The Cameron-Maain trans[ormations, ~eir Mverses, and ~,ir de~rm~ants. 

M~t:X_~Y_ by x(t)~-~yO) 

y(t) = x(t) - f O(t - s)K(L ~)~(tb, S~($) ds ; 
T 

M_:Y_~X_ by yO)~x(t)  

x( t )  = y ( t )  - f O(t - O g ( ~  ~ ) N ( t b ,  OY(O dr; 
T 

Det MS t = (det K(to, t~)]det K(t~, to)) ~. 

M~':X+-->Y+ by x(t)~y(t) 

y(t) = x(t) + f O(s - t)K(K t~)l~(t~, s)x(s) ds; 
T 

M+:Y+-~X÷ by y(t)~-->x(t) 

. 

x(t) = y(t) + ~ O(r- t)K(~ ~)N(to, OY(O dr; 
T 

Det M~' = ~ K(~, ~)Met K(~, ~ ' ~ .  

The Feynman-Kac [ormula is 

~(b, ~) = ~ 
X+ 

In fiat space 

DeVb(~X) = b + ~ 

8. 

dwY(x) exp(~m f V(Devb(~x)(t)) dt ) O(Dev~(~x)(to~ 
T 

Normalized complex gauss~ns on R ~ and the~ Fouler trans[orms 

d~ ,~v)  = (2~ i ) - '~ lde t (~¢- '~ [  ''~ exp(½iOr-'),,v'v') dr'.., d : ,  

( ~ . ~ y )  = ~ ~ ) .  
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Append~ D.* The h6 ~ g r ~  and the SWatono~h ~ g r ~  

The a~ of time sl~mg has been peffec~d by physlc~s wh~e the sconce of random var~b~s 
indexed by ~me has been devdoped by probabili~s. Physlcis~ have ~scovered that different 
prescriptions for discrefi~ng a p~h ~ad to different p~h integrfls. For inslance the path ~ g r f l s  

consWuc~d with the discrefized action 

L(x(~,,x(~÷~t, '÷~(~(t~+~_ ~, (D1, 

and w~h the d~cre~zed action 

~d L ( x ( ~ ) ,  X(~+l)tk --+l_~('~( '+l-- ')  ( D 2 )  

are not, in genera, equ~. They are solutions of different Schrod~ger equations. M~ra~ [11~ has 
e s t a ~ h e d  the generfl co~espondence between time sfic~g prescriptions in path ~ g r ~ m n  and 
factor ordering prescriptions ~ the Schrbd~ger equation. 

Probabilists, on the other hand, have derNed many lmpo~ant resul~ on the stat~ticfl properties of 
x(t) when x is not a smooth path. Since the~ ~nguage and the~ script is not usually familiar to 
p h y f i ~ s ,  we shall in~oduce the concept of a family of random variab~s ~dexed by time. First we 
~ve a few deflations [e.g. 57], wah the probabilists' notation 

Defimtions" A probability space consists of a V ~  (~. o ~, P) where 
0 0  is a space of points ~, called the sample space and the ~ample p~n~. 

ii) ~ is a a field of subsets of O. These subsets are called events. 
ih) P(.) is a probability measure on ~-. 

Gener~ and abs~act properhes of random sys~ms follow ~om this definition. In this appendix we 

consfler the foHow~g examNe. 
Let O be the space of continuous paths w : T ~ R d. 
Let X(t, .): O ~Ru; for instance X(~ w) = ~(t) or X(~ w) = (Dev ~)(t) where Dev IS the devdopment 
map defined in sechon 3.3. Smce ~ IS not a smooth path, X(s + 6 ~) ~s not determ~ed by X(~ w) for 
~ > 0. The notion of randomne~ follows ~om the fact that w ~s not differentiate 

X(~ .) is c ~ d  a random vada~e on (~, ~) ff for every Borel set** B m R ~ lhe set {~;X(t ,~)  ~ 
B}~ ~. A random variab~ X(t, .) is usuflly a b b r e v ~ d  by X(t) or X, and a set {~; X(L ~ ) ~  B} is 

abbreviated by {X(t) ~ B}. 

Let ~ be the smalle~ ~ field generated by ~he famdy {~,; ~ ~ t ~ }  where ~, ~s generated by the 

sets 
{~;X(s,~)~B, s~L B ~ } .  (D3) 

It follows from the definit~n the,  ff s ~ ~ ~, C ~, and ~, = ~ , ~  ~,. Indeed cons~er for examp~ the 
random variable X(~ ~) = ~(t). We shall cons~uct a set F, ~ ~, w~ch IS not ~ ~ :  
F, ~ ~ ~ ~ ~ F~ impl~s ~' ~ F~ whenever ~'(~) = m(~) for ~1 0 ~ ~ ~ s (and does not imply 

~'(~) = ~(~) for ~ > s). 
*T~s appen~x has been w r a t h  ~ r  ~e mono~aph w ~  c o m p ~ d ,  foHowmg t ~  partlc~pa~n ~ one of us ~ DeW ) m ~e  1~8 ~ m n  on 

S ~ t ~  D~e~nu~  Equ~m~ ~ 
**A Bo~l ~ t  d R a m an deme~ ~ a B~el ~ fidd ~ of R a A Bord ~ fidd ~ R a ~ ~e sm~e~  ~ ~ n ~  by ~ m p ~ m e ~ m n ,  ~ d  by 

countab~ mtersecuons and umons of ~e open sets of R a 
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~g 14 

Thus ff s < t a set F, ~ ~, ~s not ~ general ~ ~,  because the sets in ~ are defined by con&fions on 
X(a,  ~) for 0 ~ s  and not by conditions on X ( m ~ )  for 0 ~ a ~ t .  

A process is a fam~y of random vafiab~s {X,} ~ndexed by ~ A process is sa~ to be adap~d to an 
~creas~g  family {~,} ff X, is Y, measurab~, i.e. {X,(w) E B} E ~,. 

The probab~ty measure P on O defines the properties of the random vafia~e X(t); for examp~, 
the expectation vflue of X(t) ~s 

E(X(tD = f X(L ~) d P ( ~  (D4) 

Alternative notations are f X(t) dP, f X(~ w)P(dw). 

Examp~: Let P be the W~ner measure, ~ t  X(~ w) = ~(t), with ~(0) = 0, ~ t  0 = to < t~ • • • < ~ < 
t~÷~ = t~. The random variables {X(t0, X(h)-X(tO . . . . .  X ( ~ ) - X ( ~  are independent for the 
probabfl~y P for any time partition. X(~)  - X(~_~) has a normal O.e. gaussian) d~tfibution w~h mean 
0 and covafiance I~ - ~-~[. Proof (see p. 266), 
Let U:X( )-->{u', . . . .  u "+~} by u ~ = X ( ~ ) -  X(~ -0 ,  then 

f+(x ( to , .  ,X(~)-X(~))dP(X)  ~ . . . .  d v , ( u .  +(u ~ U ~+1) 1) d~n+l(U n+l) 
~ R n+l 

where d ~ ( u  ~) = (2r)  -v~ exp(-  (u~)Z/2(~ - ~ _ ~  du~ 

The process {X(t); t ~ 0} defined by the W~ner measure ~s c ~ d  the normahzed Brownian motion. 

In this monograph we have exposed  the consequences of finear mapp~gs U on O and compu~d 
the images under U of the probabfl~y measures P. P r o b a b l e s  have ~vesfig~ed a different-but  ~ 
some cases m h ~ d - p r o b ~ m .  Given the d-dimens~n~ Brow~an motion {fl(t); t ~ ~ ,  define a new 
process {~t); t ~ ~ by the stochastic differenti~ equation, 

° ' '  

where d ~  ~) deno~s the ~finitesim~ hcrement  ~ g during the time ~ r v ~  [~ t + dt] and dfl(~ ~) 
denotes the co~espon~ng ~crement  ~ ~ We know that the condi t~n~ probability P(a, ~; b, ~) of 
finding a Brow~an particle at (b, ~) knowing that ~t was at a, at ~ is the so~tion of the diffus~n 
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equation* 0 P / 0 ~ -  AbP = 0. What ~s the diffusion equation of the particle whose random mohon is 
~ven by eq. (D5)9 

Many powerful theorems are derived from this interp~y between stochastic differenti~ equations 
and partial differenti~ equations both for diffusion equations and e~env~ue prob~ms of elliptic 
equations. We whh we had ~arned this subject before writing this monograph. 

When dealing w~h s~ch~fic ~ff~enfifl equation, one of ~ e  first questions wh~h arises is "Since 
fl(~ ~) is nowhere ~ffe~ntia~e, can one a~ach a mea~ng to ~ ~(u, ~ ~ d~(u, ~) ~ven some 
~ntinuity condition on ~T' The ~ l l owi ~  ~f in~on has ~ e n  ~ o p ~  by I16. Set s < u~ < .  • • < ~ < ~ 

t 

f or(u, ¢(u, .)) d#(u, .) = ~m ~ cr(u~, ¢(u~, .))(/3(u~, .) - ~(u~ ,, .)). 
$ 

The foHow~g exam~e ~ves one of the bas~ rules of the R6 c~culus: 

Compute I = f where ~ is the Browman process of mean 0. 
T 

If B(t) is differentiabM, ordinary cMculus can be used and I = O2(g)- ~ ) .  ff B(t) is not ~fferentb 
abM we can use It6 cMcu~s. Set ~(~) = ~ ,  then 

I = tim Y. 2B~(B~+, - #~) = lim ~ ( ~ + ,  - # ~ -  (#~+, - #~)~). 
~ ~ 

The exp~tat~n vflue E(~+~ - ~ = ~÷~ - ~. Hence 

E f 2 ~ ( ~  d 3 0 )  = E ( ~ )  - ~ h )  - (h  - ~)). 
T 

T~s equation ~ wriUen ~ h6 c~cflus dfl~t) = 2~(t) dr(t)  + da 

It6 cflculus proceeds to defining the differenfifl of/(~(t), t). It ~s noted that d/(~(t), t) is expressed in 
terms of first and second derivatives of [ w~h respect to ~s first argument and first derivative wRh 
respect to ~s second argument together w~h the "R6 rules": dt dt = 0, dB(t) dt = 0, dfl(O dfl(O = dL 

R6 cflculus was built to compute integrfls where the integrand is non-anticipative 

f f(~ ~ dflU) = ~ ~ fl(~))(fl(t~+O - ~ ( ~ .  
T 

*~ g e n ~  ~ ~ ~ner~ed by ~e  s~s (D3) and t~s ~ p~bab~s~ ~ wo~ wt~ the Wten~ cov~mnce G ~  s) = refit - ~ s - G) e~en m 
wo~ems wh~e ~ wo~d be ~mpler ~ w~k w ~  G ~  s) T~s e x ~  corniness on " - t  parabol~ equation", f f ~ w a ~  Cauchy d ~ ' ,  
'~ackw~d equa~on" etc 
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At time ~ we know fl(~) and the stochastic properties of ~(~+1)--~(~). We do not know 
+ 

S~atonov~ch [13~ remarked th~ the ru~s of ordinary c~c~us co~d be appfied to stochastic 
~gr~s ~ one defined the ~grand at the m~-point. A ru~ wh~h ~ prec~y ~ the ru~ that had 
been used by Feynman ~l ~ong. Schulman ~] has ~ven ~rest~g arguments for justify~g 
Feynma~s heuristic rules. Probab~ts however, prefer to work with the It6 c~c~us, s~ce the 
S~atonov~ch c~cu~s can be shown to be o~y a particular case of the It6 c~c~us. 

In this monograph, we encoun~red briefly stochastic integrals ~ the ~gration by pa~s wh~h 
enter the c~c~a~on of the Feynmann-Kac form~a (sect~ns 3.2, 3.3, 3.4) and proceeded accord~g to 
the ru~s of ordinary c~c~us, i.e. we ~eated our ~gr~s as S~atonov~ch ~gr~s. It follows that 
w~h our ru~s the de~rm~ant of the ~near mapp~g y~*x such that x(t)=y(t)+f/~ y(s)ds is 
exp~ - G). If we had worked w~h ~o c~culus, the de~rm~ant of t~s mapp~g wou~ have been 
one*. The fin~ resul~ wo~d have been the same. 

The difference between the probab~ists' approach and the methods foflowed here can be sum- 
madzed by noting that probabil~ work with probab~y spaces (~, ~, P), the caref~ e~bor~n of 
the e fi~d 3~ makes ~ possible for them to define a probability measure P. Alternatively but less 
frequenOy, they cons~er P as a projective fam~y of measures on the projective sy~em ~ of ~ and 
work wilh (~, ~, P). We sta,ed ~om promeasures i.e. ~om (~, ~, P) to ~troduce prodistributions 
and deve~p a scheme which can in~ude Feynman path integrals. The cen~ object has been 
(~, ~, w) where ~ ~ the space of paths with v~ues in the configuration space or ~ the phase space of 
the sy~em and w a prodistribution w~h covadance adapted to the lagran~an or ham~tonian nature of 
the sys~m. We have put various s~uctures on ~ (space of paths with v~ues in multiply connected 
demann~n manifolds) and have used linear maps on ~ to ~duce prodistributions adapted to the ~ven 
pro~em. 
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Notes added in proof 

I. (To be inse~ed p 291 line 9 from bottom.) In both cases, however, the resu~ is the wave function at 
time ~ knowing the wave func~on at time ~ < ~. In the S-matrix theory, we need ~so the wave function 
at time ~ knowing what R is at time ~. The "earlieff' wave function is a solution cf lhe ( -  t~Schrrdinger 
equation 

o /ot = + x )  

and the co~espondmg Feynman and Kac formuhe are respectively 
tb 

~(~ ,x )=ydw~ ' (y )exp (+~yv(x+~y .~d t )~ (x+~y(~D (Feynman) 

Y ~ 

tb 

(Kac) 

Y+ ~ 

We cfll "Feynman formuW' the one whxh ~anslates immediatdy into mathematicfl terms, the "sum 
over fll paths" idea: the probability amplRude of finding at (x, ~) the sy~em known to be in the state 
~ at ~ is given by the sum over fll paths wh~h are at x at ~ ;  the condition satisfied by the paths at ~ 
~s mfe~ed from the function ~. The prodistributions (w~)* are defined by 

= = 

II. (To be inse~ed p. 293 before "Non Relativ~tic Quantum Mechanics"A The S-matrix can be 
cons~ucted in terms of the M~l~r wave operators*. Let &m and ~a~ be two e~enMates of ~o w~h the 
same energy Eo Let 

~(~,  x) = W ~ ( x )  and ~ ,  x) = W ~ x )  

where 

W~ = lira e x ~ - K ~ -  ~)~/~)  ~ P 0 ( ~  - ~)~o/~), 
~ = ~  

W~ = lim exp0(~ - h)/://h) exp( -~h  - to)t:Io/h). 
~ = + ~  

Contrary to usu~ pracUce we do not set to = 0. Note that m the definition of W ~ on p. 292, to ~s set 
equfl to zero, and the superscript t refers to G or h. 

*See for m~ance [14~ pp 173-215, m p a r t ~ a r  eqs 142, 149, 159] or preferably [151, pp 112-115] 
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By definit~n*, the ~m~f ix  is 

<~sl~,o> = f (6~.(h, x) [ 6,d~. x~ dx 
M 

f f~.nftO, X))* ~,ofto, x) dx = ( ~ d ( w ~ ) *  W ~ t m >  
M 

= l i m  (~finl exp(i(~ - to)I:Iol~) exp(-ffh - ~)/://~) exp(i(to- ~)/ '] 'o/~m). 
ta ~ ~ ,  tb ~ 

We shall assume ~,n~) and ~ x )  to be phne waves of momentum p, and pf respectively, 

~m(X) = <Xl~m) = exp0~,  x~h~ 

~ d x )  = (~,.k) = exp(-i(pf, x) lhL  

The p~h integrM representation of the S-m~fix is then readdy obt~ned from the path integral 
representation of the M¢ller wave operator by setting a(p)= ~(p-PO and a(p)= 6(p-PO ~ the 
initial and find wave function respectivdy. Moreove~ set Y = Y+ @ Y_ the space of p~hs g such that 

g(t  - to) = 0 ( ~ -  t) y ~  - to) + O(t - to) z ( t  - to). 

The prodistribufion w w on Y defined by w~ on Y+ and w~ on Y_ is characterized by 

~wWt~) = ~w~¢~+) ~ w _ ~ ,  

where ~+ and ~_ are demen~ ~ the duds of Y+ and Y_, ~spectivdy. w w is a normd~ed gausshn of 
covariance 

Gw(~ s )  = o ( ~ -  t)  o ( ~ -  s )  (o ( t  - s )  ( ~ -  t )  + O(s - t )  ( ~ -  s ~  + o ( t  - to) o ( s  - to) (o ( t  - s )  (s - to) 
+ O(s - t) (t - ~ .  

It f ~ w s  from S = (W~* W? that 

f y 
Y N 

×exp(-~ f V ( x + O ( ~ - t ) p ~ t - t o ) / m  + O ( t - t o ) p ~ t - t o ) / m + g g ( t - t o ) ) d a  
R 

Albevefio and Heegh-Krohn have proved that p~h integrMs over Y are v~M for po~ntials V(x)  
w~ch tend to zero faster than ~1 -~-" for some positive ~ 

Campbe~, Fin~er, Jones and Mish~off [14~ have obtained a lattice approximation for the phase 
space path integrM representation of the $-m~fix v d ~  for the same ~ass of po~ntids. It is worth 
menfio~ng here an in.resting feature of thek cdc~ation: They make the change of vafiab~ 
(Q(t), P(t))~-~ (q(t) ,  p ( t ~  defined by 

q(t)p(t) == p(t)Q(t) - P(t) gm 

*Th~ ~s ~e ~m~nx of the m ~ c ~ o n  ~ u ~  



~ 8  C ~ t - ~  a ~ ,  ~ m ~  m n o n - r e l a ~  ~ m  ~ 

and note that the new c h s s ~  equa~ons of motion can be derived from the varia~on of 

S(q, p)  = - f (V (q ( t )  + p( t )  ~m)  + (q(t), ~ ) ) )  dt 

keeping the v~ues of p constant at the end pomP. S(q, p)  is precisely the action which appears ~ 
thek path integral. They call the new variables (q(t), p ~  the ' ~ h s s ~  m~ract~n picture variables". 
They note that for potentials which fall off faster than l/~ not only ~m,=±~pO)= constant but flso 
~mt=±~ qO) = constant. Thus the c h s s ~  lnterac~on picture varhbles ~ve immediatdy the "asymp- 
to~c constants" of the motion in~oduced by Thirring* in his beautiful presentation of the M¢ller 
operators and S-matrix. In our derivation of the M~ller operator, p. 292, we made a change of variable 
y ~-~ z such that ~z( t )  = ~y ( t ) -  p~m.  This change of vanab~ genera te s  to arbRrary paths y ~ Y+ or 
y E Y_ the change of variab~ made by Campbell et ~. for the d a s s ~  path Q(t), so that we could 
c~l z an "m~raction variab~" of integrat~n. Expressing the path integr~ representation of the 
Mdler operato~ in terms of the interaction variable showed immediatdy that the oscillatory terms 
cancel and that the M¢ller wave operators e~st  when a sys~m approaches an integrab~ sy~em 
asymptot~ally. 

Under the change of vanab~ y ~ -~  the argument of the po~nti~ changed from x + ~y(t) to 
x + p~m + ~z(t) .  Both the integr~ over y and the ~tegr~ over z are computed w~h respect to lhe same 
prodistribution. Thus the change to the interaction vafiabM can be loose~ sMd to be a change from 
x ~-~ x + pare. The variabMs of integration in a path integrM correspond to operators ~ the operator 
formalism of quantum mechan~s. We recognize in the change x ~--)x + pare the change from the 
position operator x ~ the Schrrdinger picture to the position x(t)  ~ the interaction picture, where 

x(t)  = exp(iHot[h)x exp(-1Hoah) = x + p~m.  

Of course th~s remark is not to be construed as a prescription for con~ructmg "path mtegrMs wRh 
m~ract~n variablef', a is simply a comment to contrast lhe argument of the po~ntiM in the S-matrix 
wRh the argument of the po~ntiM in the Feynman-Kac formulm 

III. (To be inse~ed p. 357.) If the potenti~ depends linearly on the veloc~y 

V(q)  = ~ ( q )  + (A(q) ,  ~) 

~ is convenient to work w~h the following Jacobi matrices: 

J(h ~) defined as before (eq. B6), 

K(L ~) defined as before (eq. B7) but with new boundary conditions; namdy 

h " ( ~ )  = v ~, h " ( ~ )  = ½ga~(A#.,(~) - A , . # ( ~  VL 

Equations (B12), (B13) and (B14) are valid wRh the above definition of K. The case of vdocity 
dependent potentlMs is being mveMigated by B. Ndson and B. Sheeks and will be pubfished 
dsewhere. 

Examp~:  The Ornstem-Uhlenbeck vdocffy process v wRh inifiM vdocay Vo = 0 can be obtained 
from the Brownian process x by a linear map 

*See [151, p 112] for the precise statement for the exl~ence of the Moiler wave operators 
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t 

v(t) = vx(t) - ~ ~ exp(-O(t - ~ exp(O~ - ~ ~x~) ds 

o 

= ~x(t) - i K(t, ~) 1~(~, s) ~x(s) ds 
o 

where K is a sNufion of 

( -d)dt  ~ + ~ K ( ~  ~ ) = 0  

g ( ~ , a )  =0, ~,K(~ ~)1,=~ = -~.  
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