Notation: $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$

1. If f is differentiable in an open set Ω, then

$$
\frac{1}{2}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right)=0 \quad \text { and } \quad f^{\prime}(z)=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right)
$$

2. Let $f(z)=z^{3}$. For $z_{1}=1$ and $z_{2}=i$, show that there does not exist any point c on the line $x+y=1$ joining z_{1} and z_{2} such that $f\left(z_{1}\right)-f\left(z_{2}\right)=\left(z_{1}-z_{2}\right) f^{\prime}(c)$, i.e., mean value theorem does not extend to complex plane.
3. Derive C-R equations in polar coordinates.
4. Let $f: \mathbb{D} \rightarrow \mathbb{C}$ be a differentiable function such that, for all $z, w \in \mathbb{C}, f(z)=f(w)$ whenever $|z|=|w|$. Using CR equations in polar coordinates, show that f is a constant function.
5. Show that the function $f(z)=\bar{z}$ is not differentiable at any point of \mathbb{C}. Find the points of differentiability of the function $f_{a}(z)=(z-a) \operatorname{Re}(z-a)$ for a given $a \in \mathbb{C}$.
6. Let U be an open set and $f: U \rightarrow \mathbb{C}$ be a differentiable function. Let $\bar{U}=\{\bar{z}: z \in$ $\mathbb{C}\}$. Show that $g: \bar{U} \rightarrow \mathbb{C}$ defined by $g(z):=\overline{f(\bar{z})}$ is differentiable on \bar{U}.
7. Show that the following functions satisfy CR equations at $z=0$, but they are not differentiable at $z=0$.
(a)

$$
f(z)=\left\{\begin{array}{lll}
\frac{z^{5}}{|z| 4} & \text { if } & z \neq 0 \\
0 & \text { if } & z=0
\end{array}\right.
$$

(b) $f(z)=\sqrt{|x y|}$
8. Let Ω be an open connected subset of \mathbb{C} and $f: \Omega \rightarrow \mathbb{C}$ be a differentiable function. Show that $f=u+i v$ is constant if
(a) either of the functions u or v is constant, or
(b) $|f(z)|$ is constant for all $z \in \Omega$, or
(c) if there exists an $\alpha \in \mathbb{R}$ such that $f(z)=|f(z)| e^{i \alpha}$ for all $z \in \Omega$
9. Show that the function $f(z)=\left(2-x^{2}-y^{2}\right)(x-i y)$ has derivative only on the points of the circle $x^{2}+y^{2}=1$.
10. Does there exist an analytic function $f(z)=u+i v$ where $u(x, y)$ is given by (a) $x^{2} y$ (b) $e^{x} \cos (x-y)(c) e^{x} \sin y$
11. If $f(z)$ is an analytic function, then show that $\nabla^{2}|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$.
12. Find the domain in which the function $f(z)=\left|\operatorname{Re} z^{2}\right|+i\left|\operatorname{Im} z^{2}\right|$ is analytic.

