MSO202A: Assignment-III

1. Determine all $z \in \mathbb{C}$ for which the following series converge absolutely.

(a)
$$\sum \frac{z^n}{n^2}$$
 (b) $\sum \frac{z^n}{n!}$ (c) $\sum \frac{1}{n!} \frac{1}{z^n}$ (d) $\sum \frac{1}{2^n} \frac{1}{z^n}$

- 2. Let $a_n = \frac{(-1)^n}{\sqrt{n}} + i\frac{1}{n^2}$ for $n = 1, 2, 3, \cdots$. Show that the series $\sum a_n$ converges but it does not converge absolutely.
- 3. The following series $\sum z^n$, $\sum z^n/n$ and $\sum z^n/n^2$ have radius of convergence 1. Show that the series
 - (a) $\sum z^n$ does not converge for any z such that |z| = 1,
 - (b) $\sum z^n/n$ converges for all z for which $z \neq 1$ and |z| = 1 and
 - (c) $\sum z^n/n^2$ converges for all z such that |z| = 1.
- 4. Find the radius of convergence of the power series $\sum a_n(z-a)^n$ for which
 - (a) $a_n = r^n/n^p$ where r and p are two positive real numbers

(b)
$$a_n = \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n^2 + n}}$$

(c) $a_n = \frac{1}{2^n - 1}$

- 5. Find the radius of convergence of the following power series
 - (a) $\sum 2nz^n$
 - (b) $\sum n! z^{2n+1}$

(c)
$$\sum (-1)^n \frac{z^{2n}}{(2n)!}$$

- 6. If R_1 and R_2 are the radii of convergence of the series $\sum a_n z^n$ and $\sum b_n z^n$ respectively, then show that $R \ge \min\{R_1, R_2\}$ is the radius of convergence of the series $\sum (a_n + b_n) z^n$.
- 7. Show that $\sum_{n=0}^{\infty} (n+1)^2 z^n = \frac{1+z}{(1-z)^3}$ for |z| < 1.
- 8. Find i^i and $\cosh(\log 4)$. (Log stands for the principal branch of the logarithm)
- 9. For $z_1, z_2 \in G = \{re^{i\theta} : r > 0, -\pi < \theta < \pi\}$, is it always true that $Log(z_1z_2) = Log z_1 + Log z_2$? Find the conditions on z_1 and z_2 so that the equality holds.
- 10. Show that $|\cos z|^2 = \cos^2 x + \sinh^2 y$. Hence prove that \cos function is not bounded in \mathbb{C} . Also, find the zeros of $\cos z$.
- 11. Show that $\tan(z_1 + z_2) = \frac{\tan z_1 + \tan z_2}{1 \tan z_1 \tan z_2}$.
- 12. Show that $\sin \bar{z}$ and $\cos \bar{z}$ are not analytic functions on any domain.
- 13. Find all solutions z of (a) $\cos z = 2$ (b) $\sin \theta \sin z = 1$ where $\theta \in \mathbb{R}$ (c) $|\cot z| = 1$
- 14. Express in the form a + ib: (a) log Log i (b) $(-3)^{\sqrt{2}}$ (c) i^{-i}
- 15. Show that (a) $\sin^{-1} z = -i \log(iz + \sqrt{1-z^2})$ (b) $\cot^{-1} z = \frac{i}{2} \log(z-i)/(z+i)$ (c) $\cosh^{-1} z = \log(z + \sqrt{z^2 1})$