MSO202A: Assignment-III

1. Determine all $z \in \mathbb{C}$ for which the following series converge absolutely.
(a) $\sum \frac{z^{n}}{n^{2}}$
(b) $\sum \frac{z^{n}}{n!}$
(c) $\sum \frac{1}{n!} \frac{1}{z^{n}}$
(d) $\sum \frac{1}{2^{n}} \frac{1}{z^{n}}$
2. Let $a_{n}=\frac{(-1)^{n}}{\sqrt{n}}+i \frac{1}{n^{2}}$ for $n=1,2,3, \cdots$. Show that the series $\sum a_{n}$ converges but it does not converge absolutely.
3. The following series $\sum z^{n}, \quad \sum z^{n} / n$ and $\sum z^{n} / n^{2}$ have radius of convergence 1. Show that the series
(a) $\sum z^{n}$ does not converge for any z such that $|z|=1$,
(b) $\sum z^{n} / n$ converges for all z for which $z \neq 1$ and $|z|=1$ and
(c) $\sum z^{n} / n^{2}$ converges for all z such that $|z|=1$.
4. Find the radius of convergence of the power series $\sum a_{n}(z-a)^{n}$ for which
(a) $a_{n}=r^{n} / n^{p}$ where r and p are two positive real numbers
(b) $a_{n}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n^{2}+n}}$
(c) $a_{n}=\frac{1}{2^{n}-1}$
5. Find the radius of convergence of the following power series
(a) $\sum 2 n z^{n}$
(b) $\sum n!z^{2 n+1}$
(c) $\sum(-1)^{n} \frac{z^{2 n}}{(2 n)!}$
6. If R_{1} and R_{2} are the radii of convergence of the series $\sum a_{n} z^{n}$ and $\sum b_{n} z^{n}$ respectively, then show that $R \geq \min \left\{R_{1}, R_{2}\right\}$ is the radius of convergence of the series $\sum\left(a_{n}+b_{n}\right) z^{n}$.
7. Show that $\sum_{n=0}^{\infty}(n+1)^{2} z^{n}=\frac{1+z}{(1-z)^{3}}$ for $|z|<1$.
8. Find i^{i} and $\cosh (\log 4)$. (Log stands for the principal branch of the logarithm)
9. For $z_{1}, z_{2} \in G=\left\{r e^{i \theta}: r>0,-\pi<\theta<\pi\right\}$, is it always true that $\log \left(z_{1} z_{2}\right)=$ $\log z_{1}+\log z_{2}$? Find the conditions on z_{1} and z_{2} so that the equality holds.
10. Show that $|\cos z|^{2}=\cos ^{2} x+\sinh ^{2} y$. Hence prove that cos function is not bounded in \mathbb{C}. Also, find the zeros of $\cos z$.
11. Show that $\tan \left(z_{1}+z_{2}\right)=\frac{\tan z_{1}+\tan z_{2}}{1-\tan z_{1} \tan z_{2}}$.
12. Show that $\sin \bar{z}$ and $\cos \bar{z}$ are not analytic functions on any domain.
13. Find all solutions z of (a) $\cos z=2$ (b) $\sin \theta \sin z=1$ where $\theta \in \mathbb{R}$ (c) $|\cot z|=1$
14. Express in the form $a+i$: (a) $\log \log \mathrm{i}$ (b) $(-3)^{\sqrt{2}}$ (c) i^{-i}
15. Show that (a) $\sin ^{-1} z=-i \log \left(i z+\sqrt{1-z^{2}}\right)$
(b) $\cot ^{-1} z=\frac{i}{2} \log (z-i) /(z+i)$ $\cosh ^{-1} z=\log \left(z+\sqrt{z^{2}-1}\right)$
