MSO202A: Assignment-IV

1. Evaluate
(a) $\int_{C}|z| \frac{z}{\bar{z}} d z$ where C is the clockwise oriented boundary of the part of the annulus $2 \leq|z| \leq 4$ lying in the third and fourth quadrants.
(b) $\int_{C} \frac{1}{\sqrt{z}} d z$ where C is the counterclockwise oriented semicircular part of the circle $|z|=1$ in the lower half plane and \sqrt{z} is defined such that $\sqrt{1}=-1$.
(c) $\int_{C}(z-a)^{m} d z$, where $m \in \mathbb{Z}$ and C is the semicircle $|z-a|=r, 0 \leq \arg (z-a) \leq \pi$
(d) $\int_{C}(z-a)^{m} d z$, where $m \in \mathbb{Z}$ and C is the circle $|z-a|=r, 0 \leq \arg (z-a) \leq 2 \pi$
2. Without actually evaluating the integral, prove that
(a) $\left|\int_{\gamma} \frac{d z}{z^{2}-1}\right| \leq \pi / 3$, where $\gamma(t)=2 e^{i t}$ for $0 \leq t \leq \pi / 2$.
(b) $\left|\int_{C} \frac{d z}{z^{2}+1}\right| \leq 2 \pi /(3-2 \sqrt{2})$, where C is the circle $|z-1|=1$.
3. Let γ_{1} be a semicircular path joining -1 and 1 with centre at 0 and γ_{2} a rectangular path with vertices $-1,-1+i, 1+i$ and 1 . Find $\int_{\gamma_{1}} \bar{z} d z$ and $\int_{\gamma_{2}} \bar{z} d z$ (observe path dependence).
4. Evaluate
(a) $\int_{|z|=2} \frac{z}{z^{2}-1} d z$
(b) $\int_{|z|=2} \frac{z}{\left(z^{2}-1\right)^{2}} d z$
(c) $\int_{|z|=2} \frac{e^{2 z}}{z(z+1)^{4}} d z$
5. Show that $\int_{\gamma} \frac{e^{z}}{z} d z=2 \pi i$, where $\gamma(t)=e^{i t}$ for $0 \leq t \leq 2 \pi$. Using this, evaluate

$$
\text { (a) } \int_{0}^{2 \pi} e^{k \cos \theta} \cos (k \sin \theta) d \theta \quad \text { (b) } \int_{0}^{2 \pi} e^{k \cos \theta} \sin (k \sin \theta) d \theta
$$

6. Let $P(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}$. Find $\int_{C} P(z) / z^{k} d z$ where $C:|z|=R$ and $k \in \mathbb{N} \cup\{0\}$.
7. Let $C:|z|=2$. Find the values of $\int_{C} z^{n}(1-z)^{m} d z$ for $m \in \mathbb{N} \cup\{0\}, n \in \mathbb{Z}$ and $n \in \mathbb{N} \cup\{0\}, m \in \mathbb{Z}$
8. Evaluate the integral $\int_{C} \frac{d z}{z\left(z^{2}+1\right)}$ for all possible choice of the closed contour C that does not pass through $0, i,-i$.
9. Show that $\int_{-\infty}^{\infty} e^{-\pi x^{2}} e^{-2 \pi x \xi} d x=e^{-\pi \xi^{2}}$ for $\xi \in \mathbb{R}$ by integrating $f(z)=e^{-z^{2}}$ along the lines of a rectangle with vertices $R, R+i \xi,-R+i \xi,-R$
10. Show that $\int_{|z|=2} \frac{e^{a z}}{z^{2}+1} d z=2 \pi i \sin a$
11. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a function which is analytic on $\{z \in \mathbb{C}: z \neq 0\}$ and bounded on the set $\{z \in \mathbb{C}:|z| \leq 1 / 2\}$. Prove that $\int_{|z|=R} f(z) d z=0$ for every $R>0$.
12. Show that $\left|\int_{|z|=R} \frac{\log z}{z^{2}} d z\right| \leq 2 \sqrt{2} \pi \frac{\ln R}{R}, R>e^{\pi}$.
13. Let $f: \mathbb{D} \rightarrow \mathbb{C}$ be an analytic function where \mathbb{D} is the open unit disk. If $d=\sup _{z, w \in \mathbb{D}} \mid f(z)-$ $f(w) \mid$, then show that $2\left|f^{\prime}(0)\right| \leq d$.
14. Prove Mean Value Theorem: Let Ω be an open set and $f: \Omega \rightarrow \mathbb{C}$ be an analytic function. Then $f\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i \theta}\right) d \theta$ for every $r>0$ such that the open ball $B\left(z_{0}, r\right)$ is contained in Ω. Further show that if $f\left(z_{0}\right)=0$ for some $z_{0} \in \Omega$, then $\operatorname{Re}(f)$ takes both positive and negative values on the circle which is the boundary of $B\left(z_{0}, r\right)$ for every $r>0$.
15. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an analytic function such that $|f(z)| \leq A+B|z|^{k}$ for some $k \in \mathbb{N}$ where $A>0, B>0$. Show that f is a polynomial of degree at most k.
16. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an analytic function such that $\lim _{z \rightarrow \infty} \frac{\mid f(z)}{|z|}=0$. Show that f is constant.
17. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a non-constant entire function. Show that the image of the function has to necessarily meet the real axis and imaginary axis.
18. Let $f: \mathbb{D} \rightarrow \mathbb{D}$ be an analytic function such that $f(0)=0$. Show that (a) $|f(z)| \leq|z|$ for all $z \in \mathbb{C}$ and $\left|f^{\prime}(0)\right| \leq 1$, (b) If $\left|f\left(z_{0}\right)\right|=\left|z_{0}\right|$ for some $z_{0} \in \mathbb{D}$ or $\left|f^{\prime}(0)\right|=1$, then there exists $c \in \mathbb{C}$ such that $|c|=1$ and $f(z)=c z$ for all $z \in \mathbb{D}$.
19. Let $f_{j}: \mathbb{C} \rightarrow \mathbb{C}, j=1,2$ be analytic functions such that $f_{1}\left(a_{n}\right)=f_{2}\left(a_{n}\right)$ for a bounded sequence of complex numbers. Show that the functions are same.
20. Find the maximum of the function $|f|$ on $\overline{\mathbb{D}}$ (closed unit disk) for (a) $f(z)=z^{2}-z$ and (b) $f(z)=\sin z$.
