MSO202A: Assignment-V

1. Find
(a) Taylor series of the function $f(z)=1 / z^{2}$ in powers of $z-1$.
(b) Laurent series of the function $f(z)=1 / z^{2}$ for $\{z:|z-1|>1\}$.
2. (a) Find Laurent series of the function $f(z)=\frac{6 z+8}{(2 z+3)(4 z+5)}$ in the region
(i) $\left\{z \in \mathbb{C}:|z|<\frac{5}{4}\right\}$
(ii) $\left\{z \in \mathbb{C}: \frac{5}{4}<|z|<\frac{3}{2}\right\}$
(iii) $\left\{z \in \mathbb{C}:|z|>\frac{3}{2}\right\}$
(b) Find Laurent series of the function $f(z)=\frac{1}{z^{3}-z^{4}}$ in the region
(i) $\{z \in \mathbb{C}: 0<|z|<1\}$
(ii) $\{z \in \mathbb{C}:|z|>1\}$
3. Find the Laurent series of the function $f(z)=\exp \left(z+\frac{1}{z}\right)$ around $z=0$. Hence, show that (for $n \geq 0$)

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{2 \cos \theta} \cos n \theta d \theta=\sum_{j=0}^{\infty} \frac{1}{(n+j)!j!}
$$

4. Is there a polynomial $P(z)$ such that $P(z) e^{1 / z}$ is an entire function? Justify your answer.
5. Which of the following singularities are removable/pole:
(i) $\frac{\sin z}{z^{2}-\pi^{2}}$ at $z=\pi$
(ii) $\frac{\sin \pi z}{(z-\pi)^{2}}$ at $z=\pi$
(iii) $\frac{z \cos z}{1-\sin z}$ at $z=\pi / 2$
6. Suppose f and g are two analytic functions in a neighbourhood of a point $z_{0} \in \mathbb{C}$ such that $g\left(z_{0}\right) \neq 0$ and f has a simple zero at z_{0}. Prove that

$$
\operatorname{Res}\left(\frac{g}{f}: z_{0}\right)=\frac{g\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}
$$

7. Let f be analytic in a domain Ω and γ be a simple closed curve in Ω in the counterclockwise sense. Suppose z_{0} is the only zero of f in the region enclosed by Ω. Show that

$$
\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=2 \pi i m
$$

where m is the order of zero of f at z_{0}.
8. Find the isolated singularities and compute the residue of the functions
(i) $\frac{e^{z}}{z^{2}-1}$
(ii) $\frac{3 z}{z^{2}+i z+2}$
(iii) $\cot \pi z$
(iv) $\frac{\pi \cot \pi z}{(z+1 / 2)^{2}}$
9. Evaluate
(i) $\int_{-\infty}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{2 n}}, \quad n \geq 1$
(ii) $\int_{-\infty}^{\infty} \frac{x \sin 3 x}{x^{2}+a^{2}} d x$
(iii) $\int_{0}^{\pi} \sin ^{2 n} \theta d \theta$
10. Compute the following integrals
(i) $\int_{-\infty}^{\infty} \frac{\sin x}{x} d x$
(ii) $\int_{-\infty}^{\infty} \frac{\cos a x-\cos b x}{x^{2}}$
(iii) $\int_{-\infty}^{\infty} \frac{e^{a x}}{e^{x}+1} d x, \quad 0<a<1$.

