MTH203: Assignment-2

1.T Find general solution of the following differential equations:

$$
\text { (i) }(x+2 y+1)-(2 x+y-1) y^{\prime}=0 \quad \text { (ii) } y^{\prime}=(8 x-2 y+1)^{2} /(4 x-y-1)^{2}
$$

2.D Show that the following equations are exact and hence find their general solution:
(i) $(\cos x \cos y-\cot x)=(\sin x \sin y) y^{\prime}$ (ii) $y^{\prime}=2 x\left(y e^{-x^{2}}-y-3 x\right) /\left(x^{2}+3 y^{2}+e^{-x^{2}}\right)$
3.D Show that if the differential equation $M d x+N d y$ is of the form

$$
x^{a} y^{b}(m y d x+n x d y)+x^{c} y^{d}(p y d x+q x d y)=0
$$

where $a, b, c, d, m, n, p, q(m q \neq n p)$ are constants, then $x^{h} y^{k}$ is an integrating factor. Hence find a general solution of $\left(x^{1 / 2} y-x y^{2}\right)+\left(x^{3 / 2}+x^{2} y\right) y^{\prime}=0$.
4.T Show that the equation $\left(3 y^{2}-x\right)+2 y\left(y^{2}-3 x\right) y^{\prime}=0$ admits an integrating factor which is a function of $\left(x+y^{2}\right)$. Hence solve the differential equation.
5.D Show that $2 \sin \left(y^{2}\right)+x y \cos \left(y^{2}\right) y^{\prime}=0$ admits an integrating factor which is a function of x only. Hence solve the differential equation.
6.T Reduce the following differential equations into linear form and solve:
(i) $y^{2} y^{\prime}+y^{3} / x=\sin x$
(ii) $y^{\prime} \sin y+x \cos y=x$
(iii) $y^{\prime}=y\left(x y^{3}-1\right)$
7.D Find the orthogonal trajectories of the following families of curves:
(i) $e^{x} \sin y=c$
(ii) $y^{2}=c x^{3}$
8.T Find the family of oblique trajectories which intersect the family of straight lines $y=c x$ at an angle of 45°.
9.D Show that the following families of curves are self-orthogonal:
(i) $y^{2}=4 c(x+c)$
(ii) $x^{2} / c^{2}+y^{2} /\left(c^{2}-1\right)=1$

Supplementary problems from "Advanced Engg. Maths." by E. Kreyszig (8 $8^{\text {th }}$ Edn.)
(i) Page 32, Q.10,12,17,26,29,35
(ii) Page 39, Q.13,18,20,26-29,33,34
(iii) Page 51, Q.7,9,10,15,17

