MTH203: Assignment-3

1.D Solve the following linear first order differential equations using the method of variation of parameters:
(i) $x y^{\prime}-2 y=x^{4}$
(ii) $y^{\prime}+(\cos x) y=\sin x \cos x$
[Method: To solve $y^{\prime}+P(x) y=R(x)$, first find the general solution $y_{h}(x)=c y_{1}(x)$ of the homogeneous equation $y^{\prime}+P(x) y=0$. Assume that $y_{p}(x)=u_{1}(x) y_{1}(x)$ is a (particular) solution of the original equation. Find u_{1} and the general solution of the original equation is given by $y(x)=y_{h}(x)+y_{p}(x)$]
2.D Solve $y^{\prime}+y=x-1, y^{\prime}+y=\cos 2 x$. Hence solve $y^{\prime}+y=\cos ^{2} x-x / 2$
3.T Show that the set of solutions of the homogeneous linear equation, $y^{\prime}+P(x) y=0$ on an interval $I=[a, b]$ form a vector subspace W of the real vector space of continuous functions on I. What is the dimension of W ?
4.T Let $f(x, y)$ be continuous on the closed rectangle $R:\left|x-x_{0}\right| \leq a,\left|y-y_{0}\right| \leq b$.
(i) Show that y is a solution of the initial value problem $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$ ㅇf

$$
y(x)=y_{0}+\int_{x_{0}}^{x} f[t, y(t)] d t
$$

(ii) Let $|f(x, y)| \leq M$ and $y_{n}(x)=y_{0}+\int_{x_{0}}^{x} f\left[t, y_{n-1}(t)\right] d t$, with $y_{0}(x)=y_{0}$. Show by the method of induction that $\left|y_{n}(x)-y_{0}\right| \leq b$ for $\left|x-x_{0}\right| \leq h$, where $h=\min \{a, b / M\}$.
5.D Use Picard's method of successive approximation to solve the following initial value problems and compare these results with the exact solutions:
(i) $y^{\prime}=2 \sqrt{x}, y(0)=1$
(ii) $y^{\prime}+x y=x, y(0)=0$
(iii) $y^{\prime}=2 \sqrt{y} / 3, y(0)=0$
6.D Apply (i) Euler method and (ii) improved Euler method to compute $y(x)$ at $x=$ $0.2,0.4,0.6,0.8,1.0$ for the initial value problem: $y^{\prime}=x y+x y^{2}, y(0)=1$. Compare the errors in each point with the exact solution.
7.T Solve $y^{\prime}=(y-x)^{2 / 3}+1$. Show that $y=x$ is also a solution. What can be said about the uniqueness of the initial value problem consisting of the above equation with $y\left(x_{0}\right)=y_{0}$, where $\left(x_{0}, y_{0}\right)$ lies on the line $y=x$.
8.T Discuss the existence and uniqueness of the solution of the inital value problem

$$
\left(x^{2}-2 x\right) y^{\prime}=2(x-1) y, \quad y\left(x_{0}\right)=y_{0} .
$$

Supplementary problems from "Advanced Engg. Maths." by E. Kreyszig (8 ${ }^{\text {th }}$ Edn.)
(i) Page 58-59, Q.1,2,5,14,18,19
(ii) Page 951, Q.1,2,6,7

