MTH203: Assignment-4

- 1.D Reduce the following second order differential equation to first order differential equation and hence solve.
 - (i) $xy'' + y' = y'^2$ (iii) $yy'' + y'^2 + 1 = 0$ (iii) $y'' 2y' \operatorname{coth} x = 0$
- 2.T Find the curve y = y(x) passing through origin for which y'' = y' and the line y = x is tangent at the origin.
- 3.D Find the differential equation satisfied by each of the following two-parameter families of plane curves:

(i)
$$y = \cos(ax + b)$$
 (ii) $y = ax + b/x$ (iii) $y = ae^x + bxe^x$

- 4.D(a) Find the values of *m* such that $y = e^{mx}$ is a solution of (i) y'' + 3y' + 2y = 0 (ii) y'' - 4y' + 4y = 0 (iii) y''' - 2y'' - y' + 2y = 0
 - (b) Find the values of m such that $y = x^m$ (x > 0) is a solution of (i) $x^2y'' - 4xy' + 4y = 0$ (ii) $x^2y'' - 3xy' - 5y = 0$

u''

5.T If p(x), q(x), r(x) are continuous functions on an interval \mathcal{I} , then show that the set of solutions of the following linear homogeneous equation is a real vector space:

$$+p(x)y'+q(x)y=0, \qquad x \in \mathcal{I}.$$
(*)

Also show that the set of solutions of the linear non-homogeneous equation

$$y'' + p(x)y' + q(x)y = r(x), \qquad x \in \mathcal{I}$$

$$(\#)$$

is not a real vector space. Further, suppose $y_1(x), y_2(x)$ are any two solutions of (#). Obtain conditions on the constants a and b so that $ay_1 + by_2$ is also its solution.

- 6.D Are the following functions linearly dependent on the given intervals?
 - (i) $\sin 4x, \cos 4x \quad (-\infty, \infty)$ (ii) $\ln x, \ln x^3 \quad (0, \infty)$ (iii) $\cos 2x, \sin^2 x \quad (0, \infty)$ (iv) $x^3, x^2 |x| \quad [-1, 1]$
- 7.T(a) Show that a solution to (*) with x-axis as tangent at any point in \mathcal{I} must be identically zero on \mathcal{I} .
 - (b) Let $y_1(x), y_2(x)$ be two solutions of (*) with a common zero at any point in \mathcal{I} . Show that y_1, y_2 are linearly dependent on \mathcal{I} .
 - (c) Show that y = x and $y = \sin x$ are not a pair solutions of equation (*), where p(x), q(x) are continuous functions on $\mathcal{I} = (-\infty, \infty)$.
- 8.D(a) Let $y_1(x), y_2(x)$ be two twice continuously differentiable functions on an interval \mathcal{I} . Suppose that the Wronskian $W(y_1, y_2)$ does not vanish anywhere in \mathcal{I} . Show that there exists unique p(x), q(x) on \mathcal{I} such that (*) has y_1, y_2 as fundamental solutions.
 - (b) Construct equations of the form (*) from the following pairs of solutions: (i) e^{-x} , xe^{-x} (ii) $e^{-x}\sin 2x$, $e^{-x}\cos 2x$
 - 9.T Let y₁(x), y₂(x) are two linearly independent solutions of (*). Show that
 (i) between consecutive zeros of y₁, there exists a unique zero of y₂;
 (ii) φ(x) = αy₁(x) + βy₂(x) and ψ(x) = γy₁(x) + δy₂(x) are two linearly independent solutions of (*) <u>iff</u> αδ ≠ βγ.