MTH203: Assignment-4

1.D Reduce the following second order differential equation to first order differential equation and hence solve.
(i) $x y^{\prime \prime}+y^{\prime}=y^{\prime 2}$
(iii) $y y^{\prime \prime}+y^{\prime 2}+1=0$
(iii) $y^{\prime \prime}-2 y^{\prime}$ coth $x=0$
2.T Find the curve $y=y(x)$ passing through origin for which $y^{\prime \prime}=y^{\prime}$ and the line $y=x$ is tangent at the origin.
3.D Find the differential equation satisfied by each of the following two-parameter families of plane curves:
(i) $y=\cos (a x+b)$
(ii) $y=a x+b / x$
(iii) $y=a e^{x}+b x e^{x}$
4.D(a) Find the values of m such that $y=e^{m x}$ is a solution of
(i) $y^{\prime \prime}+3 y^{\prime}+2 y=0$
(ii) $y^{\prime \prime}-4 y^{\prime}+4 y=0$
(iii) $y^{\prime \prime \prime}-2 y^{\prime \prime}-y^{\prime}+2 y=0$
(b) Find the values of m such that $y=x^{m}(x>0)$ is a solution of
(i) $x^{2} y^{\prime \prime}-4 x y^{\prime}+4 y=0$
(ii) $x^{2} y^{\prime \prime}-3 x y^{\prime}-5 y=0$
5.T If $p(x), q(x), r(x)$ are continuous functions on an interval \mathcal{I}, then show that the set of solutions of the following linear homogeneous equation is a real vector space:

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0, \quad x \in \mathcal{I} . \tag{*}
\end{equation*}
$$

Also show that the set of solutions of the linear non-homogeneous equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x), \quad x \in \mathcal{I}
$$

is not a real vector space. Further, suppose $y_{1}(x), y_{2}(x)$ are any two solutions of (\#).
Obtain conditions on the constants a and b so that $a y_{1}+b y_{2}$ is also its solution.
6.D Are the following functions linearly dependent on the given intervals?
(i) $\sin 4 x, \cos 4 x \quad(-\infty, \infty)$
(ii) $\ln x, \ln x^{3} \quad(0, \infty)$
(iii) $\cos 2 x, \sin ^{2} x \quad(0, \infty)$
(iv) $x^{3}, x^{2}|x| \quad[-1,1]$
7.T(a) Show that a solution to $\left(^{*}\right)$ with x-axis as tangent at any point in \mathcal{I} must be identically zero on \mathcal{I}.
(b) Let $y_{1}(x), y_{2}(x)$ be two solutions of $\left(^{*}\right)$ with a common zero at any point in \mathcal{I}. Show that y_{1}, y_{2} are linearly dependent on \mathcal{I}.
(c) Show that $y=x$ and $y=\sin x$ are not a pair solutions of equation $\left(^{*}\right)$, where $p(x), q(x)$ are continuous functions on $\mathcal{I}=(-\infty, \infty)$.
8.D(a) Let $y_{1}(x), y_{2}(x)$ be two twice continuously differentiable functions on an interval \mathcal{I}. Suppose that the Wronskian $W\left(y_{1}, y_{2}\right)$ does not vanish anywhere in \mathcal{I}. Show that there exists unique $p(x), q(x)$ on \mathcal{I} such that $\left(^{*}\right)$ has y_{1}, y_{2} as fundamental solutions.
(b) Construct equations of the form $\left(^{*}\right.$) from the following pairs of solutions:
(i) $e^{-x}, x e^{-x}$
(ii) $e^{-x} \sin 2 x, e^{-x} \cos 2 x$
9.T Let $y_{1}(x), y_{2}(x)$ are two linearly independent solutions of $(*)$. Show that
(i) between consecutive zeros of y_{1}, there exists a unique zero of y_{2};
(ii) $\phi(x)=\alpha y_{1}(x)+\beta y_{2}(x)$ and $\psi(x)=\gamma y_{1}(x)+\delta y_{2}(x)$ are two linearly independent solutions of $\left({ }^{*}\right)$ iff $\alpha \delta \neq \beta \gamma$.

