MTH203: Assignment-5

1.T Verify that $y=x^{2} \sin x$ and $y=0$ both are solutions of the initial value problem

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+\left(x^{2}+6\right) y=0, \quad y(0)=y^{\prime}(0)=0 .
$$

Does it contradict the uniqueness?
2.D Find general solution of the following differential equations given a known solution y_{1} :
(i) $x(1-x) y^{\prime \prime}+2(1-2 x) y^{\prime}-2 y=0 \quad y_{1}=1 / x$
(ii) $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0 \quad y_{1}=x$
3.D Verify that $\sin x / \sqrt{x}$ is a solution of $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1 / 4\right) y=0$ over any interval on the positive x-axis and hence find its general solution.
4.D Solve the following differential equations:
(i) $y^{\prime \prime}-4 y^{\prime}+3 y=0$
(ii) $y^{\prime \prime}+2 y^{\prime}+\left(\omega^{2}+1\right) y=0, \quad \omega$ is real.
5.D Solve the following initial value problems:
(i) $y^{\prime \prime}+4 y^{\prime}+4 y=0 \quad y(0)=1, y^{\prime}(0)=-1$
(ii) $y^{\prime \prime}-2 y^{\prime}-3 y=0 \quad y(0)=1, y^{\prime}(0)=3$
6.D The equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}+a x \frac{d y}{d x}+b y=0
$$

where a, b are constants, is called the Euler-Cauchy equation. Show that under the transformation $x=e^{t}($ when $x>0)$ for the independent variable, the above reduces to

$$
\frac{d^{2} y}{d t^{2}}+(a-1) \frac{d y}{d t}+b y=0
$$

which is an equation with constant coefficients.
Hence solve: (i) $x^{2} y^{\prime \prime}+2 x y^{\prime}-12 y=0 \quad$ (ii) $x^{2} y^{\prime \prime}+x y^{\prime}+y=0 \quad$ (iii) $x^{2} y^{\prime \prime}-x y^{\prime}+y=0$
7.T Find a particular solution of each of the following equations by the method of undetermined coefficients and hence find its general solution:
(i) $y^{\prime \prime}+4 y=2 \cos ^{2} x+10 e^{x}$
(ii) $y^{\prime \prime}+y=\sin x+\left(1+x^{2}\right) e^{x}$
(iii) $y^{\prime \prime}-y=e^{-x}(\sin x+\cos x)$
(iv) $y^{\prime \prime \prime}-3 y^{\prime \prime}-y^{\prime}+3 y=x^{2} e^{x}$
8.T By using the method of variation of parameters, find the general solution of:
(i) $y^{\prime \prime}+4 y=2 \cos ^{2} x+10 e^{x}$
(ii) $y^{\prime \prime}+y=x \sin x$
(iii) $y^{\prime \prime}+y=\cot ^{2} x$
(iv) $x^{2} y^{\prime \prime}-x(x+2) y^{\prime}+(x+2) y=x^{3}, \quad x>0$.
[Hint. $y=x$ is a solution of the homogeneous part]
Supplementary problems from "Advanced Eng. Maths." by E. Kreyszig (8 ${ }^{\text {th }}$ Edn.)
(a) Problem Set 2.1: Q. 6,7,10
(b) Problem Set 2.2: Q.13,17,23,26,27,28
(c) Problem Set 2.3: Q.13,17,19,20
(d) Problem Set 2.6: Q.2,6,14
(e) Problem Set 2.7: Q.12,16,18
(f) Problem Set 2.8: Q. 16
(g) Problem Set 2.9: Q.9,13,21
(h) Problem Set 2.10: Q.5,10,15
(i) Problem Set 2.13: Q.4,11,18,20 (a.1,a.3,b.)
(j) Problem Set 2.14: Q.14,16,20

