MTH203: Assignment-6

1.T The equation $y^{\prime \prime}+y^{\prime}-x y=0$ has a power series solution of the form $y=\sum a_{n} x^{n}$.
(i) Find the power series solutions $y_{1}(x)$ and $y_{2}(x)$ such that $y_{1}(0)=1, y_{1}^{\prime}(0)=0$ and $y_{2}(0)=0, y_{2}^{\prime}(0)=1$.
(ii) Find the radius of convergence for $y_{1}(x)$ and $y_{2}(x)$.
2.T Consider the equation $\left(1+x^{2}\right) y^{\prime \prime}-4 x y^{\prime}+6 y=0$.
(i) Find its general solution in the form $y=a_{0} y_{2}(x)+a_{1} y_{1}(x)$, where $y_{1}(x)$ and $y_{2}(x)$ are power series.
(ii) Find the radius of convergence for $y_{1}(x)$ and $y_{2}(x)$.
3.D(a) Show that the fundamental system of solutions of Legendre equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+p(p+1) y=0
$$

consists of $y_{1}(x)=\sum_{n=0}^{\infty} a_{2 n} x^{2 n}$ and $y_{2}(x)=\sum_{n=0}^{\infty} a_{2 n+1} x^{2 n+1}$, where $a_{0}=a_{1}=1$ and

$$
\begin{array}{cc}
a_{2 n+2}=-\frac{(p-2 n)(p+2 n+1)}{(2 n+1)(2 n+2)} a_{2 n}, & n=0,1,2, \cdots \\
a_{2 n+1}=-\frac{(p-2 n+1)(p+2 n)}{2 n(2 n+1)} a_{2 n-1}, & n=1,2,3, \cdots .
\end{array}
$$

(b) Verify that
$y_{1}(x)=P_{0}(x)=1, y_{2}(x)=\frac{1}{2} \ln \frac{1+x}{1-x}$ for $p=0$
$y_{2}(x)=P_{1}(x)=x, y_{1}(x)=1-\frac{x}{2} \ln \frac{1-x}{1+x}$ for $p=1$.
(c) The expression, $P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left[\left(x^{2}-1\right)^{n}\right]$, is called the Rodrigues' formula for Legendre polynomial P_{n} of degree n. Assuming this, find P_{1}, P_{2}, P_{3}.
4.D Using Rodrigues' formula for $P_{n}(x)$, show that
(i) $P_{n}(-x)=(-1)^{n} P_{n}(x)$
(ii) $P_{n}^{\prime}(-x)=(-1)^{n+1} P_{n}^{\prime}(x)$
(iii) $\int_{-1}^{1} P_{n}(x) P_{m}(x) d x=\frac{2}{2 n+1} \delta_{m n}$
(iv) $\int_{-1}^{1} x^{m} P_{n}(x) d x=0 \quad$ if $m<n$
5.D Suppose $m>n$. Show that $\int_{-1}^{1} x^{m} P_{n}(x) d x=0$ if $m-n$ is odd. What happens if $m-n$ is even?
6.T The function on the left side of $\frac{1}{\sqrt{1-2 x t+t^{2}}}=\sum_{n=0}^{\infty} P_{n}(x) t^{n}$ is called the generating function of the Legendre polynomial P_{n}. Using this relation, show that
(i) $(n+1) P_{n+1}(x)-(2 n+1) x P_{n}(x)+n P_{n-1}(x)=0$
(ii) $n P_{n}(x)=x P_{n}^{\prime}(x)-P_{n-1}^{\prime}(x)$
(iii) $P_{n+1}^{\prime}(x)-x P_{n}^{\prime}(x)=(n+1) P_{n}(x) \quad$;
(iv) $P_{n}(1)=1, P_{n}(-1)=(-1)^{n}$
(v) $P_{2 n+1}(0)=0, P_{2 n}(0)=(-1)^{n} \frac{1 \cdot 3 \cdot 5 \cdots \cdots \cdot(2 n-1)}{2^{n} n!}$

