1.T The equation $y'' + y' - xy = 0$ has a power series solution of the form $y = \sum a_n x^n$.

(i) Find the power series solutions $y_1(x)$ and $y_2(x)$ such that $y_1(0) = 1, y'_1(0) = 0$ and $y_2(0) = 0, y'_2(0) = 1$.

(ii) Find the radius of convergence for $y_1(x)$ and $y_2(x)$.

2.T Consider the equation $(1 + x^2)y'' - 4xy' + 6y = 0$.

(i) Find its general solution in the form $y = a_0y_2(x) + a_1y_1(x)$, where $y_1(x)$ and $y_2(x)$ are power series.

(ii) Find the radius of convergence for $y_1(x)$ and $y_2(x)$.

3.D(a) Show that the fundamental system of solutions of Legendre equation

$$\left(1 - x^2\right)y'' - 2xy' + p(p + 1)y = 0$$

consists of $y_1(x) = \sum_{n=0}^{\infty} a_{2n}x^{2n}$ and $y_2(x) = \sum_{n=0}^{\infty} a_{2n+1}x^{2n+1}$, where $a_0 = a_1 = 1$ and

$$a_{2n+2} = -\frac{(p-2n)(p+2n+1)}{(2n+1)(2n+2)}a_{2n}, \quad n = 0, 1, 2, \ldots$$

$$a_{2n+1} = -\frac{(p-2n+1)(p+2n)}{2n(2n+1)}a_{2n-1}, \quad n = 1, 2, 3, \ldots$$

(b) Verify that

$$y_1(x) = P_0(x) = 1, \quad y_2(x) = \frac{1}{2} \ln \frac{1 + x}{1 - x} \quad \text{for} \quad p = 0$$

$$y_2(x) = P_1(x) = x, \quad y_1(x) = 1 - \frac{x}{2} \ln \frac{1 - x}{1 + x} \quad \text{for} \quad p = 1.$$

(c) The expression, $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n}[(x^2 - 1)^n]$, is called the Rodrigues’ formula for Legendre polynomial P_n of degree n. Assuming this, find P_1, P_2, P_3.

4.D Using Rodrigues’ formula for $P_n(x)$, show that

(i) $P_n(-x) = (-1)^n P_n(x)$

(ii) $P'_n(-x) = (-1)^{n+1} P'_n(x)$

(iii) $\int_{-1}^{1} P_n(x) P_m(x) \, dx = \frac{2}{2n+1} \delta_{mn}$

(iv) $\int_{-1}^{1} x^m P_n(x) \, dx = 0$ if $m < n$

5.D Suppose $m > n$. Show that $\int_{-1}^{1} x^m P_n(x) \, dx = 0$ if $m - n$ is odd. What happens if $m - n$ is even?

6.T The function on the left side of $\frac{1}{\sqrt{1 - 2xt + t^2}} = \sum_{n=0}^{\infty} P_n(x) t^n$ is called the generating function of the Legendre polynomial P_n. Using this relation, show that

(i) $(n + 1)P_{n+1}(x) - (2n + 1)xP_n(x) + nP_{n-1}(x) = 0$

(ii) $nP_n(x) = xP'_n(x) - P'_{n-1}(x)$

(iii) $P'_{n+1}(x) - xP'_n(x) = (n + 1)P_n(x)$

(iv) $P_n(1) = 1, \quad P_n(-1) = (-1)^n$

(v) $P_{2n+1}(0) = 0, \quad P_{2n}(0) = (-1)^n \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^n n!}$