MTH203: Assignment-7

1.D Expand the following functions in terms of Legendre polynomials over [-1, 1]:

(i)
$$f(x) = x^3 + x + 1$$
 (ii) $f(x) = \begin{cases} 0 & \text{if } -1 \le x < 0 \\ x & \text{if } 0 \le x \le 1 \end{cases}$ (first three nonzero terms)

2.T Locate and classify the singular points in the following: (i) $x^3(x-1)y'' - 2(x-1)y' + 3xy = 0$ (ii) (3x+1)xy'' - xy' + 2y = 0

3.T For each of the following, verify that the origin is a regular singular point and find two linearly independent solutions:

(a)
$$9x^2y'' + (9x^2 + 2)y = 0$$

(b) $x^2(x^2 - 1)y'' - x(1 + x^2)y' + (1 + x^2)y = 0$
(c) $xy'' + (1 - 2x)y' + (x - 1)y = 0$
(d) $x(x - 1)y'' + 2(2x - 1)y' + 2y = 0$

- 4.D Show that $2x^3y'' + (\cos 2x 1)y' + 2xy = 0$ has only one Frobenius series solution.
- 5.D Reduce $x^2y'' + xy' + (x^2 1/4)y = 0$ to normal form and hence find its general solution.

6.D Find a solution bounded near x = 0 of the following ODE $x^2y'' + xy' + (\lambda^2x^2 - 1)y = 0$

7.D Using recurrence relations, show that

(i)
$$J_0''(x) = -J_0(x) + J_1(x)/x$$
 (ii) $xJ_{n+1}'(x) + (n+1)J_{n+1}(x) = xJ_n(x)$

8.D Show that

(i)
$$\int x^4 J_1(x) dx = (4x^3 - 16x)J_1(x) - (x^4 - 8x^2)J_0(x) + C$$

(ii) $\int J_5(x) dx = -2J_4(x) - 2J_2(x) - J_0(x) + C$

9.D Express

(i) $J_3(x)$ in terms of $J_1(x)$ and $J_0(x)$ (ii) $J'_2(x)$ in terms of $J_1(x)$ and $J_0(x)$ (iii) $J_4(ax)$ in terms of $J_1(ax)$ and $J_0(ax)$

- 10.D Prove that between each pair of consecutive positive zeros of $J_{\nu}(x)$, there is exactly one zero of $J_{\nu+1}(x)$ and vice versa.
- 11.T Let u(x) be any nontrivial solution of u'' + q(x)u = 0 on a closed interval [a, b]. Show that u(x) has at most a finite number of zeros in [a, b].
- 12.T Show that any nontrivial solution of u'' + q(x)u = 0, q(x) < 0 has at most one zero.
- 13.D Let u(x) be any nontrivial solution of u'' + [1 + q(x)]u = 0, where q(x) > 0. Show that u(x) has infinitely many zeros.
- 14.T Let y_{ν} be a nontrivial solution of Bessel's equation of order ν on the positive x-axis. Show that (i) if $0 \leq \nu < 1/2$, then every interval of length π contains at least one zero of $y_{\nu}(x)$; (ii) if $\nu = 1/2$, then the distance between successive zeros of y_{ν} is exactly π ; and (iii) if $\nu > 1/2$, then every interval of length π contains at most one zero of $y_{\nu}(x)$.
- 15.T Show that the Bessel functions J_{ν} ($\nu \geq 0$) satisfy

$$\int_0^1 x J_\nu(\lambda_m x) J_\nu(\lambda_n x) \, dx = \frac{1}{2} J_{\nu+1}^2(\lambda_n) \delta_{mn},$$

where λ_i are the positive zeros of J_{ν} .