Feedback

This will be updated with some interesting (!) questions posed by the students.
Q1. About the singular solution in Lecture I:
$y=c x-c^{2}$ is the general solution of $y^{\prime 2}-x y^{\prime}+y=0$ and $y_{s}(x)=x^{2} / 4$ is the singular solution. Suppose $z(x)=c x-c^{2}+x^{2} / 4$. Now $z(x)$ has one arbitrary constant and we can obtain $y_{s}(x)$ from $z(x)$ by taking $c=0$. Thus, $y_{s}(x)$ is a particular solution of $z(x)$! Why then $y_{s}(x)$ is called singular?

A1. It is true that $y_{s}(x)$ is a particular solution of $z(x)$. But $z(x)$ is NOT the general solution of $y^{\prime 2}-x y^{\prime}+y=0$. Verify yourself. Note that $z(x)$ is not the general solution of the original equation because the original equation is nonlinear. Hence, superimposition of two solutions will be a solution does not hold for nonlinear problem. But it is definitely true for linear problems.

