Lecture XII

Power Series Solutions: Ordinary points

1 Analytic function

Definition 1. Let f be a function defined on an interval \mathcal{I}. We say f is analytic at point $x_{0} \in \mathcal{I}$ if f can be expanded in a power series about x_{0} which has a positive radius of convergence.

Thus f is analytic at $x=x_{0}$ if f has the representation

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n} \tag{1}
\end{equation*}
$$

Here c_{n} are constant and (1) converges for $\left|x-x_{0}\right|<R$ where $R>0$. Radius of convergence R can be found from ratio test/root test.
If f has power series representation (1), then its derivative exits in $\left|x-x_{0}\right|<R$. These derivatives are obtained by differentiating the RHS of (1) term by term. Thus,

$$
\begin{equation*}
f^{\prime}(x)=\sum_{n=1}^{\infty} n c_{n}\left(x-x_{0}\right)^{n-1} \equiv \sum_{n=0}^{\infty}(n+1) c_{n+1}\left(x-x_{0}\right)^{n} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime \prime}(x)=\sum_{n=2}^{\infty} n(n-1) c_{n}\left(x-x_{0}\right)^{n-2} \equiv \sum_{n=0}^{\infty}(n+2)(n+1) c_{n+2}\left(x-x_{0}\right)^{n} . \tag{3}
\end{equation*}
$$

2 Ordinary points

Consider a linear 2nd order homogeneous ODE of the form

$$
a_{0}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x) y=0
$$

where a_{0}, a_{1} and a_{2} are continuous in an interval \mathcal{I}. The points where $a_{0}(x)=0$ are called singular points. If $a_{0}(x) \neq 0, \forall x \in \mathcal{I}$, then the above ODE can be written as (by dividing by $\left.a_{0}(x)\right)$

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{4}
\end{equation*}
$$

Definition 2. A point $x_{0} \in \mathcal{I}$ is called an ordinary point for (4) if $p(x)$ and $q(x)$ are analytic at $x=x_{0}$.

Theorem 1. Let x_{0} be an ordinary point for (4). Then there exists a unique solution $y=y(x)$ of (4) which is also analytic at x_{0} and satisfies $y\left(x_{0}\right)=K_{0}, y^{\prime}\left(x_{0}\right)=K_{1}$ (K_{0}, K_{1} are arbitrary constants). Further, if p and q have convergent power series expansion in $\left|x-x_{0}\right|<R,(R>0)$, then the power series expansion of y is also convergent in $\left|x-x_{0}\right|<R$.

Example 1. Find power series solution around $x_{0}=0$ for

$$
\left(1+x^{2}\right) y^{\prime \prime}+2 x y^{\prime}-2 y=0 .
$$

Solution: (This can be solved by reduction of order technique since $Y_{1}=x$ is a solution. The other solution is given by

$$
Y_{2}(x)=Y_{1}(x) \int \frac{1}{x^{2}} e^{-\int 2 x /\left(1+x^{2}\right) d x} d x=x \int\left(\frac{1}{x^{2}}-\frac{1}{1+x^{2}}\right) d x=-\left(1+x \tan ^{-1} x\right)
$$

Thus, two LI solutions are $Y_{1}=x$ and $\left.Y_{2}=1+x \tan ^{-1} x\right)$
Here $p(x)=2 x /\left(1+x^{2}\right)$ and $q(x)=-2 /\left(1+x^{2}\right)$ are analytic at $x=0$ with common radius of convergence $R=1$. Let

$$
y(x)=\sum_{n=0}^{\infty} c_{n} x^{n} .
$$

Now using (3), we get

$$
\left(1+x^{2}\right) y^{\prime \prime}(x)=\sum_{n=0}^{\infty}(n+2)(n+1) c_{n+2} x^{n}+\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n}
$$

Note that the summation in the last term can be taken from $n=0$ since the contributions due to $n=0$ and $n=1$ vanish. Thus

$$
\left(1+x^{2}\right) y^{\prime \prime}(x)=\sum_{n=0}^{\infty}\left[(n+2)(n+1) c_{n+2}+n(n-1) c_{n}\right] x^{n}
$$

Similarly

$$
2 x y^{\prime}(x)=\sum_{n=0}^{\infty} 2 n c_{n} x^{n}
$$

Substuting into the given ODE we find

$$
\sum_{n=0}^{\infty}\left[(n+2)(n+1) c_{n+2}+n(n-1) c_{n}+2 n c_{n}-2 c_{n}\right] x^{n}=0
$$

Now all the coefficients of powers of x must be zero. Hence,

$$
(n+2)(n+1) c_{n+2}=-\left(n(n-1) c_{n}+2 n c_{n}-2 c_{n}\right) \Rightarrow c_{n+2}=-\frac{n-1}{n+1} c_{n}, \quad n=0,1,2, \cdots
$$

This enables us to find c_{n} in terms c_{0} or c_{1}. For $n=0$ get

$$
c_{2}=c_{0}
$$

and for $n=1$ we obtain

$$
c_{3}=0
$$

Similarly, letting $n=2,3,4, \cdots$ we find that $c_{n}=0, n=5,7,9, \cdots$, and

$$
c_{4}=-\frac{1}{3} c_{2}=-\frac{1}{3} c_{0}, \quad c_{6}=-\frac{3}{5} c_{4}=\frac{1}{5} c_{0}, \cdots .
$$

By induction we find that for $m=1,2,3, \cdots$,

$$
c_{2 m}=(-1)^{m-1} \frac{1}{2 m-1} c_{0}
$$

and

$$
c_{2 m+1}=0
$$

Now we write

$$
y(x)=c_{0} y_{1}(x)+c_{1} y_{2}(x)
$$

where

$$
y_{1}(x)=1+x^{2}-\frac{x^{4}}{3}+\frac{x^{6}}{5}-\cdots
$$

OR

$$
y_{1}(x)=1+x \sum_{m=0}^{\infty}(-1)^{m} \frac{1}{2 m+1} x^{2 m+1}
$$

and

$$
y_{2}(x)=x .
$$

Here c_{0} and c_{1} are arbitrary. Thus, y_{1} is a solution corresponding to $c_{0}=1, c_{1}=0$ and y_{2} is a solution corresponding to $c_{0}=0, c_{1}=1$. They form a basis of solutions. Obviously y_{2} being polynomial has radius of convergence $R=\infty$ and y_{1} has $R=1$. Thus, the power series solution is valid at least in $|x|<1$. We can identify y_{1} with $1+x \tan ^{-1} x$ obtained earlier.
Comment: In the above problem, it was possible to write the series (after substitution of $y=\sum_{n=0}^{\infty} c_{n} x^{n}$) in the form

$$
\sum_{n=0}^{\infty} b_{n} x^{n}=0
$$

which ultimately gives $b_{n}=0, n=0,1,2, \cdots$. Sometimes, we need to leave few terms outside of the summation OR define few new terms inside the summation. For example, consider

$$
\left(1+x^{2}\right) y^{\prime \prime}+x^{2} y=0
$$

If we substitute $y=\sum_{n=0}^{\infty} c_{n} x^{n}$, then we find

$$
\begin{equation*}
\sum_{n=0}^{\infty}(n+2)(n+1) c_{n+2} x^{n}+\sum_{n=0}^{\infty} n(n-1) c_{n} x^{n}+\sum_{n=2}^{\infty} c_{n-2} x^{n}=0 . \tag{5}
\end{equation*}
$$

This can be arranged in two different ways:
(A) Here we write (5) as

$$
2 c_{2}+3 \cdot 2 c_{3} x+\sum_{n=2}^{\infty}\left[(n+2)(n+1) c_{n+2}+n(n-1) c_{n}+c_{n-2}\right] x^{n}=0
$$

Hence $c_{2}=0, c_{3}=0,(n+2)(n+1) c_{n+2}+n(n-1) c_{n}+c_{n-2}=0, n \geq 2$
(B) Here we write (5) as

$$
\sum_{n=0}^{\infty}\left[(n+2)(n+1) c_{n+2}+n(n-1) c_{n}+c_{n-2}\right] x^{n}=0, \quad c_{-2}=c_{-1}=0
$$

Thus, $(n+2)(n+1) c_{n+2}+n(n-1) c_{n}+c_{n-2}=0, \quad n \geq 0, c_{-2}=c_{-1}=0$

