Lecture XIII

Legendre Equation, Legendre Polynomial

1 Legendre equation

This equation arises in many problems in physics, specially in boundary value problems in spheres:

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0, \tag{1}
\end{equation*}
$$

where α is a constant.
We write this equation as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

where

$$
p(x)=\frac{-2 x}{1-x^{2}} \quad \text { and } \quad q(x)=\frac{\alpha(\alpha+1)}{1-x^{2}} .
$$

Clearly $p(x)$ and $q(x)$ are analytic at the origin and have radius of convergence $R=1$. Hence $x=0$ is an ordinary point for (1). Assume

$$
y(x)=\sum_{n=0}^{\infty} c_{n} x^{n} .
$$

Proceeding as in the case of example 1 in lecture note XII, we find

$$
c_{n+2}=-\frac{(\alpha+n+1)(\alpha-n)}{(n+2)(n+1)} c_{n}, \quad n=0,1,2, \cdots
$$

Taking $n=0,1,2$ and 3 we find

$$
c_{2}=-\frac{(\alpha+1) \alpha}{1 \cdot 2} c_{0}, \quad c_{3}=-\frac{(\alpha+2)(\alpha-1)}{1 \cdot 2 \cdot 3} c_{1}, \quad c_{4}=\frac{(\alpha+3)(\alpha+1) \alpha(\alpha-2)}{1 \cdot 2 \cdot 3 \cdot 4} c_{0},
$$

and

$$
c_{5}=\frac{(\alpha+4)(\alpha+2)(\alpha-1)(\alpha-3)}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} c_{1} .
$$

By induction, we can prove that for $m=1,2,3, \cdots$

$$
\begin{aligned}
c_{2 m} & =(-1)^{m} \frac{(\alpha+2 m-1)(\alpha+2 m-3) \cdots(\alpha+1) \alpha(\alpha-2) \cdots(\alpha-2 m+2)}{(2 m)!} c_{0} \\
c_{2 m+1} & =(-1)^{m} \frac{(\alpha+2 m)(\alpha+2 m-2) \cdots(\alpha+2)(\alpha-1)(\alpha-3) \cdots(\alpha-2 m+1)}{(2 m+1)!} c_{1} .
\end{aligned}
$$

Thus, we can write

$$
y(x)=c_{0} y_{1}(x)+c_{1} y_{1}(x),
$$

where
$y_{1}(x)=1+\sum_{m=1}^{\infty}(-1)^{m} \frac{(\alpha+2 m-1)(\alpha+2 m-3) \cdots(\alpha+1) \alpha(\alpha-2) \cdots(\alpha-2 m+2)}{(2 m)!} x^{2 m}$,
and
$y_{2}(x)=x+\sum_{m=1}^{\infty}(-1)^{m} \frac{(\alpha+2 m)(\alpha+2 m-2) \cdots(\alpha+2)(\alpha-1)(\alpha-3) \cdots(\alpha-2 m+1)}{(2 m+1)!} x^{2 m+1}$.
Taking $c_{0}=1, c_{1}=0$ and $c_{0}=0, c_{1}=0$, we find that y_{1} and y_{2} are solutions of Legendre equation. Also, these are LI, since their Wronskian is nonzero at $x=0$. The series expansion for y_{1} and y_{2} may terminate (in that case the corresponding solution has $R=\infty$), otherwise they have radius of convergence $R=1$.

2 Legendre polynomial

We note that if α in (1) is a nonnegative integer, then either y_{1} given in (2) or y_{2} given in (3) terminates. Thus, y_{1} terminates when $\alpha=2 m(m=0,1,2, \cdots)$ is nonnegative even integer:

$$
\begin{array}{ll}
y_{1}(x)=1, & (\alpha=0), \\
y_{1}(x)=1-3 x^{2}, & (\alpha=2), \\
y_{1}(x)=1-10 x^{2}+\frac{35}{3} x^{4}, & (\alpha=4) .
\end{array}
$$

Note that y_{2} does not terminate when α is a nonnegative even integer.
Similarly, y_{2} terminates (but y_{1} does not terminate) when $\alpha=2 m+1(m=0,1,2, \cdots)$ is nonnegative odd integer:

$$
\begin{array}{ll}
y_{2}(x)=x, & (\alpha=1), \\
y_{2}(x)=x-\frac{5}{3} x^{3}, & (\alpha=5), \\
y_{2}(x)=x-\frac{14}{3} x^{2}+\frac{21}{5} x^{5}, & (\alpha=5) .
\end{array}
$$

Notice that the polynomial solution of

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0, \tag{4}
\end{equation*}
$$

where n is nonnegative integer, is polynomial of degree n. Equation (4) is the same as (1) with n replacing α.

Definition 1. The polynomial solution, denoted by $P_{n}(x)$, of degree n of (4) which satisfies $P_{n}(1)=1$ is called the Legendre polynomial of degree n.

Let ψ be a polynomial of degree n defined by

$$
\begin{equation*}
\psi(x)=\frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n} \tag{5}
\end{equation*}
$$

Then ψ is a solution of (4). To prove it, we proceed as follows: Assume $u(x)=\left(x^{1}-1\right)^{n}$. Then

$$
\begin{equation*}
\left(x^{2}-1\right) u^{(1)}=2 n x u \tag{6}
\end{equation*}
$$

Now we take $(n+1)$-th derivative of both sides of (6) :

$$
\begin{equation*}
\left(\left(x^{2}-1\right) u^{(1)}\right)^{(n+1)}=2 n(x u)^{(n+1)} \tag{7}
\end{equation*}
$$

Now we use Leibniz rule for the derivative of product two functions f and g :

$$
(f \cdot g)^{(m)}=\sum_{k=0}^{m}\binom{m}{k} f^{(k)} g^{(m-k)},
$$

which can be proved easily by induction.
Thus from (7) we get

$$
\left(x^{2}-1\right) u^{(n+2)}+2 x(n+1) u^{(n+1)}+(n+1) n u^{(n)}=2 n\left(x u^{(n+1)}+(n+1) u^{(n)}\right) .
$$

Simplifying this and noting that $\psi=u^{(n)}$, we get

$$
\left(1-x^{2}\right) \psi^{\prime \prime}-2 x \psi^{\prime}+n(n+1) \psi=0
$$

Thus, ψ satisfies (4). Note that we can write

$$
\psi(x)=\left((x+1)^{n}(x-1)^{n}\right)^{(n)}=(x+1)^{n} n!+(x-1) s(x)
$$

where $s(x)$ is a polynomial. Thus, $\psi(1)=2^{n} n$!. Hence,

$$
\begin{equation*}
P_{n}(x)=\frac{1}{2^{n} n!} \psi(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n} . \tag{8}
\end{equation*}
$$

3 Properties of Legendre polynomials

a. Generating function: The function $G(t, x)$ given by

$$
G(t, x)=\frac{1}{\sqrt{1-2 x t+t^{2}}}
$$

is called the generating function of the Legendre polynomials. It can be shown that for small t

$$
\frac{1}{\sqrt{1-2 x t+t^{2}}}=\sum_{n=0}^{\infty} P_{n}(x) t^{n} .
$$

b. Orthogonality: The following property holds for Legendre polynomials:

$$
\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=\left\{\begin{array}{cl}
0, & \text { if } m \neq n \\
\frac{2}{2 n+1}, & \text { if } m=n
\end{array}\right.
$$

c. Fourier-Legendre series: By using the orthogonality of Legendre polynomials, any piecewise continuous function in $-1 \leq x \leq 1$ can be expresses in terms of Legendre polynomials:

$$
f(x) \sim \sum_{n=0}^{\infty} c_{n} P_{n}(x)
$$

where

$$
c_{n}=\frac{2 n+1}{2} \int_{-1}^{1} f(x) P_{n}(x) d x .
$$

Now

$$
\sum_{n=0}^{\infty} c_{n} P_{n}(x)=\left\{\begin{array}{cl}
\begin{array}{c}
f(x), \\
\frac{f\left(x^{-}\right)+f\left(x^{+}\right)}{2},
\end{array} & \text { where } f \text { is continuous } \\
\text { where } f \text { is discontinuous }
\end{array}\right.
$$

