Lecture XVI

Strum comparison theorem, Orthogonality of Bessel functions

1 Normal form of second order homogeneous linear ODE

Consider a second order linear ODE in the standard form

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 . \tag{1}
\end{equation*}
$$

By a change of dependent variable, (1) can be written as

$$
\begin{equation*}
u^{\prime \prime}+Q(x) u=0, \tag{2}
\end{equation*}
$$

which is called the normal form of (1).
To find the transformation, let use put $y(x)=u(x) v(x)$. When this is substituted in (1), we get

$$
v u^{\prime \prime}+\left(2 v^{\prime}+p v\right) u^{\prime}+\left(v^{\prime \prime}+p v^{\prime}+q v\right) u=0 .
$$

Now we set the coefficient of u^{\prime} to zero. This gives

$$
2 v^{\prime}+p v=0 \Rightarrow v=e^{-\int p / 2 d x}
$$

Now coefficient of u becomes

$$
\left(q(x)-\frac{1}{4} p^{2}-\frac{1}{2} p^{\prime}\right) v=Q(x) v .
$$

Since v is nonzero, cancelling v we get the required normal form. Also, since v never vanishes, u vanishes if and only if y vanishes. Thus, the above transformation has no effect on the zeros of solution.

Example 1. Consider the Bessel equation of order $\nu \geq 0$:

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\nu^{2}\right) y=0, \quad x>0 .
$$

Solution: Here $v=e^{-\int x / 2 d x}=1 / \sqrt{x}$. Now

$$
Q(x)=1-\frac{\nu^{2}}{x^{2}}-\frac{1}{4 x^{2}}+\frac{1}{2 x^{2}}=1+\frac{1 / 4-\nu^{2}}{x^{2}} .
$$

Thus, Bessel equation in normal form becomes

$$
\begin{equation*}
u^{\prime \prime}+\left(1+\frac{1 / 4-\nu^{2}}{x^{2}}\right) u=0 \tag{3}
\end{equation*}
$$

Theorem 1. (Strum comparison theorem) Let ϕ and ψ be nontrivial solutions of

$$
y^{\prime \prime}+p(x) y=0, \quad x \in \mathcal{I},
$$

and

$$
y^{\prime \prime}+q(x) y=0, \quad x \in \mathcal{I},
$$

where p and q are continuous and $p \leq q$ on \mathcal{I}. Then between any two consecutive zeros x_{1} and x_{2} of ϕ, there exists at least one zero of ψ unless $p \equiv q$ on $\left(x_{1}, x_{2}\right)$.

Proof: Consider x_{1} and x_{2} with $x_{1}<x_{2}$. WLOG, assume that $\phi>0$ in $\left(x_{1}, x_{2}\right)$. Then $\phi^{\prime}\left(x_{1}\right)>0$ and $\phi^{\prime}\left(x_{2}\right)<0$. Further, suppose on the contrary that ψ has no zero on (x_{1}, x_{2}). Assume that $\psi>0$ in $\left(x_{1}, x_{2}\right)$. Since ϕ and ψ are solutions of the above equations, we must have

$$
\begin{aligned}
\phi^{\prime \prime}+p(x) \phi & =0 \\
\psi^{\prime \prime}+q(x) \psi & =0
\end{aligned}
$$

Now multiply first of these by ψ and second by ϕ and subtracting we find

$$
\frac{d W}{d x}=(q-p) \phi \psi
$$

where $W=\phi \psi^{\prime}-\psi \phi^{\prime}$ is the Wronskian of ϕ and ψ. Integrating between x_{1} and x_{2}, we find

$$
W\left(x_{2}\right)-W\left(x_{1}\right)=\int_{x_{1}}^{x_{2}}(q-p) \phi \psi d x .
$$

Now $W\left(x_{2}\right) \leq 0$ and $W\left(x_{1}\right) \geq 0$. Hence, the left hand side $W\left(x_{2}\right)-W\left(x_{1}\right) \leq 0$. On the other hand, right hand side is strictly greater than zero unless $p \equiv q$ on $\left(x_{1}, x_{2}\right)$. This contradiction proves that between any two consecutive zeros x_{1} and x_{2} of ϕ, there exists at least one zero of ψ unless $p \equiv q$ on $\left(x_{1}, x_{2}\right)$.

Proposition 1. Bessel function of first kind $J_{v}(\nu \geq 0)$ has infinitely number of positive zeros.

Proof: The number of zeros J_{ν} is the same as that of nontrivial u that satisfies (3), i.e.

$$
\begin{equation*}
u^{\prime \prime}+\left(1+\frac{1 / 4-\nu^{2}}{x^{2}}\right) u=0 \tag{4}
\end{equation*}
$$

Now for large enough x, say x_{0}, we have

$$
\begin{equation*}
\left(1+\frac{1 / 4-\nu^{2}}{x^{2}}\right)>\frac{1}{4}, \quad x \in\left(x_{0}, \infty\right) . \tag{5}
\end{equation*}
$$

Now compare (4) with

$$
\begin{equation*}
v^{\prime \prime}+\frac{1}{4} v=0 . \tag{6}
\end{equation*}
$$

Due to (5), between any two zeros of a nontrivial solution of (6) in (x_{0}, ∞), there exists at least one zero of nontrivial solution of (4). We know that $v=\sin (x / 2)$ is a nontrivial solution of (6), which has infinite number of zeros in $\left(x_{0}, \infty\right)$. Hence, any nontrivial solution of (4) has infinite number of zeros in $\left(x_{0}, \infty\right)$. Thus, J_{ν} has infinite number of zeros in $\left(x_{0}, \infty\right)$, i.e. J_{ν} has infinitely number of positive zeros. We label the positive zeros of J_{ν} by λ_{n}, thus $J_{\nu}\left(\lambda_{n}\right)=0$ for $n=1,2,3, \cdots$.

2 Orthogonality of Bessel function J_{ν}

Proposition 2. (Orthogonality) The Bessel functions $J_{\nu}(\nu \geq 0)$ satisfy

$$
\begin{equation*}
\int_{0}^{1} x J_{\nu}\left(\lambda_{m} x\right) J_{\nu}\left(\lambda_{n} x\right) d x=\frac{1}{2}\left(J_{\nu+1}\left(\lambda_{n}\right)\right)^{2} \delta_{m n} \tag{7}
\end{equation*}
$$

where λ_{i} are the positive zeros of J_{ν}, and $\delta_{m n}=0$ for $m \neq n$ and $\delta_{m n}=1$ for $m=n$.

Proof: We know that $J_{\nu}(x)$ satisfies

$$
y^{\prime \prime}+\frac{1}{x} y^{\prime}+\left(1-\frac{\nu^{2}}{x^{2}}\right) y=0 .
$$

If $u=J_{\nu}(\lambda x)$ and $v=J_{\nu}(\mu x)$, then u and v satisfies

$$
\begin{equation*}
u^{\prime \prime}+\frac{1}{x} u^{\prime}+\left(\lambda^{2}-\frac{\nu^{2}}{x^{2}}\right) u=0 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
v^{\prime \prime}+\frac{1}{x} v^{\prime}+\left(\mu^{2}-\frac{\nu^{2}}{x^{2}}\right) v=0 \tag{9}
\end{equation*}
$$

Multiplying (8) by v and (9) by u and subtracting, we find

$$
\begin{equation*}
\frac{d}{d x}\left[x\left(u^{\prime} v-u v^{\prime}\right)\right]=\left(\mu^{2}-\lambda^{2}\right) x u v . \tag{10}
\end{equation*}
$$

Integrating from $x=0$ to $x=1$, we find

$$
\left(\mu^{2}-\lambda^{2}\right) \int_{0}^{1} x u v d x=u^{\prime}(1) v(1)-u(1) v^{\prime}(1) .
$$

Now $u(1)=J_{\nu}(\lambda)$ and $v(1)=J_{\nu}(\mu)$. Let us choose $\lambda=\lambda_{m}$ and $\mu=\lambda_{n}$, where λ_{m} and λ_{n} are positive zeros of J_{ν}. Then $u(1)=v(1)=0$ and thus find

$$
\left(\lambda_{n}^{2}-\lambda_{m}^{2}\right) \int_{0}^{1} x J_{\nu}\left(\lambda_{m} x\right) J_{\nu}\left(\lambda_{n} x\right) d x=0
$$

If $n \neq m$, then

$$
\int_{0}^{1} x J_{\nu}\left(\lambda_{m} x\right) J_{\nu}\left(\lambda_{n} x\right) d x=0
$$

Now from (10), we find [since $u^{\prime}(x)=\lambda J_{\nu}^{\prime}(\lambda x)$ etc]

$$
\frac{d}{d x}\left[x\left(\lambda J_{\nu}^{\prime}(\lambda x) J_{\nu}(\mu x)-\mu J_{\nu}(\lambda x) J_{\nu}^{\prime}(\mu x)\right)\right]=\left(\mu^{2}-\lambda^{2}\right) x J_{\nu}(\lambda x) J_{\nu}(\mu x)
$$

We differentiate this with respect to μ and then put $\mu=\lambda$. This leads to

$$
2 \lambda x J_{\nu}(\lambda x) J_{\nu}(\lambda x)=\frac{d}{d x}\left[x\left(x \lambda J_{\nu}^{\prime}(\lambda x) J_{\nu}^{\prime}(\lambda x)-J_{\nu}(\lambda x) J_{\nu}^{\prime}(\lambda x)-x \lambda J_{\nu}(\lambda x) J_{\nu}^{\prime \prime}(\lambda x)\right)\right]
$$

Integrating between $x=0$ to $x=1$, we find

$$
2 \lambda \int_{0}^{1} x J_{\nu}^{2}(\lambda x) d x=\lambda\left(J_{\nu}^{\prime}(\lambda)\right)^{2}-J_{\nu}(\lambda) J_{\nu}^{\prime}(\lambda)-\lambda J_{\nu}(\lambda) J_{\nu}^{\prime \prime}(\lambda)
$$

OR

$$
\int_{0}^{1} x J_{\nu}^{2}(\lambda x) d x=\frac{1}{2} J_{\nu}^{\prime}(\lambda)^{2}-\frac{J_{\nu}(\lambda)}{2}\left(\frac{J_{\nu}^{\prime}(\lambda)}{\lambda}+J_{\nu}^{\prime \prime}(\lambda)\right)
$$

[This last relation can be written as (NOT needed for the proof!)

$$
\left.\int_{0}^{1} x J_{\nu}^{2}(\lambda x) d x=\frac{1}{2} J_{\nu}^{\prime}(\lambda)^{2}+\frac{1}{2}\left(1-\frac{\nu^{2}}{\lambda^{2}}\right) J_{\nu}^{2}(\lambda) \quad\right]
$$

Now if we take $\lambda=\lambda_{n}$, where λ_{n} is a positive zero of J_{ν}, then we find

$$
\int_{0}^{1} x J_{\nu}^{2}\left(\lambda_{n} x\right) d x=\frac{1}{2}\left(J_{\nu}^{\prime}\left(\lambda_{n}\right)\right)^{2}
$$

Now

$$
\left(x^{-\nu} J_{\nu}(x)\right)^{\prime}=-x^{-\nu} J_{\nu+1}(x) \Rightarrow J_{\nu}^{\prime}(x)-\frac{\nu}{x} J_{\nu}(x)=-J_{\nu+1}(x),
$$

we find by substituting $x=\lambda_{n}$

$$
J_{\nu}^{\prime}\left(\lambda_{n}\right)=-J_{\nu+1}\left(\lambda_{n}\right)
$$

Thus, finally we get

$$
\int_{0}^{1} x J_{\nu}^{2}\left(\lambda_{n} x\right) d x=\frac{1}{2} J_{\nu+1}^{2}\left(\lambda_{n}\right) .
$$

Theorem 2. (Fourier-Bessel series) Suppose a function f is defined in the interval $0 \leq x \leq 1$ and that it has a Fourier-Bessel series expansion:

$$
f(x) \sim \sum_{n=1}^{\infty} c_{n} J_{\nu}\left(\lambda_{\nu n} x\right)
$$

where $\lambda_{\nu n}$ are the positive zeros of J_{ν}. Using orthogonality, we find

$$
c_{n}=\frac{2}{J_{\nu+1}^{2}\left(\lambda_{\nu n}\right)} \int_{0}^{1} x f(x) J_{\nu}\left(\lambda_{\nu n} x\right) d x
$$

Suppose that f and f^{\prime} are piecewise continuous on the interval $0 \leq x \leq 1$. Then for $0<x<1$,

$$
\sum_{n=1}^{\infty} c_{n} J_{\nu}\left(\lambda_{\nu n} x\right)=\left\{\begin{array}{cl}
f(x), & \text { where } f \text { is continuous } \\
\frac{f\left(x^{-}\right)+f\left(x^{+}\right)}{2}, & \text { where } f \text { is discontinuous }
\end{array}\right.
$$

At $x=0$, it converges to zero for $\nu>0$ and to $f(0+)$ for $\nu=0$. On the other hand, it converges to zero at $x=1$.

