Lecture XVIII

Unit step function, Laplace Transform of Derivatives and Integration, Derivative and Integration of Laplace Transforms

1 Unit step function $u_a(t)$

Definition 1. The unit step function (or Heaviside function) $u_a(t)$ is defined

$$u_a(t) = \begin{cases} 0, & t < a \\ 1, & t > a. \end{cases}$$

This function acts as a mathematical 'on-off' switch as can be seen from the Figure 1. It has been shown in Example 1 of Lecture Note 17 that for a > 0, $\mathcal{L}(u_a(t)) = e^{-as}/s$.

Figure 1: Effects of unit step function on a function f(t). Here b > a.

Example 1. Consider the function

$$f(t) = \begin{cases} t^2, & 0 \le t \le 1, \\ \sin 2t, & 1 < t \le \pi, \\ \cos t, & t > \pi \end{cases}$$

Now let us consider a function g defined by

$$g(t) = \left(u_0(t) - u_1(t)\right)t^2 + \left(u_1(t) - u_\pi(t)\right)\sin 2t + u_\pi(t)\cos t.$$

Now f(t) is piecewise continuous function. Hence, Laplace transform of f exists. Clearly f(t) = g(t) at all t except possibly at a finite number points $t = 0, 1, \pi$ where f(t) possibly has jump discontinuity. Hence, using Uniqueness Theorem of Laplace Transform (see Lecture Note 17), we conclude that $\mathcal{L}(f(t)) = \mathcal{L}(g(t))$.

Theorem 1. (Second shifting theorem) If $\mathcal{L}(f(t)) = F(s)$, then

$$\mathcal{L}\Big(u_a(t)f(t-a)\Big) = e^{-as}F(s).$$

Conversely,

$$\mathcal{L}^{-1}\Big(e^{-as}F(s)\Big) = u_a(t)f(t-a).$$

Proof: From the definition of Laplace transform

$$\mathcal{L}\left(u_a(t)f(t-a)\right) = \int_0^\infty e^{-st}u_a(t)f(t-a)\,dt$$
$$= \int_a^\infty e^{-st}f(t-a)\,dt$$
$$= e^{-as}\int_0^\infty e^{-su}f(u)\,du, \qquad t-a=u$$
$$= e^{-as}F(s).$$

Example 2. Find the Laplace transform of

$$f(t) = \begin{cases} t^2, & 0 \le t \le 1, \\ \sin 2t, & 1 < t \le \pi, \\ \cos t, & t > \pi \end{cases}$$

Solution: We know that if

$$g(t) = \left(u_0(t) - u_1(t)\right)t^2 + \left(u_1(t) - u_\pi(t)\right)\sin 2t + u_\pi(t)\cos t,$$

then F(s) = G(s). Now we write g(t) in such a way that second shifting theorem (see Theorem 1) can be applied. Hence, we manipulate g(t) in the following way:

$$g(t) = u_0(t)t^2 - u_1(t)(t-1+1)^2 + u_1(t)\sin[2(t-1)+2] - u_\pi(t)\sin[2(t-\pi)] - u_\pi(t)\cos(t-\pi)$$

= $u_0(t)t^2 - u_1(t)(t-1)^2 - 2u_1(t)(t-1) - u_1(t) + \cos(2)u_1(t)\sin[2(t-1)]$
+ $\sin(2)u_1(t)\cos[2(t-1)] + u_\pi(t)\sin[2(t-\pi)] - u_\pi(t)\cos(t-\pi)$

Now every term is of the form $u_a(t)h(t-a)$. For example

$$u_0(t)t^2 \equiv u_0(t)(t-0)^2$$
 and $u_1(t) \equiv u_1(t)h(t-1)$ where $h(t) = 1$.

S. Ghorai

Now we know that

$$\mathcal{L}(1) = \frac{1}{s}, \ \mathcal{L}(t) = \frac{1}{s^2}, \ \mathcal{L}(t^2) = \frac{2}{s^3}, \ \mathcal{L}(\cos t) = \frac{s}{s^2 + 1}, \ \mathcal{L}(\sin t) = \frac{1}{s^2 + 1}$$

and

$$\mathcal{L}\left(\cos 2t\right) = \frac{s}{s^2 + 4}, \ \mathcal{L}\left(\sin 2t\right) = \frac{2}{s^2 + 4}$$

Hence,

$$F(s) = \frac{2}{s^3} - \frac{2e^{-s}}{s^3} - \frac{2e^{-s}}{s^2} - \frac{e^{-s}}{s} + \frac{2e^{-s}\cos 2}{s^2 + 4} + \frac{s\sin 2e^{-s}}{s^2 + 4} + \frac{2e^{-\pi s}}{s^2 + 4} - \frac{se^{-\pi s}}{s^2 + 4}$$

2 Laplace transform of derivatives and integrals

Theorem 2. Let f(t) be continuous for $t \ge 0$ and is of exponential order. Further suppose that f is differentiable with f' piecewise continuous in $[0, \infty)$. Then $\mathcal{L}(f')$ exists and is given by

$$\mathcal{L}(f') = s\mathcal{L}(f) - f(0). \tag{1}$$

Proof: Since f' is piecewise continuous in $[0, \infty)$, f' is piecewise continuous in [0, R] for any R > 0. Let x_i , $i = 0, 1, 2, \dots, n$ are the possible points of jump discontinuity where $x_0 = 0$ and $x_n = R$. Now

$$\int_{0}^{R} e^{-st} f'(t) = \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} e^{-st} f'(t) dt$$
$$= \sum_{i=0}^{n-1} e^{-st} f(t) \Big|_{x_{i}}^{x_{i+1}} + s \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} e^{-st} f(t) dt$$
$$= e^{-sR} f(R) - f(0) + s \int_{0}^{R} e^{-st} f(t) dt$$

Since f is of exponential order, $|f(R)| \leq Me^{cR}$. This implies

$$|e^{-sR}f(R)| \le Me^{-(s-c)R} \to 0$$
 as $R \to \infty$ for $s > c$.

Hence taking $R \to \infty$, we find

$$\mathcal{L}(f') = s\mathcal{L}(f) - f(0).$$
⁽²⁾

Corollary 1. Let f and its derivatives $f^{(1)}, f^{(2)}, \dots, f^{(n-1)}$ be continuous for $t \ge 0$ and are of exponential order. Further suppose that $f^{(n)}$ is piecewise continuous in $[0, \infty)$. Then Laplace transform of $f^{(n)}$ exists and is given by

$$\mathcal{L}(f^{(n)}) = s^n \mathcal{L}(f) - s^{n-1} f(0) - s^{n-2} f^{(1)}(0) - \dots - f^{(n-1)}(0).$$
(3)

In particular for n = 2, we get

$$\mathcal{L}(f'') = s^2 \mathcal{L}(f) - sf(0) - f'(0).$$
(4)

Proof: for n = 2, use (2) twice to find

$$\mathcal{L}(f'') = s\mathcal{L}(f') - f'(0)$$

= $s(s\mathcal{L}(f) - f(0)) - f'(0)$
= $s^2\mathcal{L}(f) - sf(0) - f'(0).$

For general n, prove by induction.

Example 3. Find Laplace transform of

$$t\cos(\omega t)$$
.

Solution: Since $f(t) = t \cos(\omega t)$, we find

$$f'(t) = -\omega t \sin(\omega t) + \cos(\omega t)$$

and

$$f''(t) = -\omega^2 f(t) - 2\omega \sin(\omega t).$$

Hence taking Laplace transform on both sides, we find

$$\mathcal{L}(f'') = -\omega^2 \mathcal{L}(f) - 2\omega \mathcal{L}(\sin(\omega t))$$

Hence,

$$s^{2}\mathcal{L}(f) - sf(0) - f'(0) = -\omega^{2}\mathcal{L}(f) - 2\omega\frac{\omega}{s^{2} + \omega^{2}}.$$

Now f(0) = 0, f'(0) = 1. Simplifying, we find

$$\mathcal{L}(f) = \frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}$$

Theorem 3. Let F(s) be the Laplace transform of f. If f is piecewise continuous in $[0,\infty)$ and is of exponential order, then

$$\mathcal{L}\left(\int_0^t f(\tau) \, d\tau\right) = \frac{F(s)}{s}.\tag{5}$$

Proof: Since f is piecewise continuous,

$$g(t) = \int_0^t f(\tau) \, d\tau$$

is continuous. Since f(t) is piecewise continuous, $|f(t)| \leq Me^{kt}$ for all $t \geq 0$ except possibly at finite number of points where f has jump discontinuities. Hence,

$$|g(t)| \le M \int_0^t e^{k\tau} d\tau = \frac{M}{k} (e^{kt} - 1) \le \frac{M}{k} e^{kt}.$$

Thus, g is continuous and is of exponential order. Hence, Laplace transform of g exists. Further g'(t) = f(t) and g(0) = 0. Using (2), we find

$$\mathcal{L}(g') = s\mathcal{L}(g) - g(0) \implies \mathcal{L}(g') = s\mathcal{L}(g) \implies G(s) = \frac{F(s)}{s}.$$

S. Ghorai

Example 4. Find the inverse Laplace transform of $1/s(s+1)^2$.

Solution: Since

$$\mathcal{L}(t) = \frac{1}{s^2} \implies \mathcal{L}(te^{-t}) = \frac{1}{(s+1)^2}$$

Hence for $f(t) = te^{-t}$, we have $F(s) = 1/(s+1)^2$. Thus,

$$\frac{1}{s(s+1)^2} = \frac{F(s)}{s} \implies \mathcal{L}^{-1}\left(\frac{1}{s(s+1)^2}\right) = \int_0^t \tau e^{-\tau} d\tau = 1 - (t+1)e^{-t}$$

3 Derivative and integration of the Laplace transform

Theorem 4. If F(s) is the Laplace transform of f, then

$$\mathcal{L}\Big(-tf(t)\Big) = F'(s), \quad and \quad \mathcal{L}^{-1}\Big(F'(s)\Big) = -tf(t).$$
(6)

Comment: The derivative formula for F(s) can be derived by differentiating under the integral sign, i.e.

$$F'(s) = \frac{d}{ds} \int_0^\infty e^{-st} f(t) dt$$

=
$$\int_0^\infty \frac{\partial}{\partial s} \left(e^{-st} f(t) \right) dt$$

=
$$\int_0^\infty e^{-st} (-tf(t)) dt$$

=
$$\mathcal{L} \left(-tf(t) \right).$$

Example 5. Consider the same problem as in Example 3, i.e. Laplace transform of $t \cos(\omega t)$. Let $f(t) = \cos(\omega t)$. Then

$$F(s) = \frac{s}{s^2 + \omega^2} \implies F'(s) = \frac{\omega^2 - s^2}{(s^2 + \omega^2)^2}.$$

Hence using (6), we find

$$\mathcal{L}\Big(-t\cos(\omega t)\Big) = \frac{\omega^2 - s^2}{(s^2 + \omega^2)^2} \implies \mathcal{L}\Big(t\cos(\omega t)\Big) = \frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}.$$

Example 6. Find the inverse Laplace transform of

$$F(s) = \ln\left(\frac{s-a}{s-b}\right)$$

Solution: If $\mathcal{L}(f(t)) = F(s)$, then $\mathcal{L}(tf(t)) = -F'(s)$. Hence

$$\mathcal{L}\left(tf(t)\right) = \frac{1}{s-b} - \frac{1}{s-a} = \mathcal{L}\left(e^{bt} - e^{at}\right) \implies f(t) = \frac{e^{bt} - e^{at}}{t}.$$

S. Ghorai

Theorem 5. If F(s) is the Laplace transform of f and the limit of f(t)/t exists as $t \to 0^+$, then

$$\mathcal{L}\left(\frac{f(t)}{t}\right) = \int_{s}^{\infty} F(p) \, dp, \quad and \quad \mathcal{L}^{-1}\left(\int_{s}^{\infty} F(p) \, dp\right) = \frac{f(t)}{t}.$$
(7)

Proof: Let

$$g(t) = f(t)/t$$
, and $g(0) = \lim_{t \to 0^+} \frac{f(t)}{t}$.

Now

$$F(s) = \mathcal{L}(f(t)) \implies F(s) = \mathcal{L}(tg(t)) = -G'(s), \quad [using (6)]$$

Hence,

$$G(s) = \int_{s}^{A} F(p) \, dp.$$

Since $G(s) \to 0$ as $s \to \infty$, we must have

$$0 = \int_{\infty}^{A} F(p) \, dp$$

Thus,

$$G(s) = \int_{s}^{A} F(p) \, dp - \int_{\infty}^{A} F(p) \, dp \implies G(s) = \int_{s}^{\infty} F(p) \, dp \implies \mathcal{L}\left(\frac{f(t)}{t}\right) = \int_{s}^{\infty} F(p) \, dp.$$

Example 7. Find the Laplace transform of

$$\frac{\sin \omega t}{t}.$$

Solution: Let $f(t) = \sin \omega t$. Using the formula (7), we find

$$\mathcal{L}\left(\frac{\sin\omega t}{t}\right) = \int_{s}^{\infty} \frac{\omega}{p^{2} + \omega^{2}} dp = \frac{\pi}{2} - \tan^{-1}\left(\frac{s}{\omega}\right).$$

Example 8. Consider the same problem as in Example 6, i.e. inverse Laplace transform of

$$F(s) = \ln\left(\frac{s-a}{s-b}\right)$$

Solution: Note that

$$\mathcal{L}(f(t)) = \ln\left(\frac{s-a}{s-b}\right) = \int_{s}^{\infty} \frac{1}{s-b} dp - \int_{s}^{\infty} \frac{1}{s-a} dp = \mathcal{L}\left(\frac{e^{bt}}{t}\right) - \mathcal{L}\left(\frac{e^{at}}{t}\right)$$

Hence,

$$\mathcal{L}(f(t)) = \mathcal{L}\left(\frac{e^{bt} - e^{at}}{t}\right) \implies f(t) = \frac{e^{bt} - e^{at}}{t}.$$