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Lecture XVIII
Unit step function, Laplace Transform of Derivatives and Integration, Derivative and

Integration of Laplace Transforms

1 Unit step function ua(t)

Definition 1. The unit step function (or Heaviside function) ua(t) is defined

ua(t) =

{
0, t < a
1, t > a.

This function acts as a mathematical ‘on-off’ switch as can be seen from the Figure 1.

It has been shown in Example 1 of Lecture Note 17 that for a > 0, L
(
ua(t)

)
= e−as/s.
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Figure 1: Effects of unit step function on a function f(t). Here b > a.

Example 1. Consider the function

f(t) =


t2, 0 ≤ t ≤ 1,

sin 2t, 1 < t ≤ π,
cos t, t > π



S. Ghorai 2

Now let us consider a function g defined by

g(t) =
(
u0(t)− u1(t)

)
t2 +

(
u1(t)− uπ(t)

)
sin 2t+ uπ(t) cos t.

Now f(t) is piecewise continuous function. Hence, Laplace transform of f exists.
Clearly f(t) = g(t) at all t except possibly at a finite number points t = 0, 1, π where
f(t) possibly has jump discontinuity. Hence, using Uniqueness Theorem of Laplace

Transform (see Lecture Note 17), we conclude that L
(
f(t)

)
= L

(
g(t)

)
.

Theorem 1. (Second shifting theorem) If L
(
f(t)

)
= F (s), then

L
(
ua(t)f(t− a)

)
= e−asF (s).

Conversely,

L−1
(
e−asF (s)

)
= ua(t)f(t− a).

Proof: From the definition of Laplace transform

L
(
ua(t)f(t− a)

)
=

∫ ∞
0

e−stua(t)f(t− a) dt

=

∫ ∞
a

e−stf(t− a) dt

= e−as
∫ ∞

0

e−suf(u) du, t− a = u

= e−asF (s).

Example 2. Find the Laplace transform of

f(t) =


t2, 0 ≤ t ≤ 1,

sin 2t, 1 < t ≤ π,
cos t, t > π

Solution: We know that if

g(t) =
(
u0(t)− u1(t)

)
t2 +

(
u1(t)− uπ(t)

)
sin 2t+ uπ(t) cos t,

then F (s) = G(s). Now we write g(t) in such a way that second shifting theorem (see
Theorem 1) can be applied. Hence, we manipulate g(t) in the following way:

g(t) = u0(t)t
2 − u1(t)(t− 1 + 1)2 + u1(t) sin[2(t− 1) + 2]− uπ(t) sin[2(t− π)]− uπ(t) cos(t− π)

= u0(t)t
2 − u1(t)(t− 1)2 − 2u1(t)(t− 1)− u1(t) + cos(2)u1(t) sin[2(t− 1)]

+ sin(2)u1(t) cos[2(t− 1)] + uπ(t) sin[2(t− π)]− uπ(t) cos(t− π)

Now every term is of the form ua(t)h(t− a). For example

u0(t)t
2 ≡ u0(t)(t− 0)2 and u1(t) ≡ u1(t)h(t− 1) where h(t) = 1.
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Now we know that

L
(

1
)

=
1

s
, L
(
t
)

=
1

s2
, L
(
t2
)

=
2

s3
, L
(

cos t
)

=
s

s2 + 1
, L
(

sin t
)

=
1

s2 + 1

and

L
(

cos 2t
)

=
s

s2 + 4
, L
(

sin 2t
)

=
2

s2 + 4

Hence,

F (s) =
2

s3
− 2e−s

s3
− 2e−s

s2
− e−s

s
+

2e−s cos 2

s2 + 4
+
s sin 2e−s

s2 + 4
+

2e−πs

s2 + 4
− se−πs

s2 + 1

2 Laplace transform of derivatives and integrals

Theorem 2. Let f(t) be continuous for t ≥ 0 and is of exponential order. Further

suppose that f is differentiable with f ′ piecewise continuous in [0,∞). Then L
(
f ′
)

exists and is given by

L
(
f ′
)

= sL
(
f
)
− f(0). (1)

Proof: Since f ′ is piecewise continuous in [0,∞), f ′ is piecewise continuous in [0, R]
for any R > 0. Let xi, i = 0, 1, 2, · · · , n are the possible points of jump discontinuity
where x0 = 0 and xn = R. Now∫ R

0

e−stf ′(t) =
n−1∑
i=0

∫ xi+1

xi

e−stf ′(t) dt

=
n−1∑
i=0

e−stf(t)
∣∣xi+1

xi
+ s

n−1∑
i=0

∫ xi+1

xi

e−stf(t) dt

= e−sRf(R)− f(0) + s

∫ R

0

e−stf(t) dt

Since f is of exponential order, |f(R)| ≤MecR. This implies

|e−sRf(R)| ≤Me−(s−c)R → 0 as R→∞ for s > c.

Hence taking R→∞, we find

L
(
f ′
)

= sL
(
f
)
− f(0). (2)

Corollary 1. Let f and its derivatives f (1), f (2), · · · , f (n−1) be continuous for t ≥ 0 and
are of exponential order. Further suppose that f (n) is piecewise continuous in [0,∞).
Then Laplace transform of f (n) exists and is given by

L
(
f (n)

)
= snL

(
f
)
− sn−1f(0)− sn−2f (1)(0)− · · · − f (n−1)(0). (3)

In particular for n = 2, we get

L
(
f ′′
)

= s2L
(
f
)
− sf(0)− f ′(0). (4)
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Proof: for n = 2, use (2) twice to find

L
(
f ′′
)

= sL
(
f ′)
)
− f ′(0)

= s
(
sL
(
f
)
− f(0)

)
− f ′(0)

= s2L
(
f
)
− sf(0)− f ′(0).

For general n, prove by induction.

Example 3. Find Laplace transform of

t cos(ωt).

Solution: Since f(t) = t cos(ωt), we find

f ′(t) = −ωt sin(ωt) + cos(ωt)

and
f ′′(t) = −ω2f(t)− 2ω sin(ωt).

Hence taking Laplace transform on both sides, we find

L
(
f ′′
)

= −ω2L
(
f
)
− 2ωL

(
sin(ωt)

)
Hence,

s2L
(
f
)
− sf(0)− f ′(0) = −ω2L

(
f
)
− 2ω

ω

s2 + ω2
.

Now f(0) = 0, f ′(0) = 1. Simplifying, we find

L
(
f
)

=
s2 − ω2

(s2 + ω2)2

Theorem 3. Let F (s) be the Laplace transform of f . If f is piecewise continuous in
[0,∞) and is of exponential order, then

L
(∫ t

0

f(τ) dτ
)

=
F (s)

s
. (5)

Proof: Since f is piecewise continuous,

g(t) =

∫ t

0

f(τ) dτ

is continuous. Since f(t) is piecewise continuous, |f(t)| ≤ Mekt for all t ≥ 0 except
possibly at finite number of points where f has jump discontinuities. Hence,

|g(t)| ≤M

∫ t

0

ekτ dτ =
M

k
(ekt − 1) ≤ M

k
ekt.

Thus, g is continuous and is of exponential order. Hence, Laplace transform of g exists.
Further g′(t) = f(t) and g(0) = 0. Using (2), we find

L
(
g′
)

= sL
(
g
)
− g(0) =⇒ L

(
g′
)

= sL
(
g
)

=⇒ G(s) =
F (s)

s
.
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Example 4. Find the inverse Laplace transform of 1/s(s+ 1)2.

Solution: Since

L
(
t
)

=
1

s2
=⇒ L

(
te−t

)
=

1

(s+ 1)2

Hence for f(t) = te−t, we have F (s) = 1/(s+ 1)2. Thus,

1

s(s+ 1)2
=
F (s)

s
=⇒ L−1

(
1

s(s+ 1)2

)
=

∫ t

0

τe−τ dτ = 1− (t+ 1)e−t

3 Derivative and integration of the Laplace transform

Theorem 4. If F (s) is the Laplace transform of f , then

L
(
− tf(t)

)
= F ′(s), and L−1

(
F ′(s)

)
= −tf(t). (6)

Comment: The derivative formula for F (s) can be derived by differentiating under
the integral sign, i.e.

F ′(s) =
d

ds

∫ ∞
0

e−stf(t) dt

=

∫ ∞
0

∂

∂s

(
e−stf(t)

)
dt

=

∫ ∞
0

e−st(−tf(t)) dt

= L
(
− tf(t)

)
.

Example 5. Consider the same problem as in Example 3, i.e. Laplace transform of
t cos(ωt). Let f(t) = cos(ωt). Then

F (s) =
s

s2 + ω2
=⇒ F ′(s) =

ω2 − s2

(s2 + ω2)2
.

Hence using (6), we find

L
(
− t cos(ωt)

)
=

ω2 − s2

(s2 + ω2)2
=⇒ L

(
t cos(ωt)

)
=

s2 − ω2

(s2 + ω2)2
.

Example 6. Find the inverse Laplace transform of

F (s) = ln

(
s− a
s− b

)

Solution: If L
(
f(t)

)
= F (s), then L

(
tf(t)

)
= −F ′(s). Hence

L
(
tf(t)

)
=

1

s− b
− 1

s− a
= L

(
ebt − eat

)
=⇒ f(t) =

ebt − eat

t
.
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Theorem 5. If F (s) is the Laplace transform of f and the limit of f(t)/t exists as
t→ 0+, then

L
(
f(t)

t

)
=

∫ ∞
s

F (p) dp, and L−1
(∫ ∞

s

F (p) dp
)

=
f(t)

t
. (7)

Proof: Let

g(t) = f(t)/t, and g(0) = lim
t→0+

f(t)

t
.

Now
F (s) = L

(
f(t)

)
=⇒ F (s) = L

(
tg(t)

)
= −G′(s), [using (6)]

Hence,

G(s) =

∫ A

s

F (p) dp.

Since G(s)→ 0 as s→∞, we must have

0 =

∫ A

∞
F (p) dp

Thus,

G(s) =

∫ A

s

F (p) dp−
∫ A

∞
F (p) dp =⇒ G(s) =

∫ ∞
s

F (p) dp =⇒ L
(
f(t)

t

)
=

∫ ∞
s

F (p) dp.

Example 7. Find the Laplace transform of

sinωt

t
.

Solution: Let f(t) = sinωt. Using the formula (7), we find

L
(

sinωt

t

)
=

∫ ∞
s

ω

p2 + ω2
dp =

π

2
− tan−1

( s
ω

)
.

Example 8. Consider the same problem as in Example 6, i.e. inverse Laplace trans-
form of

F (s) = ln

(
s− a
s− b

)
Solution: Note that

L
(
f(t)

)
= ln

(
s− a
s− b

)
=

∫ ∞
s

1

s− b
dp−

∫ ∞
s

1

s− a
dp = L

(
ebt

t

)
− L

(
eat

t

)
Hence,

L
(
f(t)

)
= L

(
ebt − eat

t

)
=⇒ f(t) =

ebt − eat

t
.


