Lecture XVIII

Unit step function, Laplace Transform of Derivatives and Integration, Derivative and Integration of Laplace Transforms

1 Unit step function $u_{a}(t)$

Definition 1. The unit step function (or Heaviside function) $u_{a}(t)$ is defined

$$
u_{a}(t)= \begin{cases}0, & t<a \\ 1, & t>a\end{cases}
$$

This function acts as a mathematical 'on-off' switch as can be seen from the Figure 1. It has been shown in Example 1 of Lecture Note 17 that for $a>0, \mathcal{L}\left(u_{a}(t)\right)=e^{-a s} / s$.

Figure 1: Effects of unit step function on a function $f(t)$. Here $b>a$.
Example 1. Consider the function

$$
f(t)=\left\{\begin{array}{cc}
t^{2}, & 0 \leq t \leq 1, \\
\sin 2 t, & 1<t \leq \pi, \\
\cos t, & t>\pi
\end{array}\right.
$$

Now let us consider a function g defined by

$$
g(t)=\left(u_{0}(t)-u_{1}(t)\right) t^{2}+\left(u_{1}(t)-u_{\pi}(t)\right) \sin 2 t+u_{\pi}(t) \cos t .
$$

Now $f(t)$ is piecewise continuous function. Hence, Laplace transform of f exists. Clearly $f(t)=g(t)$ at all t except possibly at a finite number points $t=0,1, \pi$ where $f(t)$ possibly has jump discontinuity. Hence, using Uniqueness Theorem of Laplace Transform (see Lecture Note 17), we conclude that $\mathcal{L}(f(t))=\mathcal{L}(g(t))$.

Theorem 1. (Second shifting theorem) If $\mathcal{L}(f(t))=F(s)$, then

$$
\mathcal{L}\left(u_{a}(t) f(t-a)\right)=e^{-a s} F(s) .
$$

Conversely,

$$
\mathcal{L}^{-1}\left(e^{-a s} F(s)\right)=u_{a}(t) f(t-a)
$$

Proof: From the definition of Laplace transform

$$
\begin{aligned}
\mathcal{L}\left(u_{a}(t) f(t-a)\right) & =\int_{0}^{\infty} e^{-s t} u_{a}(t) f(t-a) d t \\
& =\int_{a}^{\infty} e^{-s t} f(t-a) d t \\
& =e^{-a s} \int_{0}^{\infty} e^{-s u} f(u) d u, \quad t-a=u \\
& =e^{-a s} F(s)
\end{aligned}
$$

Example 2. Find the Laplace transform of

$$
f(t)=\left\{\begin{array}{cc}
t^{2}, & 0 \leq t \leq 1 \\
\sin 2 t, & 1<t \leq \pi \\
\cos t, & t>\pi
\end{array}\right.
$$

Solution: We know that if

$$
g(t)=\left(u_{0}(t)-u_{1}(t)\right) t^{2}+\left(u_{1}(t)-u_{\pi}(t)\right) \sin 2 t+u_{\pi}(t) \cos t
$$

then $F(s)=G(s)$. Now we write $g(t)$ in such a way that second shifting theorem (see Theorem 1) can be applied. Hence, we manipulate $g(t)$ in the following way:

$$
\begin{aligned}
g(t) & =u_{0}(t) t^{2}-u_{1}(t)(t-1+1)^{2}+u_{1}(t) \sin [2(t-1)+2]-u_{\pi}(t) \sin [2(t-\pi)]-u_{\pi}(t) \cos (t-\pi) \\
& =u_{0}(t) t^{2}-u_{1}(t)(t-1)^{2}-2 u_{1}(t)(t-1)-u_{1}(t)+\cos (2) u_{1}(t) \sin [2(t-1)] \\
& +\sin (2) u_{1}(t) \cos [2(t-1)]+u_{\pi}(t) \sin [2(t-\pi)]-u_{\pi}(t) \cos (t-\pi)
\end{aligned}
$$

Now every term is of the form $u_{a}(t) h(t-a)$. For example

$$
u_{0}(t) t^{2} \equiv u_{0}(t)(t-0)^{2} \quad \text { and } \quad u_{1}(t) \equiv u_{1}(t) h(t-1) \quad \text { where } h(t)=1
$$

Now we know that

$$
\mathcal{L}(1)=\frac{1}{s}, \mathcal{L}(t)=\frac{1}{s^{2}}, \mathcal{L}\left(t^{2}\right)=\frac{2}{s^{3}}, \mathcal{L}(\cos t)=\frac{s}{s^{2}+1}, \mathcal{L}(\sin t)=\frac{1}{s^{2}+1}
$$

and

$$
\mathcal{L}(\cos 2 t)=\frac{s}{s^{2}+4}, \mathcal{L}(\sin 2 t)=\frac{2}{s^{2}+4}
$$

Hence,

$$
F(s)=\frac{2}{s^{3}}-\frac{2 e^{-s}}{s^{3}}-\frac{2 e^{-s}}{s^{2}}-\frac{e^{-s}}{s}+\frac{2 e^{-s} \cos 2}{s^{2}+4}+\frac{s \sin 2 e^{-s}}{s^{2}+4}+\frac{2 e^{-\pi s}}{s^{2}+4}-\frac{s e^{-\pi s}}{s^{2}+1}
$$

2 Laplace transform of derivatives and integrals

Theorem 2. Let $f(t)$ be continuous for $t \geq 0$ and is of exponential order. Further suppose that f is differentiable with f^{\prime} piecewise continuous in $[0, \infty)$. Then $\mathcal{L}\left(f^{\prime}\right)$ exists and is given by

$$
\begin{equation*}
\mathcal{L}\left(f^{\prime}\right)=s \mathcal{L}(f)-f(0) \tag{1}
\end{equation*}
$$

Proof: Since f^{\prime} is piecewise continuous in $[0, \infty), f^{\prime}$ is piecewise continuous in $[0, R]$ for any $R>0$. Let $x_{i}, i=0,1,2, \cdots, n$ are the possible points of jump discontinuity where $x_{0}=0$ and $x_{n}=R$. Now

$$
\begin{aligned}
\int_{0}^{R} e^{-s t} f^{\prime}(t) & =\sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} e^{-s t} f^{\prime}(t) d t \\
& =\left.\sum_{i=0}^{n-1} e^{-s t} f(t)\right|_{x_{i}} ^{x_{i+1}}+s \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} e^{-s t} f(t) d t \\
& =e^{-s R} f(R)-f(0)+s \int_{0}^{R} e^{-s t} f(t) d t
\end{aligned}
$$

Since f is of exponential order, $|f(R)| \leq M e^{c R}$. This implies

$$
\left|e^{-s R} f(R)\right| \leq M e^{-(s-c) R} \rightarrow 0 \quad \text { as } R \rightarrow \infty \quad \text { for } \quad s>c
$$

Hence taking $R \rightarrow \infty$, we find

$$
\begin{equation*}
\mathcal{L}\left(f^{\prime}\right)=s \mathcal{L}(f)-f(0) \tag{2}
\end{equation*}
$$

Corollary 1. Let f and its derivatives $f^{(1)}, f^{(2)}, \cdots, f^{(n-1)}$ be continuous for $t \geq 0$ and are of exponential order. Further suppose that $f^{(n)}$ is piecewise continuous in $[0, \infty)$. Then Laplace transform of $f^{(n)}$ exists and is given by

$$
\begin{equation*}
\mathcal{L}\left(f^{(n)}\right)=s^{n} \mathcal{L}(f)-s^{n-1} f(0)-s^{n-2} f^{(1)}(0)-\cdots-f^{(n-1)}(0) \tag{3}
\end{equation*}
$$

In particular for $n=2$, we get

$$
\begin{equation*}
\mathcal{L}\left(f^{\prime \prime}\right)=s^{2} \mathcal{L}(f)-s f(0)-f^{\prime}(0) \tag{4}
\end{equation*}
$$

Proof: for $n=2$, use (2) twice to find

$$
\begin{aligned}
\mathcal{L}\left(f^{\prime \prime}\right) & \left.=s \mathcal{L}\left(f^{\prime}\right)\right)-f^{\prime}(0) \\
& =s(s \mathcal{L}(f)-f(0))-f^{\prime}(0) \\
& =s^{2} \mathcal{L}(f)-s f(0)-f^{\prime}(0)
\end{aligned}
$$

For general n, prove by induction.
Example 3. Find Laplace transform of

$$
t \cos (\omega t)
$$

Solution: Since $f(t)=t \cos (\omega t)$, we find

$$
f^{\prime}(t)=-\omega t \sin (\omega t)+\cos (\omega t)
$$

and

$$
f^{\prime \prime}(t)=-\omega^{2} f(t)-2 \omega \sin (\omega t)
$$

Hence taking Laplace transform on both sides, we find

$$
\mathcal{L}\left(f^{\prime \prime}\right)=-\omega^{2} \mathcal{L}(f)-2 \omega \mathcal{L}(\sin (\omega t))
$$

Hence,

$$
s^{2} \mathcal{L}(f)-s f(0)-f^{\prime}(0)=-\omega^{2} \mathcal{L}(f)-2 \omega \frac{\omega}{s^{2}+\omega^{2}}
$$

Now $f(0)=0, f^{\prime}(0)=1$. Simplifying, we find

$$
\mathcal{L}(f)=\frac{s^{2}-\omega^{2}}{\left(s^{2}+\omega^{2}\right)^{2}}
$$

Theorem 3. Let $F(s)$ be the Laplace transform of f. If f is piecewise continuous in $[0, \infty)$ and is of exponential order, then

$$
\begin{equation*}
\mathcal{L}\left(\int_{0}^{t} f(\tau) d \tau\right)=\frac{F(s)}{s} \tag{5}
\end{equation*}
$$

Proof: Since f is piecewise continuous,

$$
g(t)=\int_{0}^{t} f(\tau) d \tau
$$

is continuous. Since $f(t)$ is piecewise continuous, $|f(t)| \leq M e^{k t}$ for all $t \geq 0$ except possibly at finite number of points where f has jump discontinuities. Hence,

$$
|g(t)| \leq M \int_{0}^{t} e^{k \tau} d \tau=\frac{M}{k}\left(e^{k t}-1\right) \leq \frac{M}{k} e^{k t}
$$

Thus, g is continuous and is of exponential order. Hence, Laplace transform of g exists. Further $g^{\prime}(t)=f(t)$ and $g(0)=0$. Using (2), we find

$$
\mathcal{L}\left(g^{\prime}\right)=s \mathcal{L}(g)-g(0) \Longrightarrow \mathcal{L}\left(g^{\prime}\right)=s \mathcal{L}(g) \Longrightarrow G(s)=\frac{F(s)}{s}
$$

Example 4. Find the inverse Laplace transform of $1 / s(s+1)^{2}$.
Solution: Since

$$
\mathcal{L}(t)=\frac{1}{s^{2}} \Longrightarrow \mathcal{L}\left(t e^{-t}\right)=\frac{1}{(s+1)^{2}}
$$

Hence for $f(t)=t e^{-t}$, we have $F(s)=1 /(s+1)^{2}$. Thus,

$$
\frac{1}{s(s+1)^{2}}=\frac{F(s)}{s} \Longrightarrow \mathcal{L}^{-1}\left(\frac{1}{s(s+1)^{2}}\right)=\int_{0}^{t} \tau e^{-\tau} d \tau=1-(t+1) e^{-t}
$$

3 Derivative and integration of the Laplace transform

Theorem 4. If $F(s)$ is the Laplace transform of f, then

$$
\begin{equation*}
\mathcal{L}(-t f(t))=F^{\prime}(s), \quad \text { and } \quad \mathcal{L}^{-1}\left(F^{\prime}(s)\right)=-t f(t) . \tag{6}
\end{equation*}
$$

Comment: The derivative formula for $F(s)$ can be derived by differentiating under the integral sign, i.e.

$$
\begin{aligned}
F^{\prime}(s) & =\frac{d}{d s} \int_{0}^{\infty} e^{-s t} f(t) d t \\
& =\int_{0}^{\infty} \frac{\partial}{\partial s}\left(e^{-s t} f(t)\right) d t \\
& =\int_{0}^{\infty} e^{-s t}(-t f(t)) d t \\
& =\mathcal{L}(-t f(t)) .
\end{aligned}
$$

Example 5. Consider the same problem as in Example 3, i.e. Laplace transform of $t \cos (\omega t)$. Let $f(t)=\cos (\omega t)$. Then

$$
F(s)=\frac{s}{s^{2}+\omega^{2}} \Longrightarrow F^{\prime}(s)=\frac{\omega^{2}-s^{2}}{\left(s^{2}+\omega^{2}\right)^{2}} .
$$

Hence using (6), we find

$$
\mathcal{L}(-t \cos (\omega t))=\frac{\omega^{2}-s^{2}}{\left(s^{2}+\omega^{2}\right)^{2}} \Longrightarrow \mathcal{L}(t \cos (\omega t))=\frac{s^{2}-\omega^{2}}{\left(s^{2}+\omega^{2}\right)^{2}}
$$

Example 6. Find the inverse Laplace transform of

$$
F(s)=\ln \left(\frac{s-a}{s-b}\right)
$$

Solution: If $\mathcal{L}(f(t))=F(s)$, then $\mathcal{L}(t f(t))=-F^{\prime}(s)$. Hence

$$
\mathcal{L}(t f(t))=\frac{1}{s-b}-\frac{1}{s-a}=\mathcal{L}\left(e^{b t}-e^{a t}\right) \Longrightarrow f(t)=\frac{e^{b t}-e^{a t}}{t}
$$

Theorem 5. If $F(s)$ is the Laplace transform of f and the limit of $f(t) / t$ exists as $t \rightarrow 0^{+}$, then

$$
\begin{equation*}
\mathcal{L}\left(\frac{f(t)}{t}\right)=\int_{s}^{\infty} F(p) d p, \quad \text { and } \quad \mathcal{L}^{-1}\left(\int_{s}^{\infty} F(p) d p\right)=\frac{f(t)}{t} . \tag{7}
\end{equation*}
$$

Proof: Let

$$
g(t)=f(t) / t, \quad \text { and } \quad g(0)=\lim _{t \rightarrow 0^{+}} \frac{f(t)}{t} .
$$

Now

$$
F(s)=\mathcal{L}(f(t)) \Longrightarrow F(s)=\mathcal{L}(\operatorname{tg}(t))=-G^{\prime}(s), \quad[\text { using }(6)]
$$

Hence,

$$
G(s)=\int_{s}^{A} F(p) d p
$$

Since $G(s) \rightarrow 0$ as $s \rightarrow \infty$, we must have

$$
0=\int_{\infty}^{A} F(p) d p
$$

Thus,
$G(s)=\int_{s}^{A} F(p) d p-\int_{\infty}^{A} F(p) d p \Longrightarrow G(s)=\int_{s}^{\infty} F(p) d p \Longrightarrow \mathcal{L}\left(\frac{f(t)}{t}\right)=\int_{s}^{\infty} F(p) d p$.
Example 7. Find the Laplace transform of

$$
\frac{\sin \omega t}{t}
$$

Solution: Let $f(t)=\sin \omega t$. Using the formula (7), we find

$$
\mathcal{L}\left(\frac{\sin \omega t}{t}\right)=\int_{s}^{\infty} \frac{\omega}{p^{2}+\omega^{2}} d p=\frac{\pi}{2}-\tan ^{-1}\left(\frac{s}{\omega}\right) .
$$

Example 8. Consider the same problem as in Example 6, i.e. inverse Laplace transform of

$$
F(s)=\ln \left(\frac{s-a}{s-b}\right)
$$

Solution: Note that

$$
\mathcal{L}(f(t))=\ln \left(\frac{s-a}{s-b}\right)=\int_{s}^{\infty} \frac{1}{s-b} d p-\int_{s}^{\infty} \frac{1}{s-a} d p=\mathcal{L}\left(\frac{e^{b t}}{t}\right)-\mathcal{L}\left(\frac{e^{a t}}{t}\right)
$$

Hence,

$$
\mathcal{L}(f(t))=\mathcal{L}\left(\frac{e^{b t}-e^{a t}}{t}\right) \Longrightarrow f(t)=\frac{e^{b t}-e^{a t}}{t}
$$

