Lecture III
Solution of first order equations

1 Separable equations

These are equations of the form

$$
y^{\prime}=f(x) g(y)
$$

Assuing g is nonzero, we divide by g and integrate to find

$$
\int \frac{d y}{g(y)}=\int f(x) d x+C
$$

What happens if $g(y)$ becomes zero at a point $y=y_{0}$?
Example 1. $x y^{\prime}=y+y^{2}$
Solution: We write this as

$$
\int \frac{d y}{y+y^{2}}=\int \frac{d x}{x}+C \Rightarrow \int \frac{d y}{y}-\int \frac{d y}{1+y}=\ln x+C \Rightarrow \ln y-\ln (1+y)=\ln x+C
$$

Note: Strictly speaking, we should write the above solution as

$$
\ln |y|-\ln |1+y|=\ln |x|+C
$$

When we wrote the solution without the modulas sign, it was (implicitly) assumed that $x>0, y>0$. This is acceptable for problems in which the solution domain is not given explicitly. But for some problems, the modulas sign is necessary. For example, consider the following IVP:

$$
x y^{\prime}=y+y^{2}, \quad y(-1)=-2 .
$$

Try to solve this.

2 Reduction to separable form

2.1 Substitution method

Let the ODE be

$$
y^{\prime}=F(a x+b y+c)
$$

Suppose $b \neq 0$. Substituting $a x+b y+c=v$ reduces the equation to a separable form. If $b=0$, then it is already in separable form.

Example 2. $y^{\prime}=(x+y)^{2}$
Solution: Let $v=x+y$. Then we find

$$
v^{\prime}=v^{2}+1 \Rightarrow \tan ^{-1} v=x+C \Rightarrow x+y=\tan (x+C)
$$

2.2 Homogeneous form

Let the ODE be of the form

$$
y^{\prime}=f(y / x)
$$

In this case, substitution of $v=y / x$ reduces the above ODE to a seprable ODE.
Comment 1: Sometimes, substitution reduces an ODE to the homogeneous form. For example, if $a e \neq b d$, then h and k can be chosen so that $x=u+h$ and $y=v+k$ reduces the following ODE

$$
y^{\prime}=F\left(\frac{a x+b y+c}{d x+e y+f}\right)
$$

to a homeogeneous ODE. What happens if $a e=b d$?
Comment 2: Also, an ODE of the form

$$
y^{\prime}=y / x+g(x) h(y / x)
$$

can be reduced to the separable form by substituting $v=y / x$.
Example 3. $x y y^{\prime}=y^{2}+2 x^{2}, \quad y(1)=2$
Solution: Substituting $v=y / x$ we find

$$
v+x v^{\prime}=v+2 / v \Rightarrow y^{2}=2 x^{2}\left(C+\ln x^{2}\right)
$$

Using $y(1)=2$, we find $C=2$. Hence, $y=2 x^{2}\left(1+\ln x^{2}\right)$

3 Exact equation

A first order ODE of the form

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{1}
\end{equation*}
$$

is exact if there exits a function $u(x, y)$ such that

$$
M=\frac{\partial u}{\partial x} \quad \text { and } \quad N=\frac{\partial u}{\partial y} .
$$

Then the above ODE can be written as $d u=0$ and hence the solution becomes $u=C$.
Theorem 1. Let M and N be defined and continuously differentiable on a rectangle rectangle $R=\left\{(x, y):\left|x-x_{0}\right|<a,\left|y-y_{0}\right|<b\right\}$. Then (1) is exact if and only if $\partial M / \partial y=\partial N / \partial x$ for all $(x, y) \in R$.

Proof: We shall only prove the necessary part. Assume that (1) is exact. Then there exits a function $u(x, y)$ such that

$$
M=\frac{\partial u}{\partial x} \quad \text { and } \quad N=\frac{\partial u}{\partial y} .
$$

Since M and N have continuous first partial derivatives, we have

$$
\frac{\partial M}{\partial y}=\frac{\partial^{2} u}{\partial y \partial x} \quad \text { and } \quad \frac{\partial N}{\partial x}=\frac{\partial^{2} u}{\partial x \partial y}
$$

Now continuity of 2nd partial derivative implies $\partial M / \partial y=\partial N / \partial x$.

Example 4. Solve $(2 x+\sin x \tan y) d x-\cos x \sec ^{2} y d y=0$
Solution: Here $M=2 x+\sin x \tan y$ and $N=-\cos x \sec ^{2} y$. Hence, $M_{y}=N_{x}$. Hence, the solution is $u=C$, where $u=x^{2}-\cos x \tan y$

4 Reduction to exact equation: integrating factor

An integrating factor $\mu(x, y)$ is a function such that

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{2}
\end{equation*}
$$

becomes exact on multiplying it by μ. Thus,

$$
\mu M d x+\mu N d y=0
$$

is exact. Hence

$$
\frac{\partial(\mu M)}{\partial y}=\frac{\partial(\mu N)}{\partial x}
$$

Comment: If an equation has an integrating factor, then it has infinitely many integrating factors.
Proof: Let μ be an integrating factor. Then

$$
\mu M d x+\mu N d y=d u
$$

Let $g(u)$ be any continuous function of u. Now multiplying by $\mu g(u)$, we find

$$
\mu g(u) M d x+\mu g(u) N d y=g(u) d u \Rightarrow \mu g(u) M d x+\mu g(u) N d y=d\left(\int^{u} g(u) d u\right)
$$

Thus,

$$
\mu g(u) M d x+\mu g(u) N d y=d v, \quad \text { whare } \quad v=\int^{u} g(u) d u
$$

Hence, $\mu g(u)$ is an integrating factor. Since, g is arbitrary, there exists an infinite number of integrating factors.

Example 5. $x d y-y d x=0$.
Solution: Clearly $1 / x^{2}$ is an integrating factor since

$$
\frac{x d y-y d x}{x^{2}}=0 \Rightarrow d(y / x)=0
$$

Also, $1 / x y$ is an integrating factor since

$$
\frac{x d y-y d x}{x y}=0 \Rightarrow d \ln (y / x)=0
$$

Similarly it can be shown that $1 / y^{2}, 1 /\left(x^{2}+y^{2}\right)$ etc. are integrating factors.

4.1 How to find intgrating factor

Theorem 2. If (2) is such that

$$
\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)
$$

is a function of x alone, say $F(x)$, then

$$
\mu=e^{\int F d x}
$$

is a function of x only and is an integrating factor for (2).
Example 6. $(x y-1) d x+\left(x^{2}-x y\right) d y=0$
Solution: Here $M=x y-1$ and $N=x^{2}-x y$. Also,

$$
\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)=-\frac{1}{x}
$$

Hence, $1 / x$ is an integrting factor. Multiplying by $1 / x$ we find

$$
\frac{(x y-1) d x+\left(x^{2}-x y\right) d y}{x}=0 \Rightarrow x y-\ln x-y^{2} / 2=C
$$

Theorem 3. If (2) is such that

$$
\frac{-1}{M}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)
$$

is a function of y alone, say $G(y)$, then

$$
\mu=e^{\int G d y}
$$

is a function of y only and is an integrating factor for (2).
Example 7. $y^{3} d x+\left(x y^{2}-1\right) d y=0$
Solution: Here $M=y^{3}$ and $N=x y^{2}-1$. Also,

$$
-\frac{1}{M}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)=-\frac{2}{y}
$$

Hence, $1 / y^{2}$ is an integrting factor. Multiplying by $1 / y^{2}$ we find

$$
\frac{y^{3} d x+\left(x y^{2}-1\right) d y}{y^{2}}=0 \Rightarrow x y+\frac{1}{y}=C
$$

Comment: Sometimes it may be possible to find integrating factor by inspection. For this, some known differential formulas are useful. Few of these are given below:

$$
\begin{aligned}
d\left(\frac{x}{y}\right) & =\frac{y d x-x d y}{y^{2}} \\
d\left(\frac{y}{x}\right) & =\frac{x d y-y d x}{x^{2}} \\
d(x y) & =x d y+y d x \\
d\left(\ln \frac{x}{y}\right) & =\frac{y d x-x d y}{x y}
\end{aligned}
$$

Example 8. $\left(2 x^{2} y+y\right) d x+x d y=0$
Obviously, we can write this as

$$
2 x^{2} y d x+(y d x+x d y)=0 \Rightarrow 2 x^{2} y d x+d(x y)=0
$$

Now if we divide this by $x y$, then the last term remains differential and the first term also becomes differential:

$$
2 x d x+\frac{d(x y)}{x y}=0 \Rightarrow d\left(x^{2}+\ln (x y)\right)=0 \Rightarrow x^{2}+\ln (x y)=C
$$

