Lecture VIII
Homogeneous linear ODE with constant coefficients

1 Homogeneous 2nd order linear equation with constant coefficients

If the ODE is of the form

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad x \in \mathcal{I} \tag{1}
\end{equation*}
$$

where a, b, c are constants, then two independent solutions (i.e. basis) depend on the quadratic equation

$$
\begin{equation*}
a m^{2}+b m+c=0 . \tag{2}
\end{equation*}
$$

Equation (2) is called characteristic equation for (1).
Theorem 1. (i) If the roots of (2) are real and distinct, say m_{1} and m_{2}, then two linearly independent (LI) solutions of (1) are $e^{m_{1} x}$ and $e^{m_{2} x}$. Thus, the general solution to (1) is

$$
y=C_{1} e^{m_{1} x}+C_{2} e^{m_{2} x} .
$$

(ii) If the roots of (2) are real and equal, say $m_{1}=m_{2}=m$, then two LI solutions of (1) are $e^{m x}$ and $x e^{m x}$. Thus, the general solution to (1) is

$$
y=\left(C_{1}+C_{2} x\right) e^{m x}
$$

(iii) If the roots of (2) are complex conjugate, say $m_{1}=\alpha+i \beta$ and $m_{2}=\alpha-i \beta$, then two real LI solutions of (1) are $e^{\alpha x} \cos (\beta x)$ and $e^{\alpha x} \sin (\beta x)$. Thus, the general solution to (1) is

$$
y=e^{\alpha x}\left(C_{1} \cos (\beta x)+C_{2} \sin (\beta x)\right) .
$$

Proof: For convenience (specially for higher order ODE) (1) is written in the operator form $L(y)=0$, where

$$
L \equiv a \frac{d^{2}}{d x^{2}}+b \frac{d}{d x}+c
$$

We also sometimes write L as

$$
L \equiv a D^{2}+b D+c,
$$

where $D=d / d x$. Now

$$
\begin{equation*}
L\left(e^{m x}\right)=\left(a m^{2}+b m+c\right) e^{m x}=p(m) e^{m x} \tag{3}
\end{equation*}
$$

where $p(m)=a m^{2}+b m+c$. Thus, $e^{m x}$ is a solution of (1) if $p(m)=0$.
(i) If $p(m)=0$ has two distinct real roots m_{1}, m_{2}, then both $e^{m_{1} x}$ and $e^{m_{2} x}$ are solutions of (1). Since, $m_{1} \neq m_{2}$, they are also LI. Thus, the general solution to (1) is

$$
y=C_{1} e^{m_{1} x}+C_{2} e^{m_{2} x} .
$$

Example 1. Solve $y^{\prime \prime}-y^{\prime}=0$
Solution: The characteristic equation is $m^{2}-m=0 \Rightarrow m=0,1$. The general solution is $y=C_{1}+C_{2} e^{x}$
(ii) If $p(m)=0$ has real equal roots $m_{1}=m_{2}=m$, then $e^{m x}$ is a solution of (1). To find the other solution, note that if m is repeated root, then $p(m)=p^{\prime}(m)=0$. This suggests differentiating (3) w.r.t. m. Since L consists of differentiation w.r.t. x only,

$$
\begin{aligned}
\frac{\partial}{\partial m}\left(L\left(e^{m x}\right)\right) & =L\left(\frac{\partial}{\partial m} e^{m x}\right)=L\left(x e^{m x}\right) . \\
L\left(x e^{m x}\right) & =p(m) x e^{m x}+p^{\prime}(m) e^{m x}
\end{aligned}
$$

where ' represents the derivative. Since, m is a repeated root, the RHS is zero. Thus, $x e^{m x}$ is also a solution to (1) and it is independent of $e^{m x}$. Hence, the general solution to (1) is

$$
y=\left(C_{1}+C_{2} x\right) e^{m x}
$$

(We can also solve by reduction of oder technique i.e. $y_{1}=e^{m x}$ and $y_{2}=v(x) y_{1}=$ $v(x) e^{m x}$. From the given ODE, we find

$$
a v^{\prime \prime}+(2 a m+b) v^{\prime}+\left(a m^{2}+b m+c\right) v=0
$$

Since $m=m_{1}=m_{2}$ is a double root, we must have $a m^{2}+b m+c=0$ and $m=$ $-b / 2 a \Rightarrow 2 a m+b=0$. Hence, $v "=0 \Rightarrow v^{\prime}=1 \Rightarrow v=x$ and hence $\left.y_{2}=x e^{m x}\right)$
Example 2. Solve $y^{\prime \prime}-2 y^{\prime}+y=0$
Solution: The characteristic equation is $m^{2}-2 m+1=0 \Rightarrow m=1,1$. The general solution is $y=\left(C_{1}+C_{2} x\right) e^{x}$
(iii) If the roots of (2) are complex conjugate, say $m_{1}=\alpha+i \beta$ and $m_{2}=\alpha-i \beta$, then two LI solutions are $Y_{1}=e^{(\alpha+i \beta) x}$ and $Y_{2}=e^{(\alpha-i \beta) x}$. But these are complex valued. Note that if Y_{1}, Y_{2} are LI, then so does $y_{1}=\left(Y_{1}+Y_{2}\right) / 2$ and $y_{2}=\left(Y_{1}-Y_{2}\right) / 2 i$. Hence, two real LI solutions of (1) are $y_{1}=e^{\alpha x} \cos (\beta x)$ and $y_{2}=e^{\alpha x} \sin (\beta x)$. Thus, the general solution to (1) is

$$
y=e^{\alpha x}\left(C_{1} \cos (\beta x)+C_{2} \sin (\beta x)\right) .
$$

Example 3. Solve $y^{\prime \prime}-2 y^{\prime}+5 y=0$
Solution: The characteristic equation is $m^{2}-2 m+5=0 \Rightarrow m=1 \pm 2 i$. The general solution is $y=e^{x}\left(C_{1} \cos 2 x+C_{2} \sin 2 x\right)$

2 Homogeneous n-th order linear equation with constant coefficients

Now the ODE is of the form

$$
\begin{equation*}
a_{0} y^{(n)}(x)+a_{1} y^{(n-1)}(x)+a_{2} y^{(n-2)}(x)+\cdots+a_{n-1} y^{(1)}(x)+a_{n} y(x)=0, \quad x \in \mathcal{I}, \tag{4}
\end{equation*}
$$

where the superscript (i) denotes the i-th derivative and all a_{i} 's are constants. As in the case of 2 nd order linear equation, the LI solutions of (4) depends on the characteristic equations

$$
\begin{equation*}
a_{0} m^{n}+a_{1} m^{n-1}+\cdots+a_{n-1} m+a_{n}=0 \tag{5}
\end{equation*}
$$

Obviously, this equation has n roots. As in the case of 2 nd order equation, the following can be proved.

Theorem 2. The fundamental set of solutions \mathcal{B} for (4) is obtained using the following two rules:
Rule 1: If a root m of (5) is real and repeated k times, then this root gives k number of LI solutions $e^{m x}, x e^{m x}, x^{2} e^{m x}, \cdots, x^{k-1} e^{m x}$ to \mathcal{B}.
Rule 2: If the roots $m=\alpha \pm i \beta$ of (5) is complex conjugate $(\beta \neq 0)$ and are repeated k times each, then they contribute $2 k$ number of LI solutions $e^{\alpha x} \cos (\beta x), e^{\alpha x} \sin (\beta x)$, $x e^{\alpha x} \cos (\beta x), x e^{\alpha x} \sin (\beta x), x^{2} e^{\alpha x} \cos (\beta x), x^{2} e^{\alpha x} \sin (\beta x), \cdots \cdots, x^{k-1} e^{\alpha x} \cos (\beta x)$ and $x^{k-1} e^{\alpha x} \sin (\beta x)$ to \mathcal{B}.

Example 4. Solve $y^{(5)}(x)+y^{(4)}(x)-2 y^{(3)}(x)-2 y^{(2)}(x)+y^{(1)}(x)+y=0$
Solution: The characteristic equation is $m^{5}+m^{4}-2 m^{3}-2 m^{2}+m+1=0 \Rightarrow$ $(m+1)^{3}(m-1)^{2}=0 \Rightarrow m=-1,-1,-1,1,1$. The general solution is $y=e^{-x}\left(C_{1}+\right.$ $\left.C_{2} x+C_{3} x^{2}\right)+e^{x}\left(C_{4}+C_{5} x\right)$

Example 5. Solve $y^{(6)}(x)+8 y^{(5)}(x)+25 y^{(4)}(x)+32 y^{(3)}(x)-y^{(2)}(x)-40 y^{(1)}(x)-25 y=0$
The characteristic equation is $m^{6}+8 m^{5}+25 m^{4}+32 m^{3}-m^{2}-40 m-25=0 \Rightarrow$ $(m+1)(m-1)\left(m^{2}+4 m+5\right)^{2}=0 \Rightarrow m=-1,1,-2 \pm i,-2 \pm i$. The general solution is $y=C_{1} e^{-x}+C_{2} e^{x}+e^{-2 x}\left(\left(C_{3}+C_{4} x\right) \cos x+\left(C_{5}+C_{6} x\right) \sin x\right)$

