Lecture IX

Non-homogeneous linear ODE, method of undetermined coefficients

1 Non-homogeneous linear equation

We shall mainly consider 2 nd order equations. Extension to the n-th order is straight forward.
Consider a 2nd order linear ODE of the form

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x), \quad x \in \mathcal{I}, \tag{1}
\end{equation*}
$$

where p, q are continuous functions. Let $y_{p}(x)$ is a (particular) solution to (1). Then

$$
y_{p}^{\prime \prime}+p(x) y_{p}^{\prime}+q(x) y_{p}=r(x) .
$$

Let y be any solution to (1). Now consider $Y=y-y_{p}$ satisfies

$$
Y^{\prime \prime}+p(x) Y^{\prime}+q(x) Y=0
$$

Thus, Y satisfies a homogeneous linear 2nd order ODE. Hence, we express Y as linear combination of two LI solutions y_{1} and y_{2}. This gives

$$
Y=C_{1} y_{1}+C_{2} y_{2}
$$

or

$$
\begin{equation*}
y=C_{1} y_{1}+C_{2} y_{2}+y_{p} \tag{2}
\end{equation*}
$$

Thus, the general solution to (1) is given by (2). We have seen how to find y_{1} and y_{2}. Here, we concentrate on methods to find y_{p}.

1.1 Method of undetermined coefficients

This method works for the following nonhomogeneous linear equation:

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=r(x), \quad x \in \mathcal{I}, \tag{3}
\end{equation*}
$$

where a, b, c are constants and $r(x)$ is a finite linear combination of products formed from the polynomial, exponential and sines or cosines functions. Thus, $r(x)$ is a finite linear combination of functions of the following form:

$$
e^{\alpha x} x^{m}\left\{\begin{array}{c}
\sin \beta x \\
\cos \beta x
\end{array}\right.
$$

where m is a nonnegative integer.
Suppose

$$
r(x)=r_{1}(x)+r_{2}(x)+\cdots+r_{n}(x) .
$$

If $y_{p i}(x), 1 \leq i \leq n$ is a particular solution to

$$
a y^{\prime \prime}+b y^{\prime}+c y=r_{i}(x)
$$

then it is trivial to prove that

$$
y_{p}(x)=y_{p 1}(x)+y_{p 2}(x)+\cdots+y_{p n}(x)
$$

is a particular solution to

$$
a y^{\prime \prime}+b y^{\prime}+c y=r(x) .
$$

Hence, we shall consider the case when $r(x)$ is one of the $r_{i}(x)$. Thus, we choose $r(x)$ to be of the following form:

$$
e^{\alpha x} x^{m}\left\{\begin{array}{c}
\sin \beta x \\
\cos \beta x
\end{array} .\right.
$$

Rule 1: If none of the terms in $r(x)$ is a solution of the homogeneous problem, then for y_{p}, choose a linear combination of $r(x)$ and all its derivatives that form a finite set of linearly independent functions.

Example 1. Consider

$$
y^{\prime \prime}-2 y^{\prime}+2 y=x \sin x
$$

Solution: The LI solutions of the homogeneous part are $e^{x} \cos x$ and $e^{x} \sin x$. Clearly, neither x nor $\sin x$ is a solution of the homogeneous part. Hence, we choose

$$
y_{p}(x)=a x \sin (x)+b x \cos x+c \cos x+d \sin x .
$$

Now substituting into the governing equation, we get
$(a+2 b) x \sin x+(-2 a+b) x \cos x+(2 a-2 b-2 c+d) \cos x+(-2 a-2 b+c+2 d) \sin x=x \sin x$.
Hence

$$
a+2 b=1, \quad-2 a+b=0, \quad(2 a-2 b-2 c+d)=0, \quad(-2 a-2 b+c+2 d)=0 .
$$

Solving, we get

$$
a=\frac{1}{5}, b=\frac{2}{5}, c=\frac{2}{25}, d=\frac{14}{25}
$$

Hence, the general solution is

$$
y=e^{x}\left(C_{1} \cos x+C_{2} \sin x\right)+\frac{1}{5} x \sin (x)+\frac{2}{5} x \cos x+\frac{2}{25} \cos x+\frac{24}{25} \sin x
$$

Aliter: (Annihilator method) Writing $D \equiv d / d x$, we write

$$
\left(D^{2}-2 D+2\right) y_{p}=x \sin x .
$$

Note that $\left(D^{2}+1\right)^{2} x \sin x=0$. Hence, operating $\left(D^{2}+1\right)^{2}$ on both sides, we find

$$
\left(D^{2}+1\right)^{2}\left(D^{2}-2 D+2\right) y_{p}=0
$$

The characteristic roots are found from $\left(m^{2}+1\right)^{2}\left(m^{2}-2 m+2\right)=0$. Thus, $m=$ $-1 \pm i$ and $m= \pm i, \pm i$. Now solution to this homogeneous linear ODE with constant coefficient is

$$
y_{p}=e^{x}\left(c_{1} \cos x+c_{2} \sin x\right)+\left(c_{3} \cos x+c_{4} \sin x\right)+x\left(c_{5} \cos x+c_{6} \sin x\right)
$$

Since, the first two terms are the solution of the original homogeneous part and hence contribute nothing. Thus, the form for y_{p} must be

$$
y_{p}=\left(c_{3} \cos x+c_{4} \sin x\right)+x\left(c_{5} \cos x+c_{6} \sin x\right)
$$

which conforms with previous form.
Rule 2: If $r(x)$ contains terms that are solution of the homogeneous linear part, then to choose the trial form of y_{p} follow the following steps. First, choose a linear combination of $r(x)$ and its derivatives which are LI. Second, this linear combination is multiplied by a power of x, say x^{k}, where k is the smallest nonnegative integer that makes all the new terms not to be solutions of the homogeneous problem.
Example 2. Consider

$$
y^{\prime \prime}-2 y^{\prime}-3 y=x e^{-x}
$$

Solution: The LI solutions of the homogeneous part are e^{-x} and $e^{3 x}$. Clearly, e^{-x} is a solution of the homogeneous part. Hence, we choose $y_{p}(x)=x\left(a x e^{-x}+b e^{-x}\right)$. Substituting, we find

$$
e^{-x}(-4 b+2 a-8 a x)=x e^{-x}
$$

This, gives $-4 b+2 a=0,-8 a=1$ and thus $a=-1 / 8, b=-1 / 16$. Thus, the general solution is

$$
y=C_{1} e^{-x}+C_{2} e^{3 x}-\frac{x e^{-x}}{16}(2 x+1)
$$

Aliter: (Annihilator method) Writing $D \equiv d / d x$, we write

$$
\left(D^{2}-2 D-3\right) y_{p}=x e^{-x}
$$

Since $(D+1)^{2} x e^{-x}=0$, operating $(D+1)^{2}$ on both sides we find

$$
(D+1)^{2}\left(D^{2}-2 D-3\right) y_{p}=0
$$

The characteristic roots are found from $(m+1)^{2}\left(m^{2}-2 m-3\right)=0$. Thus, $m=$ $-1,-1,-1,3$. Now solution to this homogeneous linear ODE with constant coefficient is

$$
y_{p}=c_{1} e^{3 x}+e^{-x}\left(c_{2}+c_{3} x+c_{4} x^{2}\right)
$$

Since, the first two terms are the solution of the original homogeneous part and hence contribute nothing. Thus, the form for y_{p} must be

$$
y_{p}=e^{-x}\left(c_{3} x+c_{4} x^{2}\right),
$$

which conforms with the previous form.
Example 3. Consider

$$
y^{\prime \prime}-2 y^{\prime}+y=6 x e^{x}
$$

Solution: The LI solutions of the homogeneous part are e^{x} and $x e^{x}$. Clearly, both $e^{x}, x e^{x}$ are solutions of the homogeneous part. Hence, we choose $y_{p}(x)=x^{2}\left(a x e^{x}+b e^{x}\right)$. Substituting, we find

$$
e^{x}(2 b+3 a x)=6 x e^{x}
$$

This, gives $a=1, b=0$. Thus, the general solution is

$$
y=e^{x}\left(C_{1}+C_{2} x+x^{3}\right)
$$

Example 4. Consider

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+2 y^{\prime}=10+4 x e^{2 x} .
$$

Solution: The LI solutions of the homogeneous part related to the characteristic equation

$$
m^{3}-3 m^{2}+2 m=0 \quad \Rightarrow \quad m=0,1,2 .
$$

Thus the LI solutions are $1, e^{x}$ and $e^{2 x}$. Clearly, $e^{2 x}$ and 10 are solutions of the homogeneous part. Hence, we choose $y_{p}(x)=a x+x\left(b x e^{2 x}+c e^{2 x}\right)$. Substituting, we find

$$
2 a+(6 b+2 c) e^{2 x}+4 b x e^{2 x}=10+4 x e^{2 x}
$$

This, gives $a=5, b=1$ and $c=-3$ Thus, the general solution is

$$
y=C_{1}+C_{2} e^{x}+C_{3} e^{2 x}+5 x+e^{2 x}\left(x^{2}-3 x\right)
$$

Aliter: (Annihilator method) Writing $D \equiv d / d x$, we write

$$
\left(D^{3}-3 D+2 D\right) y_{p}=10+4 x e^{2 x} .
$$

To annihilate 10 we apply D and to annihilate $x e^{2 x}$, we apply $(D-2)^{2}$. Thus,

$$
D(D-2)^{2}\left(D^{3}-3 D+2 D\right) y_{p}=0
$$

The characteristic roots are found from $m(m-2)^{2}\left(m^{3}-3 m+2 m\right)=0$. Thus, $m=$ $0,0,1,2,2,2$. Now solution to this homogeneous linear ODE with constant coefficient is

$$
y_{p}=c_{1}+c_{2} x+c_{3} e^{x}+e^{2 x}\left(c_{4}+c_{5} x+c_{6} x^{2}\right)
$$

The terms with c_{1}, c_{3} and c_{4} are the solution of the original homogeneous part and hence contribute nothing. Thus, the form for y_{p} must be

$$
y_{p}=c_{2} x+e^{2 x}\left(c_{5} x+c_{6} x^{2}\right) .
$$

which conforms with the previous form.

