Best Approximation: Least-squares Theory

We have seen that finding the minimax approximation is complicated. Here we discuss best approximation in the least-squares sense. We shall see that the problem reduces to solving a system of linear equations.

Let \(f \in C[a, b] \) and we want to approximate \(f \) by \(p \in \Pi_n \). Note that \(C[a, b] \) is an inner product space. Suppose we measure the difference by the

\[
\|f - p\|^2 = \langle f - p, f - p \rangle = \int_a^b \left(f(x) - p(x) \right)^2 \omega(x) \, dx
\]

where \(\omega \) is a continuous positive function (weight function). Such a polynomial is called the least squares approximation to \(f \) by a polynomial of degree \(\leq n \).

The following theorem holds for a subspace \(W \) of an inner product space \(V \). Hence it will also hold if we take \(V = C[a, b] \) and \(W = \Pi_n \).

Theorem: Let \(W \) be a subspace of an inner product space \(V \). For \(f \in V \) and \(p \in W \), the following properties are equivalent.

1. \(p \) is best approximation to \(f \) in \(W \)
2. \(f - p \perp W \)

Proof: Let \(f - p \perp W \). If \(q \in W \), then (using \(p - q \perp f - p \))

\[
\|f - q\|^2 = \|f - p + p - q\|^2 = \|f - p\|^2 + \|p - q\|^2 \geq \|f - p\|^2
\]

Hence the result follows.

Conversely, let \(p \) is the best approximation and \(\epsilon > 0 \). Now for \(q \in W \), we must have (since \(p - \epsilon q \in W \))

\[
\|f - p\|^2 \leq \|f - p + \epsilon q\|^2
\]

This on simplification gives

\[
\epsilon \left(2 \langle f - p, q \rangle + \epsilon \|q\|^2 \right) \geq 0
\]

Now we make \(\epsilon \to 0^+ \), which gives \(\langle f - p, q \rangle \geq 0 \). Similarly, taking \(\epsilon < 0 \), we get \(\langle f - p, q \rangle \leq 0 \). Combining both and noting that \(q \) is an arbitrary element of \(W \), we get \(f - p \perp W \).

Example: Consider a function \(f \in C[0, 1] \). We want least-squares approximate to it by \(p \in \Pi_n \). We know that \(\{1, x, \cdots, x^n\} \) is a basis of \(\Pi_n \). Hence, by the above theorem \(f - p \) must be orthogonal to \(x^i \) for \(i = 0, 1, 2, \cdots, n \). Let

\[
p = \sum_{i=0}^{n} a_i x^i
\]

Then we arrive at a linear system \(AX = b \), where \(X = (a_0, a_1, \cdots, a_n)^T \), \(b = (b_0, b_1, \cdots, b_n)^T \) and \(A = (A_{i,j})_{n+1 \times n+1} \) and 0 \leq i, j \leq n. Further,

\[
b_i = \int_0^1 f(x)x^i \, dx, \quad A_{i,j} = \int_0^1 x^{i+j} \, dx = \frac{1}{i+j+1}
\]

The matrix is called Hilbert matrix which is ill-conditioned as \(n \) becomes larger. Thus the basis chosen for the least-squares approximation is poor.
1 Orthonormal system

A set of vectors (here they are functions) f_1, f_2, \cdots is called orthonormal if $< f_i, f_j > = \delta_{ij}$. Let us consider the basis of the approximation space that consists of orthonormal vectors.

Theorem: Let g_1, g_2, \cdots, g_n be an orthonormal basis for W. The best least-squares approximation to $f \in V$ by $g = \sum_{i=1}^{n} a_i g_i \in W$ is obtained iff $a_i = < f, g_i >$.

Proof: By the previous theorem, the best approximation satisfy $f - g \perp W$. Hence $f - \sum_{i=1}^{n} a_i g_i$ must be perpendicular to each g_i:

$$< f - \sum_{i=1}^{n} a_i g_i, g_k >= 0 \implies c_k = < f, g_k >$$

Hence, once we know the orthonormal basis, finding the best least-squares approximation is trivial. Note that a set of orthonormal vectors can be found by the Gram-Schmidt process.

Theorem: The orthogonal polynomial p_0, p_1, \cdots, p_n satisfy a three term recurrence relation as follows:

$$p_n(x) = (x - a_n)p_{n-1}(x) - b_n p_{n-2}(x), \quad n \geq 2$$

with $p_0(x) = 1$, $p_1(x) = x - a_1$ and

$$a_n = < xp_{n-1}, p_{n-1} > / < p_{n-1}, p_{n-1} >, \quad b_n = < xp_{n-1}, p_{n-2} > / < p_{n-2}, p_{n-2} >$$

Proof: It is clear that each polynomial p_i is a monic polynomial of degree i. Now we show by induction that $< p_i, p_i > = 0$ for $i = 0, 1, 2, \cdots, n - 1$. For $n = 0$, nothing to prove. For $n = 1$, we find

$$< p_1, p_0 > = < xp_0 - a_1 p_0, p_0 > = < xp_0, p_0 > - a_1 < p_0, p_0 > = 0$$

Assume that the result is true for $n = k$ and hence $< p_k, p_i > = 0$ for $k = 0, 1, 2, \cdots, k - 1$. Now for $n = k + 1$, we find $p_{k+1}(x) = (x - a_{k+1}) p_k(x) - b_{k+1} p_{k-1}(x)$. We need to show that $< p_{k+1}, p_i > = 0$ for $i = 0, 1, 2, \cdots, k$. Now

$$< p_{k+1}, p_k > = < xp_{k+1}, p_k > - a_{k+1} < p_k, p_k > - b_{k+1} < p_{k-1}, p_k > = 0$$

$$< p_{k+1}, p_{k-1} > = < xp_{k+1}, p_{k-1} > - a_{k+1} < p_k, p_{k-1} > - b_{k+1} < p_{k-1}, p_{k-1} >$$

$$= < xp_k, p_{k-1} > - b_{k+1} < p_{k-1}, p_{k-1} > = 0$$

For $0 \leq i \leq k - 2$, we find (using $< x f, g > = < f, x h >$)

$$< p_{k+1}, p_i > = < xp_{k+1}, p_i > - a_{k+1} < p_k, p_i > - b_{k+1} < p_{k-1}, p_i >$$

$$= < xp_k, p_i > - a_{k+1} < p_{k+1}, p_i > - b_{k+1} < p_{k-1}, p_i >$$

$$= < xp_k, p_i > - a_{k+1} < p_{k+1}, p_i > - b_{k+1} < p_{k-1}, p_i > - a_i p_i + b_i + b_{i+1} p_i - a_{i+1} p_i = 0$$

where for $i = 0$, we use $x p_0 = p_1 + a_1 p_0$. We have used recurrence relation in the last step.

Theorem: The orthogonal polynomial p_n derived in the previous theorem is monic polynomial of degree n and it has the lowest (square) norm among all monic polynomial of degree n.

Proof: Let q be an arbitrary monic polynomial of degree n. Then we can write $q = p_n - \sum_{i=0}^{n-1} a_i p_i$. The norm of q will be minimum if $q \perp \Pi_{n-1}$. Now $p_n \perp \Pi_{n-1}$ and hence this implies $a_i = 0$ for $i = 0, 1, 2, \cdots, n - 1$.
Theorem: An orthogonal polynomial $p_n(x)$ ($n \geq 1$) has n simple real zeros which lie in the interval (a,b).

Proof: Let $x_{1,n}, x_{2,n}, \ldots, x_{r,n}$ that lie in (a,b) are the points where $p_n(x)$ changes sign. We claim that $r \geq n$. If $r < n$, then take $\bar{x} \in (\max x_{i,n}, b)$ and consider

$$q(x) = p_n(\bar{x})(x - x_{1,n})(x - x_{2,n}) \cdots (x - x_{r,n})$$

is a polynomial of degree $< n$ which has the same sign as that of p_n in whole (a,b). Since q has degree $< n$, we have $< p, p_n > = 0$. But because p and p_n has same sign, we must have $p(x)p_n(x)\omega(x) > 0$ at all $x \in (a,b)$ except $x_{1,n}, x_{2,n}, \ldots, x_{r,n}$ where it is zero. Hence $< p, p_n > > 0$. This contradiction implies that $r \geq n$. Hence p_n has at least n zeros. Since p_n does not have more than n zeros, we must have $r = n$.