A. Write a C program that finds the roots of a quadratic polynomial $ax^2 + bx + c = 0$. The program accepts values of a, b and c from the terminal and then proceeds depending on the values of a, b and c.

1. If a is zero, then the program prints out the message "It is not a quadratic equation: Enter nonzero a". Once you enter a nonzero value of a, it proceeds to next step.

2. It next finds the discriminant $d = b^2 - 4ac$.

3. If $d > 0$, the program finds the real distinct roots

$$r_1 = \frac{-b + \sqrt{d}}{2a}, \quad r_2 = \frac{-b - \sqrt{d}}{2a}.$$

It prints out the roots with appropriate message.

4. If $d = 0$, the roots are real and equal

$$r_1 = \frac{-b}{2a}, \quad r_2 = \frac{-b}{2a}.$$

It prints out the roots with appropriate message.

/* This prog. finds roots of $ax^2+bx+c=0$*/

#include <stdio.h>
#include <math.h>

int main()
{
 double a,b,c,d,r1,r2;

 printf("Enter a,b,c: ");
 scanf("%lf%lf%lf",&a,&b,&c);

 while(a==0)
 {
 printf("Enter a nonzero a: ");
 scanf("%lf",&a);
 }

 d=b*b-4.0*a*c;
 if(d>0)
 {
 r1 = (-b+sqrt(d))/(2*a);
 r2 = (-b-sqrt(d))/(2*a);
 printf("The roots are real and distinct: r1=%0.2lf r2=%0.2lf\n",r1,r2);
 }
 else if(d==0.0)
 {
 r1 = -b/(2*a);
 }
}
r2 = r1;
printf("The roots are real and equal: r1=%0.2lf r2=%0.2lf\n",r1,r2);
}
else
{
 r1 = -b/(2*a);
 r2 = sqrt(-d)/(2*a);
 printf("The roots are complex conjugate:\n");
 printf("r1=%0.2lf + i %0.2lf r2=%0.2lf - i %0.2lf\n",r1,r2,r1,r2);
}

return 0;
}

5. If $d < 0$, the roots are complex conjugate with real part $r_1 = -b/2a$ and imaginary part $r_2 = \sqrt{-d}/2a$. It then prints out the roots with appropriate message.

B. The equation $f(x) := (1-x) \cos x - \sin x = 0$ has a root between $a = 0$ and $b = 1$ since $f(a)f(b) < 0$. The bisection method of finding the root proceeds as follows:

1. It finds the midpoint $r = (a + b)/2$.

2. If $f(r) = 0$, then r is the root. If $|b - a|$ is very small, then also we can take r as the root. In either of the cases, our job is done.

3. If $f(r) \neq 0$ and $f(a)f(r) < 0$, then the root lies between a and r. We assign r to b and go to step 1.

4. If $f(r) \neq 0$ and $f(b)f(r) < 0$, then the root lies between r and b. We assign r to a and go to step 1.

5. If the number of iterations is high, we may stop the process with appropriate message.

/* This prog. finds roots of $ax^2+bx+c=0$*/
/* Can also be done with
 * #define f(x) (1-(x))*cos((x))-sin((x))
 * fa=f(a) fb=f(b) fr=f(r) etc*/

#include <stdio.h>
#include <math.h>

int main()
{
 int iter,ITMAX=1000;
 double a=0,b=1,r,eps=1.e-6;
 double fa,fb,fr;

 fa = (1.0-a)*cos(a)-sin(a);
 fb = (1.0-b)*cos(b)-sin(b);
 r=0.5*(a+b);
 fr = (1.0-r)*cos(r)-sin(r);
iter = 0;

while(fr != 0.0 && fabs(b-a)>eps && iter < ITMAX)
{
 if(fr*fa < 0.0)
 {
 b=r;
 fb=fr;
 }
 else
 {
 a=r;
 fa=fr;
 }
 iter++;
 r=0.5*(a+b);
 fr = (1.0-r)*cos(r)-sin(r);
}

if(iter==ITMAX)
{
 printf("The bisection method does not converge\n");
 return 0;
}

printf("The required root is %0.5lf\n",r);

return 0;
}