LAB III

1.a Login to default directory and see if the directory LAB3 exists. [Hint. ls]
1.b If the directory LAB3 exists, then remove it. [Hint. To remove the directory LAB3, the following steps are needed (i) Go to that directory (cd LAB3); (ii) Remove its content (rm *); (iii) Go back to the previous directory (cd ..); (iv) Remove the directory (rmdir LAB3).]
1.c Create the directory LAB3 (mkdir LAB3) and go to the directory (cd LAB3).
2. Write a C program that accepts 4 real numbers from the keyboard and prints out the difference (using 4-decimal places) of the maximum and minimum values of these numbers.

Test data and expected output:
Enter four numbers: -1.5 27.511 .2
Difference is 12.7000
3. Write a C program that accepts a real number x from the keyboard and prints out the corresponding value of $\sin (1 / x)$ using 4 -decimal places.

Test data and expected output:
Enter value of $x: 0.5$
Value of $\sin (1 / x)$ is 0.9093

Enter value of x : 0
Value of x must be nonzero: try again
4. Write a C program that accepts (from the keyboard) a positive integer less than 1000 and prints out the sum of the digits of this number.
Test data and expected output:

```
Enter a +ve no less than 1000: -4
Entered number is out of range
Enter a +ve no less than 1000: 1234
Entered number is out of range
Enter a +ve no less than 1000: 546
Sum of the digits of }546\mathrm{ is 15
```

5. A decimal number between 0 and 32 exclusive can be expressed in binary system as $x_{4} x_{3} x_{2} x_{1} x_{0}$, where x_{i} 's are either zero or one. Write a C program that accepts (from the terminal) a decimal number in the above range and prints out the equivalent binary representation with leading bit 1 .
Test data and expected output:
```
Enter a +ve no less than 32: -5
```

Entered number is out of range

```
Enter a +ve no less than 32: 21
Binary equivalent of decimal number 21 is 10101
Enter a +ve no less than 32: 14
Binary equivalent of decimal number 14 is 1110
Enter a +ve no less than 32: 35
Entered number is out of range
```

6. A positive decimal fraction can be expressed in binary system as $0 . x_{1} x_{2} x_{3} x_{4} \cdots$, where x_{i} 's are either zero or one. Write a C program that accepts (from the keyboard) a positive decimal fraction $a(0<a<1)$ and prints out at most first four bits of the equivalent binary representation. If the binary representation continues after four bits, then it appends the binary representation with \cdots.
Test data and expected output:
Enter a +ve decimal fraction less than 1: . 875
Binary equivalent of 0.875000 is 0.111
```
Enter a +ve decimal fraction less than 1: -0.1
Entered number is not a +ve decimal fraction less than 1
Enter a +ve decimal fraction less than 1: 1.2
Entered number is not a +ve decimal fraction less than 1
```

Enter a +ve decimal fraction less than 1: 0.525
Binary equivalent of 0.525000 is 0.1000 ...
7. Write a C program that accepts coordinates of two-dimensional points A and B and prints out (using two decimal places) the distance between A and B. It also prints out the coordinates (using two decimal places) of the midpoint of A and B.
Test data and expected output:

```
Enter coordinates of points A: -1 3
Enter coordinates of points B: 2 -1
Distance between A and B is 5.00
The coordinates of midpoint of A and B are (0.50,1.00)
```

8. Compute the roots of the equation $a x^{2}+b x+c=0$ and print using three-decimal places. The roots are real $\frac{-b \pm \sqrt{D}}{2 a}$ if the discriminant $D=b^{2}-4 a c$ is non-negative. If the discriminant is negative, then the roots are complex conjugate $\frac{-b}{2 a} \pm \frac{\sqrt{-D}}{2 a} i$. The program proceeds in the following steps.
(a) It accepts the values of a, b and c from the keyboard.
(b) No solution if both a and b are zero. The program finishes with appropriate message.
(c) Linear equation if $a=0$ but $b \neq 0$ and the root is $-c / b$. The program prints out the root with appropriate message and the program finishes.
(d) Calculates the discriminant D and determines the corresponding roots.
(e) Prints out the roots with appropriate message and the program finishes.

Test data and expected output:
Enter a,b,c: 023
Linear equation: root=-1.500
Enter a,b,c: 132
The roots are real: -1.000 and -2.000
Enter a,b,c: 269
The roots are complex: $-1.500+1.500$ i and $-1.500-1.500$ i
Enter a,b,c: 004
No solution: a \& b both zero

