Lab Test 2

1. Create a folder (directory) LABT2 in your home directory. Move to the directory LABT2.
2. Create a data file vecu.dat that contains the dimension of a vector in the first line followed by the vector components in the second line.
3. Create another data file vecv.dat that contains the dimension of another vector in the first line followed by the vector components in the second line.
4. Create a C program file prog2.c that implements the following: (Use of functions is optional)
(a) It reads the vector dimension from vecu.dat into an integer variable \mathbf{m} and creates a dynamic 1-D array like variable \mathbf{u} that can hold its components. Next it reads the \mathbf{m} components of the vector into \mathbf{u} and prints the vector using two decimal places in the terminal.
(b) It reads the vector dimension from vecv.dat into an integer variable \mathbf{n} and creates a dynamic 1-D array like variable \mathbf{v} that can hold its components. Next it reads the \mathbf{n} components of the vector into \mathbf{v} and prints the vector using two decimal places in the terminal.
(c) It creates a dynamic 2-D array like variable \mathbf{T} that can hold the outer product of the vectors \mathbf{u} and \mathbf{v}. For example, if $\mathbf{m}=\mathbf{4}$ and $\mathbf{n}=\mathbf{3}$, then the outer product of vectors \mathbf{u} and \mathbf{v} is a matrix of order $\mathbf{m} \times \mathbf{n}$, given by

$$
\boldsymbol{u} \otimes \boldsymbol{v}=\left[\begin{array}{c}
u_{0} \\
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]\left[\begin{array}{lll}
v_{0} & v_{1} & v_{2}
\end{array}\right]=\left[\begin{array}{lll}
u_{0} v_{0} & u_{0} v_{1} & u_{0} v_{2} \\
u_{1} v_{0} & u_{1} v_{1} & u_{1} v_{2} \\
u_{2} v_{0} & u_{2} v_{1} & u_{2} v_{2} \\
u_{3} v_{0} & u_{3} v_{1} & u_{3} v_{2}
\end{array}\right]
$$

(d) It performs the outer product and the components of the outer product are stored in \mathbf{T}.
(e) Finally, it prints the outer product (row-wise) using two decimal places in the terminal.

Expected input:
For vecu.dat
4
$\begin{array}{llll}1.0 & 2.0 & 3.0 & 4.0\end{array}$
and vecv.dat
3
$3.0 \quad 2.0 \quad 1.0$
Expected output:
The vector u is: 1.00
The vector v is: 3.00
The
The outer product of u and v is:

3.00	2.00	1.00
6.00	4.00	2.00
9.00	6.00	3.00
12.00	8.00	4.00

