1. Construct a binary tree for the algebraic expression

$$
(a+(b-c * a) /(a+b)-c) /((a+b / c) * d-(a-b))
$$

Hence find the corresponding prefix and postfix expressions.
2. Write a recursive C function which accepts a + ve integer n as argument and returns the sum

$$
\begin{equation*}
1 \cdot 2+2 \cdot 3+3 \cdot 4+4 \cdot 5+\cdots+(n-1) \cdot n \tag{4}
\end{equation*}
$$

3. Construct a structure variable $p t$ which represents a point in Cartesian xy-plane. Using $p t$, construct a structure variable tri which represents a triangle in the xyplane. Write a C function which accepts a triangle as argument and returns the perimeter of the triangle.

$$
[2+2+4]
$$

4. Write a C program which reads a +ve integer n. It then calculates the sum of the integers between 1 and n which are divisible by either 3 or 6 but not by 12 .
5. Construct a completely fill binary tree for the array

$$
4,37,49,32,33,42,38,28,27,26,25,23
$$

and identify the node(s) which violates the max-heap property. Pictorially explain the steps which are needed to make the binary tree a max-heap.
$[2+1+3]$
6. Write a C program which reads a date as three integers representing day, month and year. It then prints the date of the next day. (Assume that the year is not a leap year).
7. What is the output of the following C code?

```
int main()
{
int a,b=4,c=4;
c++;
a=b>c?c:b;
printf("%d %d\n",a,c);
b}=++\textrm{a}/\textrm{c}--
printf("%d %d %d\n",a,b,c);
a * = ++b%c++;
printf("%d %d %d\n",a,b,c);
return 0;
}
```

8. What is the output of the following C code?
int main () \{
int ${ }^{* *}$ p, ${ }^{*} \mathrm{q}, \mathrm{a}[10], \mathrm{i}$;
for $(\mathrm{i}=0 ; \mathrm{i}<10 ; \mathrm{i}++$)
$\mathrm{a}[\mathrm{i}]=\mathrm{i}+2$;
$\mathrm{p}=\left(\right.$ int $\left.^{* *}\right) \operatorname{calloc}(4$, sizeof(int *) $)$;
$\mathrm{q}=\mathrm{a}+3$;
for $(\mathrm{i}=0 ; \mathrm{i}<4 ; \mathrm{i}++$)
$\mathrm{p}[\mathrm{i}]=\mathrm{q}-\mathrm{i}$;
for $(\mathrm{i}=1 ; \mathrm{i}<=3 ; \mathrm{i}++$)
printf("\%d",q[i]);
printf("\n");
for $(\mathrm{i}=0 ; \mathrm{i}<3 ; \mathrm{i}++$)
printf("\%d ",p[2][i]);
printf("\n");
for $(\mathrm{i}=0 ; \mathrm{i}<4 ; \mathrm{i}++$)
printf("\%d ",p[2][i]-*(p[1]+i));
printf("\n");
return $0 ;\}$
9. Study the following C code and write down the output.
typedef struct \{ float a;
int i;
\}data;
int main()\{
data *p,q;
float $\mathrm{c}=3.0$;
int d=8;
q.i=3;
q. $\mathrm{a}=2.0$;
$\mathrm{p}=\& \mathrm{q}$;
$\mathrm{p} \rightarrow \mathrm{i}=\mathrm{d}$;
printf("\%0.2f \%d $\backslash \mathrm{n} ", \mathrm{p} \rightarrow \mathrm{a}, \mathrm{q} . \mathrm{i})$;
$\mathrm{d}=11$;
$\mathrm{p} \rightarrow \mathrm{a}=\mathrm{c}$;
$\mathrm{c}=5.0$;
$\operatorname{printf}(" \% 0.2 \mathrm{f} \% \mathrm{~d} \backslash \mathrm{n} ", \mathrm{q} \cdot \mathrm{a}, \mathrm{p} \rightarrow \mathrm{i})$;
return $0 ;\}$
