1. Let $a[0], a[1], \cdots, a[n-1]$ are real numbers. The recursive C function float sum(float *a,int n)
returns the sum $a[0]+a[1]+a[2]+\cdots \cdots+a[n-1]$. Complete the details of the above function.
2. Study the following program and write down the output.
\#include <stdio.h>
void mystery(int);
int main()
\{int $\mathrm{n}=4$;
mystery(n);
\}
void mystery(int n)
\{ if($n<=0)$ return;
if($\mathrm{n} \% 2==0$)mystery $(\mathrm{n} / 2)$;
printf("\%d ${ }^{n}$ ", n*n);
mystery ($2^{*} \mathrm{n}-5$);
\}
3. Define a structure that can describe a point in 2D. A circle in 2D can be specified by its centre (a point) and radius. Define a structure that can describe a circle in 2D. Write a C function with prototype that does the following. It accepts a circle and a point as arguments. It returns 1 if the point lies inside the circle but returns 0 otherwise.
4. Create a binary search tree with the character strings roy, tiwari, shukla, sanki, meraj, das, bera, rao. Generate the output of the postorder and preorder traversal.
5. Write down the equivalent postfix expression

$$
(a+b *(c-d / a)) *(c+d) /(a-b * c)
$$

6. Write a program which does the following. It reads integer n repeatedly until $n>0$ is satisfied. It then calculates the number of integers between 1 and n that are divisible either by 3 or by 8 but not by both.
7. Starting with initial guess x_{0}, the Newton method for finding the root of $f(x)=0$ uses the iteration

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \quad n=0,1,2, \cdots,
$$

where f^{\prime} denotes the derivative of f. Write a program using Newton method to calculate a root of the equation $x^{2}-2=0$. The program incorporates the following steps/functions. Use a function $f u$ that accepts real number x and returns the value of $f(x)$ at x. Use a function dfu that accepts real number x and returns the value of $f^{\prime}(x)$ at x. Read a real numbers x_{0}. Use a function newton which accepts real arguments x_{0},eps and integer argument ITMX and returns the root of the equations. Here eps is 10^{-5} and ITMAX $=100$. The function newton uses the iteration described above until $\left|x_{n+1}-x_{n}\right|<$ eps or $n>I T M A X$. If $\left|x_{n+1}-x_{n}\right|<e p s$ then it returns x_{n} as root. If $n>$ ITMAX, it prints an error message "Newton method does not converge in 100 iterations".

