1. Write a C function that takes a real number $x$ and an integer $n$ as its argument and returns the value of $\ln (1+x)$. It calculates the value of $\ln (1+x)$ using $n$-terms of the Taylor series

$$
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots, \quad-1<x<1 .
$$

(Do not use pow function).
2. A given sequence $a_{n}$ is defined by the recurrence relation

$$
a_{n}=a_{n-1}+a_{n-2}+a_{n-3}, \quad n \geq 3, \quad a_{0}=0, a_{1}=1, a_{2}=2 .
$$

Write a non-recursive C function that accepts a non-negative integer $n$ as its argument and returns the value of $a_{n}$.
3. Write a recursive C function that implements the algorithm of the previous question. What would be the total number of calls made to this recursive function for $n=4$ ? Justify your answer.
4. Write down the output of the following program.

```
#include<stdio.h>
int myth(int);
int main()
{
int s;
s=myth(4);
return 0;
}
int myth(int n)
{
int t;
if(n>0 && n%2==0)
    {
        printf("%d Even\n",n);
        t=myth(n/2);
        return t+myth(n/4);
        }
else if(n>0 && n%2 !=0)
    {
        printf("%d Odd\n",n);
        return myth(2*n-2);
    }
printf("Strange\n");
return 10;
}
```

5. Define a structure that describes a point in a two-dimensional Cartesian plane. Define another structure that describes a circle in a two-dimensional Cartesian plane having a centre and a radius. Write a C function which takes addresses of a point and a circle as its arguments and returns 1 if the point is within or on the circle and return 0 otherwise.
6. Define a structure that describes a complex number. Write a $C$ function that accepts two complex number as its argument and returns the sum of these complex numbers.
7. Describe a structure that describes a given date having three components day, month and year. Write a function that accepts a date of December and returns the date of the next day.
8. Copy the given code (omitting the comments) with modifications at appropriate places (see the comment parts of the program). Do not use extra variables.
```
#include<stdio.h>
#include<stdlib.h>
#include<time.h>
int main()
{
int *a,n,i;
double avg=0;
srand(time(NULL));
/*Read the value of n from the terminal*/
/*Create a dynamic array that can hold n integers*/
/*Initialized the array with random numbers between 10 and 20 both inclusive*/
/*Find the average of these random number and store the value in avg*/
/*Print the value of avg in the terminal*/
return 0;
}
```

