1. Create a folder (directory) MVEC and do the following in the folde MVEC.
2. Create a data file vec.dat that contains the dimension in the first line and vector components in the second line. Use the following for vec.dat
7
$\begin{array}{lllllll}2.0 & -5.0 & 7.0 & 10.5 & 0 & 3.0 & 4.0\end{array}$
3. Create a data file mat.dat that contains the row and column dimensions in the first line and the matrix components row wise in the following lines. Use the following for mat.dat

4	7					
0	2.0	4.0	-2.0	2.0	0	-2.0
-4.0	1.0	2.0	0	2.0	0	-2.0
1.0	2.0	0.0	4.0	2.0	0	-2.0
1.0	2.0	0	4.0	2.0	0	-2.0

4. Create a C program file mvp.c and run it. Skeleton of mvp.c is shown below. Complete the program. You may add extra variables as needed.
```
#include <stdio.h>
#define M 100
#define N 100
int main()
{
int m,n;
double A[M] [N],X[N],B[M];
FILE *fvec,*fmat,*fout;
/*Open vec.dat for reading and assign to fvec. Check that file opening successful.*/
/*Open mat.dat for reading and assign to fmat. Check that file opening successful.*/
/*Open out.dat for writing and assign to fout. Check that file opening successful.*/
/*Read the vector dimension in n and vector components in X*/
/*Read the matrix dimensions in m & n and matrix components in A*/
/*Perform the multiplication AX and store the result in B*/
/*Write the dimension of B and components of B in the output file out.dat (similar
to vec.dat). Print each component of B using %5.2lf*/
return 0;
}
```

5. Execute the command cat vec.dat mat.dat out.dat $>$ result.dat and open result.dat using gedit
