1. Create a folder (directory) OUTP and do the following in the folder OUTP.
2. Create a data file vecu.dat that contains the dimension in the first line and vector components in the second line. Use the following for vecu.dat

5
$\begin{array}{lllll}2.0 & -5.0 & 7.0 & 5.0 & 0\end{array}$
3. Create a data file vecv.dat that contains the dimension in the first line and vector components in the second line. Use the following for vecv.dat

5
$\begin{array}{lllll}1.0 & 2.0 & 3.0 & 4.0 & 5\end{array}$
4. Skeleton of a C program outp.c is shown below. Complete the C program. You may add extra variables as needed. The program computes the outer product of two vectors. The outer product of two vectors $u=\left(u_{1}, u_{2}, \cdots, u_{n}\right)$ and $v=\left(v_{1}, v_{2}, \cdots, v_{n}\right)$ is a matrix C of size $n \times n$ and $C_{i j}=u_{i} v_{j}$. [You may remove the comments part in the program]
\#include <stdio.h>
\#define N 100
int main()
\{int m,n,rowc,colc;
double C[N][N], u[N],v[N];
FILE $* f u, * f v$;
//Open vecu.dat for reading and assign to fu. Check that file opening successful.
//Open vecv.dat for reading and assign to fv. Check that file opening successful.
//Read the actual vector dimension of u in m and vector components in u
//Print the vector u in the terminal along a row
printf("\n------------\n");
//Read the actual vector dimension of v in n and vector components in v
//Print the vector v in the terminal along row
printf("\n-----------\n");
//If m is not equal to n STOP. Oherwise assign the row and column dimensions of C
//Perform the outer product and store the result in C
//Print the matrix C in the terminal row-wise using 2 decimal places.
return 0;
\}
5. Execute the following command

1. clear
2. pwd
3. gcc outp.c
4. cat vecu.dat vecv.dat
5. ./a.out
