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Chapter 1 

Introduction 
 
 Estimating the physical properties of water-bearing layers is an 

essential part of groundwater studies. A few physical properties and 

derived parameters of aquifers which appear in various equations are 

hydraulic conductivity, transmissivity, saturated thickness and storage 

coefficient. Transmissivity and storativity are of particular interest in 

studies of aquifers. Transmissivity „T‟ is the product of average 

hydraulic conductivity and saturated thickness of the aquifer, 

consequently, the transmissivity is the rate of flow under a hydraulic 

gradient equal to unity through a cross-section of unit width over the 
whole saturated thickness of water bearing layer. Storage coefficient or 

storativity „S‟ of an aquifer is the volume of water released from the 

storage per unit surface area of aquifer per unit decline in component 

of hydraulic head normal to the surface. It is a function of saturated 

thickness of aquifer.     

 

 
Figure 1.1:  Unsteady flow to well in confined aquifer 

 

One of the most effective ways of determining these properties is 

to conduct and analyze aquifer tests. Aquifer tests are used to 

determine field scale characteristics, particularly hydraulic 

transmissivity and storage coefficient. In literature aquifer tests based 

on the analysis of drawdown during pumping are commonly referred to 

as pumping tests. Owing to high costs of aquifer tests, it is often 

performed without piezometers, cutting costs and admitting certain, 

sometimes appreciable error. In order to distinguish from normal 
aquifer tests, such tests are called single-well tests. In these tests 

measurements are taken inside the pumped well. Well-flow equations 
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are used in analysis of drawdown data generated. These equations are 

developed under a number of common assumptions and conditions like 

aquifer being homogenous and isotropic, infinite areal extent of the 

aquifer, complete penetration of aquifer by well, negligible storage in 

the well and constant rate of discharge accompanied by simultaneous 

decline in head . An analytical expression for drawdown in an 

observation well located at a distance of „r‟ from pumping well 

assuming an ideal confined aquifer was reported by Theis (1935) as:  
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where „s‟ is the drawdown [L] from an initially horizontal piezometric 

surface; „Q‟ is the constant pumping rate [L3/T] and „T‟ is the 

transmissivity [L2/T] .The dimensionless parameter „u‟ , which depends 

on time „t‟[T], is defined as:  
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where „S‟ is the storage coefficient and „W (u)‟ is the well function. 

 

The well flow equation can be re-written in the following form: 
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However for computational purposes in this work, the following 

approximations for W(u) as obtained by Allen(1954) and 

Hastings(1955) are  used : 

 

For u ≤ 1:    

 
2 3 4 5

1 2 3 4 5( ) ln( ) oW u u a a u a u a u a u a u                 (1.6a) 

 
For u ≥ 1:  
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Where rounded off values of the constants are given by: 

 

a0 = -0.57722; a1 = 0.99999; a2 = -0.24991; a3 = 0.05519; 
 

a4 = -0.00976; a5 = 0.00108; b0 = 0.26777; b1 = 8.63476; 
 

b2 = 18.05902; b3 = 8.57333; c0 = 3.95850; c1 = 21.09965; 
 

c2 = 25.63296; c3 = 9.57332 
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Chapter 2  

METHODS OF DETERMINING S AND T 

 
Theis gives an analytical relationship to relate drawdown with the 

aquifer transmissivity (T) and storage coefficient (S). Since the well 

function is an integral function of S and T, it is not possible to 

determine explicitly the parameters S and T from a set of values of s 

and t at an observation well.  

 

Several methods have been proposed to evaluate these 

parameters which include numerical approximations of well function, 

providing an initial estimate for iterative solution and slope matching 
techniques. However, methods involving initial guess of S and T may 

fail to converge if the initial guess is not sufficiently close to the actual 

values. Methods involving numerical approximations of well functions 

give different fit in different domains not necessarily covering the 

entire range of values. Slope matching technique involves two 

schemes. The slope of the drawdown is computed as a function of 

time, and a straight line is fitted through the resulting curve. The 

intercepts thus obtained give the time averaged values of 

transmissivity and storage coefficients. An alternative scheme is to use 

approximations for numerical differentiation and with the help of 

available discrete data, obtain the time varied transmissivity and 

storage coefficients.  

 
 

2.1 Approximate Well Functions 

Several high accuracy expressions for the well function have 

been developed. A criteria function f (ei), measuring the error between 

the drawdown obtained using the approximated well function and the 

actual drawdown is minimized to estimate the aquifer parameters. 
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S and T can be obtained by varying them so that the sum of 

square of errors for the entire data set is minimized. Considering the 

sum of square of errors overemphasizes large errors that are 

associated with the later part of the pump test. Thus, for the initial 
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part of the pump test, data will not be properly used. Therefore 

proportionate error is used. 
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where ec is the proportionate cutoff error 

 

Criterion function is chosen so that contribution of an erroneous 

observation is limited to ec only. 

 

 

2.2 Slope Matching Technique 

In slope matching method, the Theis equation is rewritten as:  
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The slope matching methods are based on time derivative 

(slope) of the drawdown as obtained from Eq.(2.6) 
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Using the relation 
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Using finite differences, the value of the left hand side can be 

obtained at any value of time and α and β are obtained using any two 
successive time values. 
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Different methods can be used to estimate S and T using 

differential equation Eq.(2.12). Straight line fit can be used to obtain 

an average value of the parameters. Central difference, finite 

difference involving logarithm of t, finite difference involving logarithm 

of t and s and many more can be used to estimate slope of drawdown 

curve. 
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  Chapter 3  

     AQUIFER PARAMETER DETERMINATION: A           
NEW APPROACH 

 
The methods that have been employed, more commonly, in 

determination of aquifer parameters are slope matching, use of 

numerical approximations to well function and iterative schemes 

involving initial guess of parameters S and T. All these methods arrive 

at the parameters with certain errors built in to the values on account 

of the method employed. 

 

 

3.1 Problems with Earlier Methods 

Slope matching methods require numerical differentiation of 

discrete data which may consist systematic and random errors 

associated with the experimental techniques. These random errors get 
magnified when derivatives are deployed to compute average of time 

varying parameters. Another problem related to differentiating discrete 

data is unequal spacing in the empirical data that would involve further 

complexities to computing derivates subject to the order of derivative 

technique being used. The slope matching formulations do not take 

into account and thus preclude finite difference approximation of 

parameters values, thereby predicting much larger values of S and T at 

large times. However this tradeoff is made in favor of the procedure 

becoming too involved. Other methods like non-linear least squares 

which require initial guesses of S and T may have convergence 

problems if these guess values are very different from the actual 

values. Methods which use approximations to the well function 

generally require tabulations of values of the well function for a wide 
range of values of non-dimensional „u‟ making these computationally 

intensive. Also different approximations are valid only for a limited 

range of u and have different implications in terms of error. 

 

Keeping in the backdrop, the problem of magnification of errors 

and stability encountered due to numerical differentiation of empirical 

data we propose a new scheme which employs integration of 

drawdown data in the process of determination of S and T. Integration 

of uncertain data is more forgiving on the errors, as summations tends 

to cancel out random positive and negative errors unlike differentiation 

which being subtractive tends to add negative and positive errors. 

Thus integration tends to smoothen out the perturbations in the field 
data. This is illustrated for a particular reported field data set taken 

from [Srivastava and Guzman-Guzman, 1994]. The original data set is 

slightly perturbed to demonstrate the effect of differentiation of 
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propagation errors. Figure 3.1, 3.2 and 3.3 gives the pictorial 

illustration of the same. 

 
 

Figure 3.1 Drawdown curve 
 
 

 
 

Figure 3.2 Plot of slope of drawdown curve using original drawdown 

data and the altered drawdown data 
 

 

 
 

Figure 3.3 Plot of area under the drawdown curve using original 

drawdown data and the altered drawdown data 
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3.2 New Approach 

A number of numerical schemes have been formulated to provide 

a method to calculate S and T. However efforts were focused on 

arriving at an analytical solution of the well function using analytical 

integration or analytical methods have not proved to be useful. 

Because of the imperfect nature of the integral and limited techniques 

of integration, no solution has yet been obtained. Our efforts directed 

towards the same also did not yield any solution. Different 

approximations of the well function have been proposed in the 

literature from time to time. Well functions with good degree of 

simplicity and scale covering entire range of time, t were adopted. 

Using these well functions, a time integration of a function F(s, t) was 

done which would give a simplified relation of α and β. This relationship 
together with s and t data gives equations from which we could 

calculate α and β. But the equations obtained using this method gave 

multiple roots of β for the same value of α which contradicts the 

assumption that both α and β are time independent and unique. 

 

 Lastly, a new approach involving use of numerical integration of 

drawdown data is proposed. In this approach using the Theis equation 

Eq.(1.3) and approximations for well function (1.7a and 1.7b) a 

relationship of the following form involving integrals is formulated: 

 

G(s,t)dt f( , )* g(u)du               (3.1) 

 

where 

 u
t

  

 

This integration is done for the limits [(t, 2t), (2u, 4u)] and [(t, 

4t), (u, 4u)] and the ratio of the two integrals is taken. This will 

eliminate f (α, β) and result into an equation of the form: 
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Using a particular value of t, the left hand side ratio of integrals, 

K (t) can be calculated using drawdown curve as shown in Figure 3.4 

Since F(u) = K(t), this value is used to calculate the value of u using 

the curve between F(u) vs u, which is generated for a particular 

functional form of F(u) as shown in Figure 3.5. Once u is known for the 

given value of t, β can be calculated as β = ux4t. 

 

 
Figure 3.4 Drawdown Curve – plot of s (m) vs t (min) 

 

 

 
Figure 3.5  F(u) vs u where u = β/t 

 

Using the pumping data used earlier, it is demonstrated that 

integration technique does not lead to magnification of error in 

comparison to the derivates used in slope matching equations. The 

functional form of K(t) is calculated by integrating the pumping data 

from the interval t1 to 2t1 and t1 to 4t1 and taking the ratio of the two 

integrals. This is done both on the original pumping data and the 

altered data to show the deviation of the results obtained. Similarly % 

deviation is observed for the  slope of the drawdown of the altered 

from the original data. Figure 3.6 shows the variation of K(t) and 

Figure 3.7 and Figure 3.8 shows the % deviations. 
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Figure 3.6 Graphical representation of the functional form K(t) using 

the original pumping test data and the altered data. 

 

 

 
 

Figure 3.7 Plot of % deviation of F(u) for the altered data from the 
F(u) of the original data 

 

 
 

Figure 3.8 Plot of % deviation of slope of drawdown for the altered 

data from the original  
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                                                                                             Chapter 4 

         Calculations and Results    
 
  Initially the analytical methods were used to calculate the 

integral and therefore varied forms of G(s, t) were deployed to ease 

the calculations. But due to the inclusion of eu or log (u) in combination 

with polynomial functions of u, the inefficacy of analytical methods 

forced us to switch over to numerical methods. For calculations using 

the proposed method, G(s, t) has been taken as simply s and thereby 

g (u) as W (u)/u2. W (u) has been computed using Eq.(1.6a) and 

Eq.(1.6b). 

 
For the purposes of computations, a synthetic s vs t curve was 

generated using MATLAB. Values of α and β for this computations are 

taken as 0.1212 and 0.1248 respectively. This s vs t curve was 

integrated within the time limits t to 2t and t to 4t and their ratio, K (t) 

was computed and plotted against t. Similarly F(u) was computed as 

ratio of integral of W(u)/u2 in the limits (2u,4u) to (u,4u). Plots 

obtained are shown in Figure 4.1 and Figure 4.2. 

 

 
 

Figure 4.1: Curve between the ratio of integral of s on t for the range 

(t, 2t) to (t, 4t) vs t  

 

 
Figure 4.2: F (u) vs u generated from Well function approximation 
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The limiting values of F (u) are calculated for u approaching 0 

and infinity and they come out to be 0.3333 and 0 near 0 and infinity 

respectively.  These limiting values match with the values obtained 

from numerical integration using trapezoidal rule with well function 

approximations.  

 

Values of α and β are calculated for different times ranging from 

1 to 20 minutes. These values together with values of s, t, F(u),W(u) 

and u are tabulated in Table 4.1. 

 

Table 4.1: Values of α and β for t = 1 to 20 mins. 

t(min) s(m) at t F(u) u W(u) 4t s at 4t β α

1 0.19693 0.2732 0.03231 2.8872091 4 0.35403 0.12924 0.122620144

1.5 0.24128 0.2805 0.02206 3.258708 6 0.40193 0.13236 0.123340292

2 0.27372 0.2848 0.01698 3.5154071 8 0.43618 0.13584 0.124076667

2.5 0.29929 0.2877 0.015 3.6374289 10 0.46285 0.15 0.127246474

3 0.32041 0.2899 0.01233 3.8307919 12 0.48469 0.14796 0.126524752

3.5 0.33838 0.2916 0.01099 3.9445093 14 0.5032 0.15386 0.127569734

4 0.35403 0.2929 0.01 4.0379252 16 0.51925 0.16 0.12859327

5 0.38033 0.295 0.008992 4.1431717 20 0.5461 0.17984 0.131807233

6 0.40193 2.97E-01 0.00746 4.3284259 24 0.56807 0.17904 0.131241706

8 0.43618 2.99E-01 0.00608 4.5316013 32 0.60278 0.19456 0.133016998

10 0.46285 0.3005 0.00582 4.5750465 40 0.62973 0.2328 0.137644502

12 0.48469 0.3017 0.0056 4.6133608 48 0.65177 0.2688 0.141278783

14 0.5032 0.3026 0.00499 4.7280831 56 0.67041 0.27944 0.141793193

16 0.51925 0.30342 0.004275 4.8820216 64 0.68656 0.2736 0.140630268

20 0.5461 0.30464 0.004076 4.929491 80 0.71355 0.32608 0.144751254

 

These values show increasing trends in β as t increases. As per 

the assumptions of this method α and β are constants. But this 

variation of β can be explained by the fact that F(u) becomes almost 

constant for these values of t and hence u derived from F(u) vs u curve 

remains almost constant, thereby β increases with increasing time. 

However, for times t ≤ 1, values of β obtained by this method are 

close to the assumed value with a maximum deviation of 4.89%. 

Values of α obtained are also close with a maximum deviation of 1.2% 

from the assumed value. 
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Table 4.2: Values of α and β for t = 0.04 to 1 

t(min) s(m) at t F(u) u W(u) 4t s(m) at 4t β α 

0.04 0.001358 0.10121 0.7802 0.3219605 0.16 0.039037 0.124832 0.1212478

0.08 0.011093 0.16223 0.391 0.7176981 0.32 0.087196 0.12512 0.12149398

0.12 0.024875 0.1917 0.2633 1.004175 0.48 0.12288 0.126384 0.12236911

0.16 0.039037 0.20928 0.1968 1.2358726 0.64 0.1507 0.125952 0.12193814

0.2 0.052493 0.22112 0.1568 1.4264252 0.8 0.17341 0.12544 0.12156964

0.24 0.06499 0.22974 0.1329 1.5695495 0.96 0.19257 0.127584 0.12269125

0.28 0.076531 0.23635 0.1102 1.7354748 1.12 0.20914 0.123424 0.12050881

0.32 0.087196 0.24161 0.0989 1.8329331 1.28 0.22372 0.126592 0.12205574

0.36 0.097078 0.24593 0.08691 1.9507193 1.44 0.23674 0.1251504 0.12136036

0.4 0.10627 0.24954 0.07822 2.0477261 1.6 0.2485 0.125152 0.12135412

0.44 0.11485 0.25262 0.07093 2.1385332 1.76 0.25922 0.1248368 0.12121392

0.48 0.12288 0.25529 0.06553 2.2124988 1.92 0.26908 0.1258176 0.12161815

0.52 0.13044 0.25763 0.06054 2.2868665 2.08 0.27819 0.1259232 0.1216468

0.56 0.13757 0.2597 0.05614 2.3580482 2.24 0.28667 0.1257536 0.12157088

0.6 0.14431 0.26156 0.05267 2.4184734 2.4 0.29459 0.126408 0.12180824

0.64 0.1507 0.26322 0.04905 2.4861498 2.56 0.30203 0.125568 0.12148504

0.68 0.15678 0.26474 0.04695 2.5278564 2.72 0.30904 0.127704 0.12225378

0.72 0.16258 0.26612 0.04314 2.6087635 2.88 0.31566 0.1242432 0.12099985

0.76 0.16812 0.26738 0.04096 2.6584834 3.04 0.32195 0.1245184 0.12110288

0.8 0.17341 0.26855 0.03979 2.686317 3.2 0.32792 0.127328 0.12207048

0.84 0.17849 0.26962 0.03896 2.7065833 3.36 0.33361 0.1309056 0.12325872

0.88 0.18337 0.27063 0.03629 2.7749562 3.52 0.33905 0.1277408 0.12218211

0.92 0.18806 0.27156 0.03497 2.8107111 3.68 0.34425 0.1286896 0.1224779

0.96 0.19257 0.27243 0.03349 2.8524998 3.84 0.34924 0.1286016 0.12243296

1 0.19693 0.27325 0.0323 2.8875088 4 0.35403 0.1292 0.12260742

 
 

4.1 Analytical Solution for F (u) 

In the above formulation the values of K (t) and F (u) are both 

generated by numerically integration. K (t) can be calculated only 

numerically by integrating drawdown data. However F(u) can be 

calculated analytically. But for this there is a need to adopt different 

form of G(s, t) and g(u) in Eq. (3.2) that would make the functional 

form g(u) integrable. This is done by using G(s, t) as s/t2 and g(u) as 

simply W(u). The analytical solution given in this section will be valid 

only for this specific functional form of G(s, t) corresponding to which 

g(u) has become well function itself. The derivation of this solution is 
as follows. 
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For u < 0.01 this analytical function can be rewritten with the 

help of approximation of well function from Eq. (1.6a) as: 
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where 

 

 ( ) 0.5771 lnW u u                                                         (4.5) 

 

The plot of F(u) vs u is shown in Figure 4.3. The limiting values 

of F(u) at u approaching to zero and infinity are calculated from the 

analytical solution and these come out to be 0.6667 near 0 and 0 near 

infinity. These values are in agreement with the plot of F(u) vs u.  

 
 

Figure 4.3: Plot of logF(u) and linear fit vs u 
 

 

 



 16 

 

 

This methods aims at obtaining values of α and β, for this 

calculation, value of K(t) can be easily obtained for a given t, but F(u) 

is an implicit  function of u and it is difficult to obtain value of u 

analytically from this functional form. Therefore a fit of F(u) vs u is 

obtained that can give an explicit functional dependence of F(u) on u, 

and using which u can be back calculated for a particular F(u)=K(t). 

For this curve, exponential and rational functions appear to be good 

fits. Different functional forms of rational and exponential or 

exponential and rational combined are tried. On plotting lnF(u) vs u, 

the curve obtained is linear for the range u > 0.03 and shows some 

curvature for u < 0.03. Since the method works well for low values of t 

(i.e. higher values of u), therefore we concentrate only on u > 0.03. 

The best fit obtained for u > 0.03 is: 
 

( ) exp( 0.485493 0.96 )F u u                                           (4.6) 

 

Therefore 

 

 
ln ( ) 0.485493

0.96

F u
u                                                     (4.7) 

 

The RMSE and maximum percentage deviation for the lnF(u) fit 

are 0.006822 and 1.32888 respectively. Error calculations in u 

obtained will be as follows: 

 

ln ( )

0.96

u F u

u u
                                                                 (4.8) 

 
Therefore the percentage deviation for u can be calculated from 

this equation. The maximum percentage deviation for u comes out to 

be equal to 9.85068. Even a small percentage deviation in F(u) leads 

to larger percentage deviation in u primarily because in this region the 

curve is almost flat. Better estimates of u are obtained for u > 0.15. 

 

Using the synthetic data set of s vs t, values of K(t) are obtained. 

Using these values of K(t) as F(u) in the analytical solution u is 

calculated which gives us the estimates of α and β. Percentage 

deviation of α and β are calculated and the maximum % deviation are 

4.0096 and 8.76673 respectively. The average values of α and β 

obtained are 0.12298 and 0.12874 respectively. These results are 

summarised in Table 4.3. 
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Table 4.3: Values of α and β obtained using the fitting curve for u 

t K(t) u_calc β α %dev in α %dev in β

0.04000 0.29379 0.77021 0.12323 0.11905 -1.77565 -1.25574

0.08000 0.42483 0.38601 0.12352 0.12004 -0.95966 -1.02212

0.12000 0.47813 0.26290 0.12619 0.12222 0.84159 1.11363

0.16000 0.50725 0.20131 0.12884 0.12380 2.14404 3.23627

0.20000 0.52584 0.16382 0.13105 0.12484 3.00019 5.01155

0.24000 0.53886 0.13834 0.13281 0.12549 3.54261 6.41545

0.28000 0.54857 0.11974 0.13411 0.12587 3.85661 7.45616

0.32000 0.55614 0.10546 0.13499 0.12605 3.99879 8.16476

0.36000 0.56223 0.09412 0.13553 0.12606 4.00960 8.59526

0.40000 0.56726 0.08484 0.13574 0.12596 3.92468 8.76673

0.44000 0.57150 0.07708 0.13566 0.12576 3.75874 8.70403

0.48000 0.57514 0.07047 0.13530 0.12547 3.52196 8.41152

0.52000 0.57829 0.06478 0.13474 0.12512 3.23830 7.96320

0.56000 0.58107 0.05978 0.13391 0.12471 2.89572 7.30164

0.60000 0.58353 0.05538 0.13292 0.12425 2.51848 6.50323

0.64000 0.58573 0.05146 0.13174 0.12376 2.11009 5.56271

0.68000 0.58771 0.04795 0.13041 0.12323 1.67617 4.49880

0.72000 0.58951 0.04476 0.12891 0.12266 1.20285 3.29470

0.76000 0.59116 0.04185 0.12722 0.12205 0.69954 1.94122

0.80000 0.59266 0.03921 0.12547 0.12143 0.19296 0.53793

0.84000 0.59405 0.03677 0.12355 0.12077 -0.35269 -1.00500

0.88000 0.59534 0.03451 0.12148 0.12008 -0.92289 -2.66408

0.92000 0.59653 0.03243 0.11934 0.11938 -1.49998 -4.37324

0.96000 0.59764 0.03049 0.11709 0.11866 -2.09907 -6.17400

1.00000 0.59868 0.02868 0.11473 0.11790 -2.71957 -8.06942   
 

 

4.2 Error Propagation of α and β  

 This section focuses on how α and β vary with different u and 

how can one derive a relationship of percentage deviation in α and β 

with u. 

 
Since 

 
4ut           (4.9) 

 

 
u

u
                                                                        (4.10) 

 
Therefore error made in calculation of F(u) from the fit results in error 

in estimation of u and whatever error is made in this u is directly 

transferred to the estimation of β. 
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From Eq.(1.3) 

 

( )s W u        

 

( )

( )

W u

W u
               (4.11) 

Using 

( )
W

W u u
u

  

( )

ue u

W u u
                                                                 (4.12) 

 

Table 4.4 Error propagation in α and β. 
t W(u) %dev in u dev_cal α %dev in α %dev in β

0.04000 0.32209 -1.25574 -1.78719 -1.77565 -1.25574

0.08000 0.71944 -1.02212 -0.9619 -0.95966 -1.02212

0.12000 1.0139 1.113629 0.846893 0.841594 1.113629

0.16000 1.2434 3.236272 2.141641 2.144035 3.236272

0.20000 1.4308 5.011548 2.996699 3.000186 5.011548

0.24000 1.5889 6.41545 3.545458 3.542612 6.41545

0.28000 1.7256 7.456157 3.86529 3.856609 7.456157

0.32000 1.8459 8.164763 4.012284 3.998794 8.164763

0.36000 1.9533 8.595265 4.035073 4.009602 8.595265

0.40000 2.0503 8.766729 3.954988 3.924681 8.766729

0.44000 2.1388 8.704027 3.791007 3.758739 8.704027

0.48000 2.2201 8.411522 3.550364 3.521963 8.411522

0.52000 2.2953 7.963205 3.267313 3.238296 7.963205

0.56000 2.3653 7.301638 2.919696 2.895725 7.301638

0.60000 2.4306 6.503235 2.539994 2.518477 6.503235

0.64000 2.492 5.562706 2.126014 2.110088 5.562706

0.68000 2.5498 4.498805 1.685251 1.67617 4.498805

0.72000 2.6045 3.294701 1.211357 1.202854 3.294701

0.76000 2.6563 1.941218 0.701404 0.699539 1.941218

0.80000 2.7056 0.537928 0.191215 0.192955 0.537928

0.84000 2.7526 -1.005 -0.3518 -0.35269 -1.005

0.88000 2.7974 -2.66408 -0.91917 -0.92289 -2.66408

0.92000 2.8404 -4.37324 -1.48832 -1.49998 -4.37324

0.96000 2.8815 -6.174 -2.07412 -2.09907 -6.174

1.00000 2.9211 -8.06942 -2.6776 -2.71957 -8.06942  
 

Eq.(4.12) is obtained with an assumption that there is no error in 

the drawdown data. This assumption is good for only demonstrative 

purpose because drawdown data is synthetically generated. However if 

the field data is used then there will be an additional error term 

including s also. The results obtained from the synthetic data are in 

accordance with the error estimation done. This is shown in Table 4.4. 
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True value of u is calculated from Eq.(4.9) using the value of β equal to 

0.1248. If one wants to calculate the values of α and β with high 

accuracy, then the values of u should be read from the plot of F(u) vs 

u, so that the error in estimation of u from analytical fitting could be 

ruled out. The calculations of α and β using F(u) vs u plot are shown in 

Table 4.5. 

 

Table 4.5 Calculation of α and β using F(u) vs u curve and synthetic 

drawdown data. 
t K(t) u s at 4t W(u) β α

0.04000 0.29379 0.7743 0.039037 0.32546 0.123888 0.119944

0.08000 0.42483 0.3805 0.087196 0.73621 0.12176 0.118439

0.12000 0.47813 0.2592 0.12288 1.0163 0.124416 0.120909

0.16000 0.50725 0.1969 0.1507 1.2355 0.126016 0.121975

0.20000 0.52584 0.157 0.17341 1.4253 0.1256 0.121666

0.24000 0.53886 0.1295 0.19257 1.5923 0.12432 0.120938

0.28000 0.54857 0.1125 0.20914 1.717 0.126 0.121805

0.32000 0.55614 0.09812 0.22372 1.8401 0.125594 0.12158

0.36000 0.56223 0.0861 0.23674 1.9593 0.123984 0.120829

0.40000 0.56726 0.0782 0.2485 2.048 0.12512 0.121338

0.44000 0.57150 0.0706 0.25922 2.1429 0.124256 0.120967

0.48000 0.57514 0.0649 0.26908 2.2216 0.124608 0.12112

0.52000 0.57829 0.06016 0.27819 2.2928 0.125133 0.121332

0.56000 0.58107 0.05615 0.28667 2.3579 0.125776 0.121579

0.60000 0.58353 0.052 0.29459 2.4306 0.1248 0.121201

0.64000 0.58573 0.04877 0.30203 2.4916 0.124851 0.121219

0.68000 0.58771 0.04655 0.30904 2.536 0.126616 0.121861

0.72000 0.58951 0.04337 0.31566 2.6037 0.124906 0.121235

0.76000 0.59116 0.04045 0.32195 2.6705 0.122968 0.120558

0.80000 0.59266 0.03923 0.32792 2.6999 0.125536 0.121456

0.84000 0.59405 0.03703 0.33361 2.7555 0.124421 0.121071

0.88000 0.59534 0.03564 0.33905 2.7924 0.125453 0.121419

0.92000 0.59653 0.03442 0.34425 2.826 0.126666 0.121815

0.96000 0.59764 0.03309 0.34924 2.8641 0.127066 0.121937

1.00000 0.59868 0.03213 0.35403 2.8926 0.12852 0.122392  
 

 The values of α and β obtained using F(u) vs u curve are much 

closer to the actual values than the values obtained using linear fit. 

The average values of α and β are 0.121223 and 0.125131 

respectively. Maximum percentage deviations are 2.278 and 2.98 

respectively.  
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Chapter 5 

Conclusions 
 
  A new approach for determination of confined aquifer parameters 

has been discussed. The method requires that field conditions satisfy 

Theis‟ assumptions. In the foregoing discussion it has been shown 

that: 

 

 Using this method β and α can be calculated quite accurately for 

0.01<u<1 

 Applicability of this method in terms of time range t is contingent on 

the value of β, larger the value of beta larger is time range for 
which it is applicable. 

 Using tabulated values of well function and analytical expression 

developed the values of β and α can be estimated quickly and has 

onsite applicability. 

 For the range u>0.03, a fit has been generated for u and F(u) 

values from which u can be calculated using F(u) 

 

Early drawdown data i.e. for which u>0.01, has often been 

considered unimportant in determination of aquifer parameters. In 

many cases of pump tests, substantial data have u > 0.01, especially 

when a pump test is for short duration and the observation well is at a 

large distance from the pumping well. Another important point is that 

early drawdown data are not corrupted by the effect of hydrological 
boundaries, also because of certain factors such as pump failure and 

time and resource constraints, long duration pump tests sometimes 

are not feasible, in all such cases this method can be effective in 

determination of aquifer parameters from early drawdown data. 
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