
A DISCRETE NUMERICAL MODEL FOR 

STUDYING MICRO-MECHANICAL 

RELATIONSHIP IN GRANULAR ASSEMBLIES 

 

 

 

Training Report Submitted 

In Partial Fulfilment of the Requirements 

for the Course of  

CE-390 

 

by 

Shivam Gupta 

Y3331 

 

 

to the 

Department of Civil Engineering 

INDIAN INSTITUTE OF TECHNOLOGY KANPUR 

August, 2006 



 ii 

 

ABSTRACT 

 

The discrete element method is a numerical model capable of describing the 

mechanical behavior of assemblies of spheres. The method is based on the use of 

numerical schemes in which the interaction of the particles is monitored contact by 

contact and the motion of the particles modeled particle by particle. In the work 

presented here, DEM simulations are carried out on two kinds of granular assemblies 

composed of randomly packed poly-dispersed grains, one with dense packing and 

another with loose packing. A tri-axial test is performed on these two assemblies and 

the results for the two are compared. With the help of Dirichlet Tessellation, 

neighbors are defined for each grain. All neighbors are classified among two 

categories: Neighbors in contact, and Neighbors without contact. The microscopic 

behavior is studied with the help of kinematic parameters like grain to grain 

displacements in which different displacements like normal displacement and 

tangential displacements(which include rolling, sliding) have been quantified 

separately. The main focus of this paper is to analyze displacement patterns of 

particles, specifically the particles in contact and try to deduce their behavior in terms 

of global parameters. The work also checks for affine hypothesis, which relates 

microscopic displacements taking in place of granular assembly with the strain 

increment imposed during the tri-axial test. 
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1. INTRODUCTION 

A granular medium is composed of distinct particles which displace independently 

from one another and interact only at contact points. The discrete character of the 

medium results in a complex behavior. Characterization of the behavior is highly 

extensive and faces extraordinary diversity. 

The final goal of the mechanics of granular materials is to provide relationships 

between the external loads acting on the material and the resulting displacements. 

Traditionally, the effect of external loads is expressed by the continuum-mechanical 

state variable stress, deformations are reflected by the other continuum-mechanical 

state variable strain. Stress and strain are related to each other through the constitutive 

equations(which are expected to contain all the information about the mechanical 

characteristics of the material).The geometrical and equilibrium equations are clear in 

continuum mechanics, but to find the proper constitutive equations for granular 

assemblies is not simple. 

Recently there are two approaches: one is continuum-mechanical approach and 

another is micro-structural approach.  

The idea of the continuum-mechanical approach is to consider the assembly as a 

continuous domain, taking an infinitesimal small representative volume element, and 

applying stress and strain as the fundamental variables that uniquely determine the 

state of the material at any point. 

The aim of the micro-structural approach is to find macro-level state variables that 

are based on micro-variables such as contact forces, grain displacements, and local 

geometrical characteristics. In this approach the relationships between its state 

variables would be more strongly connected to the phenomenon taking place in the 

microstructure. Figure1 describes the different variables that have to be analyzed and 

the links which have to be established between them. 
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Figure1. Schematic diagram of a micro-structural analysis 

 

To challenge the extraordinary diversified behavior of granular assemblies, 

discrete element method proves handy in making the prototype structures prior to the 

production run – “Civil Engineering has generally got to work first time.” 

 

2. DISCRETE ELEMENT MODELLLING OF GRANULAR ASSEMBLIES 

 

2.1 The Discrete Element Method 

A general particle flow model, PFC-3D simulates the mechanical behavior of a system 

comprised of a collection of arbitrarily shaped particles (particle here is taken as a 

body which takes some space, unlike the assumption of point particle taken in the 

field of mechanics). The model is composed of distinct particles that displace 

independently of one another and interact at contacts. If the particles are assumed to 

be rigid, and the behavior of contacts is characterized using soft contact approach, in 

which the rigid particles are allowed to overlap and a finite normal stiffness is taken to 

represent the measurable stiffness that exists at a contact, then the mechanical 

behavior of such a system is described in terms of the movement of each particle and 

the inter-particle forces acting at each contact point. Newton’s laws of motion provide 

the fundamental relationship between particle motion and the forces causing the 
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motion. The assumption of rigid bodies in PFC is good for packed particle assembly 

or granular assembly such as sand since the deformation results primarily from the 

opening and interlocking at interfaces and not from individual particle deformation. 

The discrete element code allows finite displacements and rotations of discrete 

bodies, including complete detachment, and recognizes new contacts automatically as 

the calculation progresses. The calculation cycle in PFC-3D is a time-stepping 

algorithm that requires the repeated application of the laws of motion to each particle, 

a force displacement law to each contact, and a constant updating of wall positions. 

The calculation cycle is illustrated in Figure 2.1. At the start of each time-step, the set 

of contacts is updated from the known particle and wall positions. The force-

displacement law is then applied to each contact to update the contact forces based on 

the relative motion between the two entities at the contact. Next, the law of motion is 

applied to each particle to update its velocity and position based on the resultant force 

and the moment arising from the contact forces acting on the particle. Also, the wall 

positions are updated based on the specified wall velocities. 

 

Figure 2.1 Calculation Cycle 

 

2.2 Random Positioning Of Spheres 

With the help of PFC, 4000 particles are generated having Gaussian distribution with 

a standard deviation of 0.33. The spheres are generated in a cell of dimensions 

0.075*0.075*(1.333*0.075) m
3 

in such a way that they don’t have any overlap with 

each other and they don’t touch the boundary within which they are generated. No 
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contact is created during this generation. The porosity of the generated is 0.33 for 

dense sample and 0.41 for the loose sample. Particle to particle friction coefficient is 

set to 0.7. Walls of the cell are taken as frictionless. The normal and tangential 

stiffness of contacts are set to 5*10
8
 N/m and 5*10

7
 N/m. As shown in Figure 2.2, the 

spheres marked cross are not accepted during this generation. 

 

 

 

 

 

Figure 2.2 Random positioning of spheres 

 

2.3 First Compaction 

The cell generated is compacted until the mean stress in the sample becomes equal to 

the desired confining pressure. This is done in two steps. Firstly, the mean stress is 

calculated. Then a dynamic loop is run in which it is compared with the desired 

confining pressure. The desired isotropic confining pressure obtained is equal to 

10000 N/m
2
. If the mean pressure is less or more than the confining pressure required, 

then the radius of the grains are increased or decreased respectively by a constant 

factor of 1.0005.  

 

  

 

 

 

 

  

 

Figure 2.3 Stresses acting on tri-axial cell 

Mean Stress = σxx + σyy + σzz 

                    3 
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2.4 Second Compaction 

Contact friction is a major parameter which helps in generating dense and loose 

samples. Porosity depends upon contact friction. If contact friction is high, grains 

don’t have much tendency to move and they tend to stick with their neighbors and 

therefore there is less tendency of a new grain filling the void space. Whereas if the 

friction is low, grains will easily roll and slide and the tendency for rearrangement will 

be much higher and they eventually fill out the void space. 

In second compaction, specifying particular contact friction, dense and loose 

samples are generated. The boundary walls are moved and a control is imposed so that 

all the stresses, σxx, σyy, σzz become equal to the confining pressure σo and we have an 

assembly with isotropic confinement. 

 

2.5 Compression 

In this step, σxx and σyy are maintained equal to the confining isotropic pressure, and 

the walls in the z- direction are moved with constant vertical velocity equal to 0.001. 

 

3. ANALYSIS OF RESULTS OBTAINED 

 

3.1 Stress Strain Curve 

Figure 3.1 shows the evolution of the deviatoric stress with 4000 intermediate states 

obtained with the strain increments and it’s comparison with the evolution of porosity. 
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Figure3.1 Stress Strain curve 



 xi 

The tri-axial test is carried out on the dense and loose granular assemblies. Marks 

A1, A2, B, C, D, E corresponds to the points in different characteristic regions of 

stress strain curve.A1 and A2 correspond to elastic part, B to peak, C to strain 

softening, D and E to critical state in the dense sample. Points in the loose sample 

correspond to the same strain as its counterpart in the dense sample. In the dense 

sample, it behaves elastically in the beginning of the compression. But after a strain of 

about 0.003 there is introduction of plasticity in the sample. The sample undergoes 

strain hardening, it’s strength increases and it’s capacity to sustain high stresses. 

During compaction, the porosity increases, the sample dilates and signifies the strain 

softening of the sample. At a strain of about 0.25, stress in the sample becomes 

constant. This state is called critical state. The logic behind the critical state lies in the 

understanding which says that a sample can never be compressed or dilated 

indefinitely. 

In the loose sample, the grains undergo rearrangement and they tend to fill out the 

empty void space as evident from the monotonic decreasing behavior of the porosity. 

Gradually, both dense and loose samples reach to same critical states with similar 

porosity. 

 

3.2 Contact And Neighbor Distributions 

Definition of a Neighbor 

 

 

Figure3.2. Dirichlet Tessellation and Delaunay Network 

The model used here employs Dirichlet Tessellation to define what is neighbor to a 

particle. In the assembly consisting of particles, the space is divided into domains. 

These domains are formed by collecting all those points which are nearer to a particle 

Neighbor 

Branch 
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than any other neighboring particle. There is exactly one particle in each domain. If 

two particles are in contact, the corresponding domains will have a common face that 

contains the contact point itself. These domains are referred to as material cells, and 

the total system given by them is called material cell system. When two material cells 

have a common face, the corresponding particle centers are connected by a straight 

line. These particles are called to be neighbors (even if there is no contact between 

two particles). After connecting particle centers of all such neighbors it forms a 

triangulation network in 2D and tetrahedron in 3D. 

If we analyze all particles in tri-axial test, the results obtained for particles well 

inside the cell would be quite different from the behavior of particles adjacent to 

boundaries. To eliminate this boundary effect, we use filter distance to screen out the 

particles which are close enough to have a contact with the boundary. We have tried 

different filter distances like 0, 2 and 4 (in terms of mean radius of the particles) to 

observe its effect and finally fixed 2 in our analysis.  

In the samples generated, of neighbors in contact, and total number of neighbors 

are measured as a function of orientation. In a particular orientation, these 

measurements are done in a cone formed by θ-dθ and θ+dθ. The result is given in 

terms of distribution of density of neighbors rather than actual number. Density of 

neighbors in a given orientation is expressed as  

F(θ) = N(θ,dθ) 

           S(θ,dθ) 

 

where N represents number of contacts in  θ-dθ and θ+dθ and S represents the area 

of unit sphere enveloping the same region. 

 

 

Figure3.3. Definition of Filtered Distance 

 

Filtered Distance Filter Distance=0 
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Figure3.4. Contact Distribution for dense and loose samples 
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Figure 3.5.Contact Coordination and Contact Anisotropy 

 

In the beginning of the tri-axial test, contacts are uniformly distributed throughout 

the sample. As compression proceeds, more and more contacts are formed in the 

direction of loading (θ=0°) and lost in the transverse direction (θ=90°). In dense 

sample, contact coordination number increases, but after some time the rate of 
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creation of contacts due to compression exceeds the rate of loss of contacts due to 

dilation and the contact coordination number starts decreasing. Whereas in loose 

sample, since there is lot of empty space, there is always a tendency to fill this empty 

space with particles and generate more and more contacts in the process. The 

anisotropy of both loose and dense sample is expected to increase and reach a constant 

value at the critical state. The decreasing behavior of anisotropy in dense sample is a 

matter of concern and is still in the thinking process. 

 

 

 

Figure3.6. Neighbor Distribution for dense and loose samples 
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Variation of Neighbor Anisotropy with Strain 
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Figure 3.7.Neighbors Coordination and Neighbor Anisotropy 

 

Neighbors Distribution remains constant throughout the tri-axial test. This can be 

explained by the fact that in dense assembly, the grains may rearrange among 

themselves but the coordination number will remain almost same. Figure 3.7 shows 

that the range of change of neighbor coordination number is 14.05 to 14.3 which is 

very small. So essentially, neighbor coordination number is constant. 

 

3.3 Normal And Tangential Displacements Of Particles: 

Figure 3.8 shows the definition of direction of normal and tangential movements. 

Tangential movements are broken into two components. One aligned in the plane 

defined by Z-Z axis and the normal, called axial tangential and another perpendicular 

to this plane, called transverse tangential. 

 

Figure 3.8.Definition of directions for displacements 
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Figure 3.9.Displacements of All Neighbors with different orientations 
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Figure 3.9 shows normal, axial, and transverse tangential displacement of dense 

sample in the elastic region corresponding to strain increment A1. It has been 

observed that the tangential movements have more spread distribution as compared to 

normal displacements which are restrained by the contacts with the neighboring 

grains.  

In orientation θ = 0°, mean of normal displacements is negative since in the 

direction of compression, the density of particles getting compressed is more than the 

particles getting dilated. In θ = 90°, mean is positive as expected. Whereas in θ = 45°, 

mean is negative. This can be explained by the fact that dilative movement can be 

calculated by employing poisson’s ratio. Since poisson’s ratio is less than 1, therefore 

the magnitude of dilation is less than compression and their resultant comes out to be 

negative. 

The mean of the transverse tangential movements is always equal to 0, and the 

mean of axial tangential is equal to 0 only in the orientation 0° and 90°. This can be 

explained by affine hypothesis, if assumed correct, that the tangential displacements 

can be expressed as Uta = *n*t_at and Utt = Є*n*t_tt. The transverse tangential is 

equal to 0 because of bi-axial symmetry and in orientation 0° and 90°, the normal 

vector becomes an eigen vector and therefore the product Є*n is proportional to n. 

Since t_at is perpendicular to n, therefore its dot product comes out to be 0. 

 

Neighbors without contact- teta=90°_A1
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Figure 3.10.Displacement of Neighbors without contact 



 xviii 

 

As shown in Figure 3.10 normal, axial tangential, transverse tangential movements 

distribution coincide each other because without contact, there is no contact force and 

a particle has equal probability to move in either of three directions. 
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(b) 

Figure 3.11.Displacement Distribution curves for different kinds of neighbors 

 

The only difference between Figure 3.11 (a) and (b) is a probability factor. In plot 

(b), the distribution curves have been multiplied by the probability factor p, given by 

Ni/N. For all neighbors, p = 1; for neighbors without contact, p = N (without 
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contact)/N (all); for neighbors in contact, p = N (in contact)/N (all). This is done 

because the displacements of all neighbors can be given by the equation: Un (all) = 

p*Un (contact) + (1-p)*Un (without contact). From the plot, it is evident that in the 

initial stage of compaction, free movements contribute mostly for the normal 

displacements. After sufficient contacts are formed, the particles in contact provide 

most of the normal displacements. 

Similar results are obtained for loose sample. 

 

3.4 Effect Of The size Of Increment: 

Size of strain increment is an important factor. Since most of the time we work with 

the derivatives, therefore we must choose an increment sufficiently small so that the 

value of the derivative is well defined. But if we choose very small increment, then 

results obtained will have lot of disturbance because of noise. 

The effect of increment size has been looked in elastic domain and plastic 

domain. The domains are such that stress varies linearly with strain so that we can 

analyze purely elastic and purely plastic behaviors. The elastic domain is taken from 

state file 30 to state file 140. State file 200 corresponds to near peak. It is included 

mainly to see the deviation from the behavior because of introduction of plasticity. 

The plastic domain is taken from state file 3000 to state file 3100. The mean of 

transverse tangential is equal to 0 and have been excluded from this analysis. 
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Axial Displacements of All Neighbors
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As shown in Figure 3.12 (a), (b), (c) and (d) there is no effect of the size of 

increment on distribution of normal and axial displacements. This means that the 

displacements are affected by the strain increment that is imposed during the loading 

only and is independent of its loading history. Figure 3.12 (e) and (f) shows that the 

standard deviation is linear to the size of increment.  
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Variation of standard deviation with size of increment - 
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(f)  

Figure 3.12.Effect of size of increment in elastic domain 

 

From this linear behavior it can be concluded that although the assembly is 

composed of random particles, but when we multiply the displacement by a factor n, 

then the displacement field is also magnified by the same factor. 
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Axial Displacement of Neighbors in contact

0

0.05

0.1

0.15

0.2

0.25

-1.00E+01 -5.00E+00 0.00E+00 5.00E+00 1.00E+01

Displacement (normalised by deps3)

Density 

(normalised by 

deps3)

3000-3001

3000-3020

3000-3060

3000-3100

 

(d) 

Figure 3.13 (a), (b), (c) and (d) shows the effect of increment in the plastic 

domain. As evident from the plots, normal displacements are affected by the size of 

the increment. With bigger increment, the displacement field becomes less spread. 

This kind of behavior is expected. In a random assembly like this, particles undergo 

Brownian movements where the displacement field is affected by its loading history. 

As in Brownian movements where the displacement field is proportional to the square 

root of time increment, we can see the linear variation of standard deviation with the 

square root of strain increment in Figure 3.13 (e) and (f).  
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Variation of standard deviation with size of 
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Figure 3.13 Effect of size of increment in plastic domain 

 

4. Comparison With A Theoretical Localisation Hypothesis 

Affine hypothesis comes from an analogy with the displacement of two points in 

an affine displacement field. It says that the displacement field generated during a tri-

axial test is related to the strain by the expression U = Є.n.r where Є is the strain 

tensor, n is the normal vector directed towards contact, and r is a vector giving the 

direction of the displacement. Figure 4.2(a) shows polar plots for normal 

displacements of all neighbors at three points in the stress strain curve. The solid line 

represents points obtained using affine approximation and the dotted line with points 

marked represents the results obtained by numerical simulation. Figure 4.2(b), (c), (d), 

(e) and (f) shows similar plots for axial displacements of all neighbors; normal and 

axial displacements of neighbors in contact only; normal and axial displacements for 

neighbors without contacts. Figure 4.1 shows that transverse tangential displacements 

are very small as compared to normal and axial tangential displacements and hence 

are not of much significance. 
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Figure 4.1 Comparison between affine approximation and DEM simulations 

 

 

 

(a) Normal Displacement for All Neighbors 

 

 

(b) Axial Displacement for All Neighbors 
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(c) Normal displacement of neighbors in contact 

 

(d) Axial displacement of neighbors in contact 

 

(e) Normal displacements for neighbors without contact 

 

 

(f) Axial displacements for neighbors without contact 

Figure 4.2 Polar plots for comparison between affine approximation and DEM simulation 
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As seen from the plots in Figure 4.2, it can be said that affine approximation holds 

very good for normal and axial displacements of all neighbors. It is also good 

displacements of neighbors without contacts also. But for neighbors with contacts, 

which are of main significance, affine approximation overestimates normal 

displacements and underestimates axial displacements. The following section tries to 

correlate the displacements of all neighbors and neighbors in contact. 

 

5. Hypothesis Proposed Regarding Displacements 

Displacements of contacts were compared with the affine approximation for 

displacements of all neighbors. Figure 5.1 shows the plots of normal displacements of 

all neighbors and neighbors in contact. It looks like there exist linear relationship 

between two displacements since there are always two constant factors relating them. 
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Figure 5.1 Comparison of normal displacements 
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(a) Normal Displacements 

 

 

 

(c) Axial Displacements 

Figure 5.2 Fitting displacements of All neighbors with neighbors in contact 

 

Figure 5.2 shows the linear fit of normal and axial displacements of neighbors in 

contact by the respective displacements of all neighbors at three points of the stress 

strain curve. The fit works very well for the normal displacements, but gives an 

approximate least square solution for axial displacements. Similar analysis is done for 

other points of the stress strain curve of dense sample as well as the loose sample. 

Table 5.1 and 5.2 lists the coefficients obtained in the linear fit for the dense sample 

and the loose sample respectively. The relationship between displacement of contacts 

and displacements of all neighbors can be written in the form U-c = a*U-All + b. 

 

A1 B E 

A1 B E 
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Table 5.1 Coefficients for dense sample 

Points on Stress Strain 

Curve (Figure 3.1) 

Normal Displacement Axial Displacement 

a b a b 

A1 0.30076 0 1.3058 0.0163 

A2 0.276 0.05046 1.4076 -0.050 

B 0.035446 0.016766 1.3707 0.043 

C 0.031462 0.011571 1.446 -0.0425 

D 0.015677 0 1.0082 0.3935 

E 0.033051 0 1.5935 -0.0365 

 

Table 5.2 Coefficients for loose sample 

Points on Stress Strain 

Curve (Figure 3.1) 

Normal Displacement Axial Displacement 

a b a b 

A1 0.23643 0.0388 1.3213 0.05876 

A2 0.12929 0.0199 1.1592 0.18365 

B 0.07863 0.0154 1.1964 0.0989 

C 0.0123 0 1.6398 0 

D 0.0827 0.027 1.2596 0.0967 

E 0.01729 0 0.95648 0.44823 

 

 

6. CONCLUDING REMARKS 

The elasto-plastic response of Dirichlet tessellated sample of spherical grains has 

been investigated in tri-axial loading with the help of discrete element simulations. In 

spite of the simplicity of the model, it reproduces several aspects of realistic soils. The 

model has been studied in terms of the micro-mechanical displacements and 

rearrangements.  

The simulations carried out here reflect the inability of affine hypothesis to 

completely describe micro-mechanical displacements in terms of global parameter like 

strain. It is verified true for all neighbors, but in micro-mechanical study of granular 

materials, people are more interested in knowing the behavior of contacts, since grains 

interact via contacts only. And in our analysis we observe that the affine displacement 



 xxx 

field does not give true displacements for grains in contact. Efforts have been made to 

try to deduce the displacements of grains in contact in terms of the global strain. 

 The work done here proposes a linear relationship between affine displacement 

field of all neighbors and the displacement field of neighbors in contact, but the 

coefficient of linearity varies during loading. The relationship is observed for the loose 

sample also for the same strain as in dense sample and the coefficient observed are 

different from dense sample. To study this relationship in detail, it is better to 

investigate more models with different stiffness to see how it affects the linearity. The 

results here are mainly for loading. Similar analysis can be done for different loading 

paths like unloading of the sample to see if the sample behaves in a similar way. 
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