Analysis of Variance

LECTURE - 4

FACTORIAL EXPERIMENTS

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

2³ Factorial experiment

Suppose that in a complete factorial experiment, there are

three factors - A, B and C, each at two levels, viz., $a_0, a_1; b_0, b_1$

and c_0, c_1 respectively. There are total eight number of

combinations: $N = 2^3 = 8$

 $a_0b_0c_0, a_0b_0c_1, a_0b_1c_0, a_0b_1c_1, a_1b_0c_0, a_1b_0c_1, a_1b_1c_0, a_1b_1c_1.$

Each treatment combination has r replicates, so the total number of observations are $N = 2^3 r = 8r$ that are to be

analyzed for their influence on the response.

Assume the total response values are

 $Y_* = [(1), a, b, ab, c, ac, bc, abc]'.$

The response values can be arranged in a three-dimensional contingency table. The effects are determined by the linear contrasts

$$\ell'_{effect}Y_* = \ell'_{effect}((1), a, b, ab, c, ac, bc, abc)$$

using the following table:

Factorial effect	Treatment combinations							
	(1)	а	b	ab	С	ac	bc	abc
Ι	+	+	+	+	+	+	+	+
A	-	+	-	+	-	+	-	+
В	-	-	+	+	-	-	+	+
AB	+	-	-	+	+	-	-	+
С	-	-	-	-	+	+	+	+
AC	+	-	+	-	-	+	-	+
BC	+	+	-	-	-	-	+	+
	-	+	+	-	+	_	-	+

Note that once few rows have been determined in this table, rest can be obtained by simple multiplication of the symbols.

For example, consider the column corresponding to *a*, we note that

```
A has + sign, B has - sign ,
```

so AB has - sign (=sign of $A \times sign of B$).

Once *AB* has - sign, *C* has – sign then *ABC* has (sign of *AB* x sign of *C*) which is + sign and so on.

The first row is a basic element. With this $a = 1'Y_*$ can be computed where 1 is a column vector of all elements unity.

If other rows are multiplied with the first row, they stay unchanged (therefore we call it as identity and denoted as *I*).

Every other row has the same number of + and – signs.

If + is replaced by 1 and – is replaced by -1, we obtain the vectors of orthogonal contrasts with the norm $8(=2^3)$.

If each row is multiplied by itself, we obtain *I* (first row). The product of any two rows leads to a different row in the table. For example

A.B = AB

$$AB.B = AB^2 = A$$

$$AC.BC = A.C^2BB = AB.$$

The structure in the table helps in estimating the average effect.

For example, the average effect of *A* is

$$A = \frac{1}{4r} \left[(a) - (1) + (ab) - (b) + (ac) - (c) + (abc) - (bc) \right]$$

which has following explanation.

(i) Average effect of *A* at low level of *B* and *C* $\equiv (a_1b_0c_0) - (a_0b_0c_0)$ $\equiv \frac{\left[(a) - (1)\right]}{r}$ (ii) Average effect of *A* at low level of *B* and low level of *C*

$$\equiv (a_1 b_1 c_0) - (a_0 b_1 c_0)$$

$$\equiv \frac{\left[(ab) - (b)\right]}{r}$$

(iii) Average effect of A at low level of B and high level of C $\equiv (a_1 b_0 c_1) - (a_0 b_0 c_1)$ $\equiv \frac{\left[(ac) - (c)\right]}{\left[(ac) - (c)\right]}$ (iv) Average effect of A at low level of B and C $\equiv (a_1b_1c_1) - (a_0b_1c_1)$ $\equiv \frac{\left[(abc) - (bc)\right]}{}.$

Hence for all combinations of *B* and *C*, the average effect

of *A* is the average of all the average effects in (i)-(iv).

Similarly, other main and interaction effects are as follows:

$$B = \frac{1}{4r} \left[(b) + (ab) + (bc) + (abc) - (1) - (a) - (c) - (ac) \right] = \frac{(a+1)(b-1)(c+1)}{4r}$$

$$C = \frac{1}{4r} \left[c + (ac) + (bc) + (abc) - (1) - (a) - (b) - (ab) \right] = \frac{(a+1)(b+1)(c-1)}{4r}$$

$$AB = \frac{1}{4r} \Big[(1) + (ab) + (c) + (abc) - (a) - (b) - (ac) - (bc) \Big] = \frac{(a-1)(b-1)(c+1)}{4r}$$

$$AC = \frac{1}{4r} \Big[(1) + (b) + (ac) + (abc) - (a) - (ab) - (c) - (bc) \Big] = \frac{(a-1)(b+1)(c-1)}{4r}$$

$$BC = \frac{1}{4r} \Big[(1) + (a) + (bc) + (abc) - (b) - (ab) - (c) - (ac) \Big] = \frac{(a+1)(b-1)(c-1)}{4r}$$

$$ABC = \frac{1}{4r} \Big[(abc) + (ab) + (b) + (c) - (ab) - (ac) - (bc) - (1) \Big] = \frac{(a-1)(b-1)(c-1)}{4r}.$$

Various sum of squares in the 2³ factorial experiment are obtained as

$$SS(Effect) = \frac{(\text{linear contrast})^2}{8r} = \frac{\left(\ell_{effect}'Y_*\right)^2}{r\ell_{effect}'\ell_{effect}}$$

which follow a Chi-square distribution with one degree of freedom under normality of Y_* . The corresponding mean squares are obtained as

$$MS(Effect) = \frac{SS(Effect)}{\text{Degrees of freedom}}$$

The corresponding *F*-statistics are obtained by

$$F_{effect} = \frac{MS(Effect)}{MS(Error)}$$

which follows an *F*-distribution with degrees of freedoms 1 and error degrees of freedom under respective null hypothesis.

The decision rule is to reject the corresponding null hypothesis at α level of significance whenever

$$F_{effect} > F_{1-\alpha}(1, df_{error}).$$

These outcomes are presented in the following ANOVA table.

Sources	Sum of	Degrees of	Mean	F
	squares	freedom	squares	
A	SSA	1	MSA	F
В	SSB	1	MSB	
AB	SSAB	1	MSAB	
C	SSC	1	MSC	F_{AB}
AC	SSAC	1	MSAC	F_{C}
BC	SSBC	1	MSBC	F_{AC}
ABC	SSABC	1	MSABC	F_{BC}
Error	SS(Error)	8(r-1)	MS(Error)	F_{ABC}
Total	TSS	8 <i>r</i> - 1		