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Chapter 8 

Response Surface Designs 

 

An important  objective of the design of experiment is the comparison of treatments either whose nature can 

be  qualitative or quantitative. The objective in  both the  cases is  to detect structure of some form among the 

treatment effects.  The methods of regression analysis can be used in case of  the  treatments are quantitative 

in nature. 

 

If the treatments are represented by the level of one treatment factor then  the dependence of treatment 

effects on treatments can be represented by a  response curve. If the treatments are level combinations of two 

or more treatment factors,  then a response surface can be used. Such curves can be used to make  judgments  

about treatment structure  and to know   the relationship between treatments and responses, or between input  

and output variables.  Such knowledge of  relationship is important if one wants to know the treatment 

combination which gives the optimal. The optimum can be defined in terms of  highest or lowest response 

depending upon the situation. The  exact relationship is never known to the experimenter but an attempt is 

made to approximate it. This can be achieved  by using the  methods of experimental design and regression 

analysis. Such methods  are  referred to as a response surface methodology (RSM). 

 

We consider a simple  example to illustrate the application of RSM. The relationship 2 2
1 2y x x   can be  

represented  as a two-dimensional surface  in a three-dimensional space and this indicates the dependence of 

y  on 1x  and 2x .  If   the units of  the input variables are changed to as  *
1 13x x  and *

2 25x x , then the 

relationship becomes  

 *2 *2
1 2

1 1
.

9 25
y x x   

 

Note that y  is constant on the curves 2 2
1 2x x   constant, which is a circle.  So on circles in the 

1 2( , )x x  plane, y  is  constant on the curves  *2 *2
1 2

1 1

9 25
x x   constant, which is now an  ellipse in the 

* *
1 2( , )x x  plane.  Obviously, these  two surfaces are quite different from each other  and this illustrate that the 

choice of surface depends on the  choice of units of plotting also.  This type of consideration are always kept 

in mind while doing with RSM. 
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RSM is a sequential procedure.  Often when the experimenter is  at a point on the response surface  which is 

far away from the  point of optimum, then  there is a little curvature  present in the system. In such a 

situation,   the first order  RSM will be appropriate. This is presented in the following figure: 

 
The sequental nature of response surface methodology 

 

The  objective of experimenter is to lead  along a path of  improvement toward the general vicinity of the 

optimum in an efficient way. Once  the experimenter is  close to that region,  a more elaborate model, e.g.,  

such as  second order model, may be employed. Then the  analysis can  be performed to  locate the optimum. 

 

Formulation of the problem 

Suppose we have k  quantitative factors 2 2, ,..., kF F F  which  affect the particular response. Each factor has 

continuous levels within a certain interval; e.g.,  iF  has levels iX  with ( 1, 2,..., ).iL i iUX X X i k    A  

hypercube  ; ( 1, 2,..., )iL i iUX X X i k    can be defined as the operational  region (OR). In the OR every 

level combination 1 2( , ,.., )kX X X  represents  a feasible operating  condition. Assuming that each such setting 

can be controlled (essentially without  error) by the experimenter,  a response is considered as a function of  

1 2( ... )KX X X  and is  associated as  
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  1 2 1 2, ,..., : , ,..., ) ( ;k qX X X X         

where 1 2, ,..., q    are parameters, 1 2 1 2( , ,..., ) ' and ( , ,..., ) '.k qX X X X        Now the true response  

1 2( , ,..., ),kX X X   and the form of the functional relationship    at any given point in OR are unknown. 

Only observed responses  ( )y y X  are available and  attempt is made  to approximate ( , )X   by a 

polynomial function ( , )f X   in .X   Then consider a model of the form 

 ( ) ( , ) ( ),y X f X X    

in place of ( , )X    where 1 2( , ,..., ) 'm     are unknown parameters and ( )X  represents random 

error. 

 

Ideally, the experimenter  wants  to have ( )y X   available for a sufficiently fine grid in OR  so that 

approximate    or  a realization of    can be adequately approximated. It is difficult in real experiments to 

do so. Instead  of that, the experimenter has  only  a relatively small  number of points (these are sometimes 

referred to as runs or experiments)  and they are  usually confined to a region called as experimental 

region (ER) or region of interest. Obviously,  such an ER is contained in OR.  The basic idea  behind this is 

then the following. 

 Based on the limited available  knowledge about the  process under study, the experimenter  chooses 

an ER.   

 Assuming  that the response surface for ER  is sufficiently smooth so that it  can be approximated by 

a lower  polynomial, say  first or second degree polynomial. 

  Then  an appropriate treatment and error control design  can be chosen to estimate the coefficients of 

the polynomial. From this,  the response can be predicted for any point in ER.  

  If one of these points attains the optimal response then  (one  may  have reached  an  optimum which 

may only  be an  optimum  either locally or globally.  

  If the fitted response surface indicates that the optimum may only be outside ER then the 

experimenter can  choose a new ER and repeat the whole process until the (predicted) optimum can 

be located more precisely. 

This procedure leads to two sources of error:  

(i) There can be experimental and sampling error in estimating the function ( ; )f X   and  

(ii) some bias may be introduced is approximating ( , )X   due to the inadequacy of ( ; )f X  .   

The  objective  of response  surface designs is to minimize these errors.  The basic requirements for such 

designs are as follows: 
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1.  The design should allow ( , )f X   to be estimated with reasonable precision in  ER under the 

assumption  that a polynomial ( ; )f X   of degree  approximates ( ; )X   sufficiently  well.  

2.  A provision in design should be there to check whether the chosen ( ; )f X   provides a 

satisfactory fit to the response surface or whether a different polynomial  is more  appropriate. 

3. The design should not contain  large number of experimental points. 

4. The design should be available for  blocking of the experimental points. 

5. One should be  able to modify  the design in case the polynomial of degree  to which the 

polynomial is fitted is not found to be   adequate and a polynomial of next higher degree  needs to 

be fitted. 

 

Now we discuss the basic tools and designs of RSM and point out the connection to treatment and error-

control designs. 

 

First-order models and designs 

First-order regression model 

The response surface function   is approximated  by a first-order polynomial within a small region based on  

the k  input variables    1 2, ,..., kX X X as follows: 

 0
1

.
k

i i
i

y X  


    

 

 Here i   is the regression coefficient associated with iX  and measures  the change in the response y  due to 

a change in the input variable  iX .  This  kind of information is  available from the main effect from a 

factorial experiment where each factor has two levels. A good choice of a response surface design for such a  

situation is  a 2k  factorial, or a fraction of it. 

 

Suppose 2k  factorial is considered as a choice of response surface design then there are  2k  experimental 

points  1 2( , ,..., )k jX X X    say, with 1, 2,.., 2kj  . With each level combination being replicated r  times in a 

CRD, there are 2kN r  experimental runs. The low and high level of the thi  factor are denoted by  0iX  and  

1,iX  respectively.  If  the experimenter decides to use  the coded levels  iX  in place of ioX  and 1,iX  then the 

coded levels are expressed as      
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1 0

1
( )

2

i
i

i i

X X
X

X X





 

With such a transformation,  the low level  becomes   0 1 andix    high level becomes 1 1.ix    The model 

0
1

k

i i
i

y X  


    is rewritten as  

 * *
1 2 0 1 2

1

( , ,..., ) ( , ,..., ) ,
k

k i i k
i

y x x x x x x x  


     

where  1,ix    or in matrix notation as 

 *( ,   ) ,y L D     

where   y  is the 1N   vector of observation, L  is an 1N   vector of unity elements, D  is the N k   design-

model matrix  consisting of elements of  elements -1’s and 1’s,   * * * *
0 1( , ,..., ) 'k     and   is the 1N   

vectors of errors. More specifically, let 

 1 2( , ,..., )kD d d d  

where each , 1, 2,...,id i k  is a  1N    vector and each 1has 2k
id r   elements equal to -1 and  12kr   

elements equal to 1.  Thus  ' 0iL d   for every i . The 'id s   are orthogonal to each other. 

 

Least squares analysis 

Using the  least squares principle,  the normal equations for the *
i  of  the model 

* *
1 2 0 1 2

1

( , ,..., ) ( , ,..., ) ,
k

k i i k
i

y x x x x x x x  


     

are obtained as 

ˆ( ,   ) '( ,   ) * ( ,   ) 'L D L D L D y   

 

or * 'ˆ .
'

L y
N

D y


 
  
 

 

Thus 

 
1 2

*
0 1 2

, ,..,

1ˆ ( , ,..., )
k

k
x x x

y x x x y
N

    


 

and 
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* '1ˆ

1
[(sum of all observations with 1)  - (sum of all observations with 1)].

i i

i i

d y
N

x x
N

 

  
 

Then 

 * 21ˆ( )iVar
N    

and 

 * *
'

ˆ ˆ( , ) 0.i iCov     

So, for any given point 1 2( , ,..., ) 'kz z z z  in the ER given by   1 1; 1, 2,...,iz i k     , the predicted 

response are obtained as 

 * *
0

1

ˆ ˆˆ( )
k

i i
i

y z z 


   

with variance 

 2 2

1

1
ˆ[ ( )] 1 .

k

i
i

Var y z z
N 



   
 

  

In order to know that which of the  factors are influential and also to know the response surface  given by 

ˆ( )y z ,  we need to obtain an estimate of  2
 . This is  obtained  through the analysis of variance  as given in 

the following table with notations 

 

 
1 2

1 2

, ,...,

2
*

1
1

2 1

( ) ( , ,..., )

ˆSS(Total)

SS( )

k

k

x x x x

k

i
i

y x y x x x

D N

D D PE








 

 

 



 
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ANOVA for first-order response surface design 

Source   Degrees of freedom  Sum of squares 

 

Regression  k  

 

  *
1    1    * 2

1̂( )N    

 

  *
2    1    * 2

2
ˆ( )N    

                 

  *
k    1    * 2ˆ( )kN    

Error   2 1kr k     1D SSE  

    - Lack-of-fit error 2 1k k     2 SS( )D LOF  

    - Pure error  2 ( 1)k r      2
( ) ( ) SS( )o

x

y x y x PE  


 

Total   1N       2
( ) ( )o

xo

oy x y 


 

 

Note  that  the SSE   consists of following two parts: 

(i) The usual  pure error sum of squares for a CRD,  denoted by  SS( )PE  and 

(ii)  The lack of fit (LOF) sum of the sums of squares for all  the interactions for the 2k  factorial 

denoted here by SS( )LOF . This sum of squares can be used to test whether  the postulated model  

* *
1 2 0 1 2

1

( , ,..., ) ( , ,..., )
k

k i i k
i

y x x x x x x x  


      provides a sufficiently good enough fit to the 

data.  

 To test whether the thi  factor contributes in explaining the response,  we use the following F -statistic. 

  
*( )

( 1, 2,..., )i
i

SS
F i k

MSE


   

which follows the F -distribution with  1 and  ( 1)N k   degrees of freedom .  Suppose  without loss of 

generality, only the first 1k  factors  are important. Then instead of using the model  

* *
1 2 0 1 2

1

( , ,..., ) ( , ,..., ) ,
k

k i i k
i

y x x x x x x x  


      following model based on 1k  factors is used: 
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1

* *
1 2 0 1 2

1

( , ,..., ) ( , ,..., )
k

k i i k
i

y x x x x x x x  


     

and the predicted response then becomes 

 
1

* *
0

1

ˆ ˆˆ( )
k

i i
i

y z z 


   

with  the estimated variance as 

   
1

2

1

1
ˆ( ) 1

k

i
i

Var y z z MSE
N 

 
  

 
 . 

Then  the responses for two different sets of input variables,  
11 2, ,..., 'kz z z z  and  

11 2, ,.., 'kw w w w   are 

compared by considering the difference in the predicted values  based on these input variable as 

 
1

*

1

ˆˆ ˆ( ) ( ) ( )
k

i i i
i

y z y w z w


    

and  its estimated variance is given by 

   
1

2

1

1
ˆ ˆ( ) ( ) ( )

k

i i
i

Var y z y w z w MSE
N 

   . 

Similarly, the experimenter can also  consider the  differences in responses if some of the input variables are 

kept constant at a desired level and the remaining input variables are varied to  achieve optimum response  in 

ER. Since the true response surface is being approximated and due to experimental error, there may  not exist 

a single level combination which achieves the optimum response. Instead of this, there may exist a 

neighbourhood in which the optimum may lie and this optimum may not be significantly different from each 

other. 

 

Alternative Design 

It may not be a good idea to use the  full 2k  factorial to estimate the parameters of a first-order response 

surface as this may involve large number of observations to handle.  There are basically two ways to reduce 

the number of experimental  points. One way is to replicate each design point 1 2( , ,..., )kx x x  only once and in 

such case  SS( ) 0 and ( )PE SSE SS LOF  .  

  

Another alternative is to use only a fraction of a 2k  factorial either as a  single replicate or as a CRD with 

more than one replications. In either case, the experimenter has  to choose a fraction such that all  the k  main 

effects are estimable  with sufficient degrees of freedom for error so that comparisons like  ˆ ˆ( ) ( )y z y w  can 
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be made with satisfactory  statistical power as measured by its variance. This means that if we need  to 

choose a very small fraction,  then this  can be achieved by fractional  factorials, with  several replications 

for each design point. 

 

An important  aspect in a  2k  factorial is that the  blocking can be introduced easily without sacrificing  the 

estimation of the main effects.   This will help in reducing the experimental material as well as  the cost and 

provide simplicity in  the experimentation. We discussed this aspect in fractional factorial module. 

 

The method of steepest ascent 

In many experimental conditions, the initial estimate of the optimum operating conditions for the system 

may be away from the actual optimum.  In such conditions, one would like to move rapidly to the general 

vicinity of the optimum. It is expected to have a  procedure which is simple to use and economically 

efficient. When  the experimenter is  remote  away from the optimum, then usually it is  assumed  that a first-

order model is an adequate approximation to the true surface in a small region of  the 'x s . 

 

The method of steepest ascent is a procedure for moving sequentially along the path of steepest ascent, i.e.,  

in the direction of the maximum increase in the response. If minimization is desired, then this  technique is 

called as  the method of steepest   descent. The fitted first-order model is  

 0
1

ˆ ˆˆ
k

i i
i

y x 


   

and the first-order response surface can be represented as  the contours of  ŷ . The contours are a series of 

parallel lines such as  shown in  following figure: 
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First order response surface and path of steepest ascent 

 

 The direction of steepest ascent is the direction in which ŷ  increases most rapidly. Such direction is parallel 

to the normal to the fitted response surface. The experimenter  usually take as the path of steepest ascent the 

line through the center of the region of interest and normal to the fitted surface. Thus,  the steps along the 

path are proportional to the regression coefficients ˆ 'i s . The actual step size is determined by the 

experimenter based on process knowledge or other practical considerations. 

 

The experiments are  continued to be conducted along the path of steepest ascent until no further increase in 

response is observed. Then a new first-order model which  may be a fit, a new path of steepest ascent 

determined, and the procedure continued. Finally, the experimenter will arrive in the vicinity of the optimum.  

This is judged  by  the lack of fit test of a first-order model.  Some additional experiments are conducted to 

obtain a more precise estimate of the optimum at this point. 
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Analysis of a second-order response surface 

When the experimenter is away from optimum, a lower order model is chosen to start with. 

When the experimenter is relatively close to the optimum, then a model that incorporates curvature is usually 

required to approximate the response. In most cases, the second-order model is found to be suitable as 

 2
0

1 1

.
k k

ii i ii i ij i j
i ji i

y x x x x    
 

         

Now we discuss how to use this fitted model to find the optimum set of operating conditions for the 'x s  and 

to characterize the nature of the response surface. 

 

Location of the stationary point 

Suppose we wish to find the levels of  1 2, ,..., kx x x   that optimize the predicted response. This point, if it 

exists, will be the set of  1 2, ,..., kx x x  for which the partial derivatives  
1 2

ˆ ˆ ˆ
... 0.

k

y y y

dx x x

  
   
 

  This point, 

say  1, 2, ,, ,..., ,s s k sx x x  is called the  stationary point. The stationary point could represent 

 (1) a point of maximum response,  

(2) a point of minimum response, or  

(3) a saddle point.   

These three possibilities are  shown  in  the following figures: 

Response surface and contour plot illustrating with a maximum 
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Response surface and contour plot illustrating with a minimum 

 

 

Response surface and contour plot illustrating a saddle point (or minimax) 

 

Contour plots are  very important in the study of the response surface.  Contours are generated with the help 

of computer software. Such contours help the experimenter in characterizing the shape of surface. This also 

helps is locating the optimum with reasonably lower variability. 
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We may obtain a general mathematical solution for the location of the stationary point. The second-order 

model  can be expressed  in matrix notations as 

  0
ˆˆ ' 'y x b x Bx    

where 

          

11 12 111

2 2 22 2

ˆ ˆ ˆˆ ,   / 2,   ...,   / 2

ˆ ˆ ˆ   ,     ...,   / 2
, and

           

ˆ ˆ          

k

k

k
k kk

x

x
x b B

x

  

  

 

   
   
         
   
       

   
 

where  b  is a ( 1)k   vector of the first-order regression coefficients and  B  is a ( )k k  symmetric   matrix 

whose main diagonal elements are the pure quadratic coefficients ˆ( )ii  and whose off-diagonal elements are 

one-half the mixed quadratic coefficients ˆ( , ).ij i j    The stationary points obtained by solving ˆ / 0dy dx   

as 

  
ˆ

2 0.
y

b Bx
x


  


 

which gives the stationary point as 

  11

2sx B b   

The   predicted response at the stationary point is  found  by substituting sx  into 0
ˆˆ ' 'y x b x Bx    as 

 '
0

1ˆˆ
2s sy x b  . 

 

Characterizing the response surface 

Once the stationary point is found  then  the response surface is characterized  in the immediate vicinity of 

this point. The meaning of  characterize is  to determine whether the stationary point is a point of maximum 

or minimum response or a saddle point. The  relative sensitivity of the response to the variables  1 2, ,.., kx x x  

is also studied. 

 

The most straightforward way to do this is to examine a contour plot of the fitted model. It is easier to study 

the contour plot if  there are only two or three process variables (the 'x s ),  When there are relatively few 

variables, then the  canonical analysis can be useful. 
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It is helpful first to transform the model into a new coordinate system with the origin at the stationary point  

sx  and then to rotate the axes of this system until they are parallel  to the principal axes of the fitted response 

surface. This transformation is illustrated in   the following  figure:  

 

Canonical form of the second order model 

This results in the  following fitted model 

 2 2 2
1 1 2 2ˆ ˆ ...s k ky y w w w        

where the 'iw s   are the transformed independent variables and the 'i s  are constants. This equation is 

called the canonical form of the model  and  'i s are the eigenvalues or characteristic roots of the matrix 

.B  

 

The nature of the response surface can be determined from the stationary point and the signs and 

magnitudes of the 'i s .   First suppose that the stationary point is within the region of exploration for fitting 

the second-order model.   

If  all 0i sx     is a point of minimum response;  

If all 0i sx     is a point of maximum  response; and  

It  'i s   have different signs, then  sx  is a saddle point.  

Furthermore, the surface  is steepest in the iw  direction for which i  is the greatest.  
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Experimental designs for fitting response surfaces 

Fitting and analyzing response surfaces is greatly facilitated by the proper choice of an experimental design. 

 

When selecting a response  surface design, some of the features of a desirable design are as follows: 

 

1. It provides a reasonable distribution of data points  throughout the region of interest. 

2. The model adequacy and the  lack of fit can be checked. 

3.  It  allows  the experiments to be performed in blocks. 

4. It  allows  to built the higher order designs sequentially. 

5. It provides an internal estimate of error. 

6. It provides  the precise estimates of the model coefficients. 

7. It provides a good profile of the prediction variance throughout the experimental region. 

8. It provides reasonable robustness against outliers or missing values. 

9. It does not require a large number of runs. 

10. It does not require too many levels of the independent variables. 

11. It ensures simplicity of calculation of the model parameters. 

 

All these features  may not always be meeting in a design, so judgment based on experience must often be 

applied in design selection. 

 

Design for fitting the first-order model 

Consider the following  first-order model in k  variables for fitting  

  0
1

k

i i
i

y x  


   . 

There is a unique class of designs that minimize the variance of the regression coefficients ˆ 'i s .  These are 

the orthogonal first–order designs.  A first-order design is orthogonal if the off-diagonal elements of the 

( ' )X X  matrix are all zero. This implies that the cross-products of the columns of the X  matrix sum to zero. 

 

The 2k  factorial and fractions of the 2k  series in which main effects are not aliased with each other belongs 

to the class of orthogonal first-order designs. Assume that the low and high level of the k  factors are coded 

as 1  levels to use is such designs. 
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The 2k  design  can not provide an estimate of the experimental error unless some runs are replicated. A 

method of including replication in the 2k  design is to augment  the design with several observations at the 

center  which is the point  0, 1, 2,..., .ix i k    The estimates of  ˆ ' , 1i s i   are not affected by adding the 

center points to the 2k  design. Only estimate of  0  changes as it becomes the average of all the 

observations. The addition of center points does not alter the orthogonally property of the design. 

 

Another orthogonal first-order design  is the simplex. The simplex is a regularly sides figure with 1k   

vertices in k  dimensions. Thus, for  2k   the simplex design is an equilateral triangle and for 3k   it is a 

regular tetrahedron.  Simplex designs in two and three dimensions are shown in the following figure: 

 

 

         

The simplex design for k = 2 variables The simplex design for k = 3 variables 
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Designs for fitting the second-order model 

The  central composite design or CCD are used for fitting a second-order model. The CCD consists of a 2k  

factorial  with  Fn  runs, 2 k  axial or star runs , and cn  center runs.  Following figure shows the CCD for  

2k   and 3k   factors. 

 

         

The central composite design for k = 2 variables The central composite design for k = 3 variables 

 

The  CCD  is developed  through sequential experimentation.  Suppose   a 2k  is used  to fit a first-order 

model and suppose  this model exhibits lack of fit. Then  axial runs is added  to allow the quadratic terms to 

be incorporated into the model. The CCD is a very efficient design for fitting the second-order model. There 

are two parameters in the design that must be specified: 

 the distance   of the axial runs from the design center and  

 the number of center points cn .  

We now discuss the choice of these two parameters. 

 

Readability 

It is  important for the second-order model to provide good predictions throughout the region of interest. One 

way to define “good” is to have  the model  which is a reasonably consistent and has stable variance of the 

predicted response at points of interest. The variance of the predicted response at some point x  is 

   2 1ˆ( ) '( ' )Var y x x X X x  . 
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It is suggested that a second-order response surface design should be  rotatable. This means that   ˆ( )Var y x  

is the same at all points x  that are at  the same distance  from the design center.  This means that  the 

variance of predicted response is constant on spheres. 

Following figure shows contours of constant  ˆ( )Var y x  for the second-order model fit using the CCD.  

 

        

Contours of constant standard deviation  ˆ( )V y x  of predicted response for the rotatble CCD 

 

Notice   that the contours of constant standard  deviation of predicted response are concentric circles.  A 

design with this property will leave the variance of  ŷ   unchanged when the design is rotated about the 

center (0, 0,…,0). Hence it is termed as rotatable design. 

 

Rotatability is an important criterion for the selection of a response surface design.  The aim of RSM is 

optimization and the location of the optimum is unknown prior to running the experiment,  so it makes sense 

to use a design that provides equal  precision of estimation in all  the directions. In fact,  any first–order 

orthogonal design is rotatable. 

 

A central composite design is made rotatable by the choice of   . The value of    for rotatability depends 

on the number of points in the factorial portion of the design. The choice  1/ 4

Fn   yields a rotatable 

central composite design where Fn  is the number of points used in the factorial portion of the design. 
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The spherical CCD  

Rotatability is a spherical property. It is  an important design criterion when the region of interest is a sphere. 

It is not important to have the exact rotatability to have a good design. The best choice of   for a spherical 

region of interest  from a prediction variance view point for the CCD is to set .k    This design called a 

spherical CCD. This  puts all the factorial and axial design points on the surface of a sphere of radius .k  

                                                                                                                                               

Center runs in the CCD                                                     

The choice of    in the CCD is dictated primarily by the region of interest. When this region is a sphere, the 

design must include center runs to provide reasonably stable variance  of predicted response. Generally, three 

to five center runs are recommended. 

 

Blocking in response surface designs 

When using  the response surface designs, it is often necessary to consider blocking to eliminate nuisance  

variables. Such  problem may occur when a higher order, say second-order design is assembled sequentially 

from lower order, say. Such necessity arises due to various reasons. For example, considerable time may 

elapse between the running of the first-order design and  the running of the supplemental experiments which 

are required to build up a second-order design, and during this time, the  test conditions may change which 

makes necessary to use blocking. 

 

A   response surface design is said to be block orthogonally  if it is divided into blocks such that block 

effects do not affect the parameter estimates of the response surface model.  If a 2k  or 2 k p  design is used as 

a first-order response surface design, the center points in these designs should be allocated among the blocks. 

 

For a second-order design to block orthogonally, two conditions must be satisfied. If there are bn  

observations in the thb  block, then these conditions are 

 

1. Each block must be a first-order orthogonal design; that is, 

1

0 0,1,..., for all
bn

iu ju
u

x x i j k b


    

where  iux  and  jux  are the levels of thi  and  thj  variables in the thu   run of the experiment with 

0 1ux   for all  u . 
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2. The fraction of the total sum of squares for each variable contributed  by every block must be equal to 

the fraction of the total observations that  occur in the block; that is, 

  

2

1

2

1

1, 2,..., for all

bn

iu
u b
N

iu
u

x
n

i k b
Nx





 



 

 where N  is the number of runs in the design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


