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Chapter 1 

Some Results on Linear Algebra, Matrix Theory and Distributions 

 

We  need some basic knowledge to understand the topics in the analysis of variance. 

 

Vectors: 

A vector Y is an ordered n-tuple of real numbers. A vector can be  expressed as a row vector or a column 

vector as 
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y

y
Y

y

 
 
 
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 
 


 

is a column vector of order 1n  and 

 1 2' ( , ,..., )nY y y y  

is a row vector of order  1 .n     

 

If all 0iy   for all  i = 1,2,…,n then  ' (0,0,...,0)Y   is called the null vector. 
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where k is a scalar. 
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Orthogonal vectors:  

Two vectors X and Y are said to be orthogonal if  ' ' 0X Y Y X  .  

 

The null vector is orthogonal to every vector X  and is the only such vector. 

 

Linear combination: 

If  1 2, ,..., mx x x  are  m  vectors and  1 2, ,..., mk k k  are m  scalars, then  

 
1

m

i i
i

t k x


   

is called the linear combination of  1 2, ,..., mx x x . 

 

Linear independence 

If 1 2, ,..., mX X X  are m vectors  then they are said   to be linearly independent if there exist scalars  

1 2, ,..., mk k k  such that 

 
1

0 0
m

i i i
i

k X k


     for all  i = 1,2,…,m. 

If there exist 1 2, ,..., mk k k  with at least  one ik  to be  nonzero, such that 
1

0
m

i i
i

k x


  then  

1 2, ,..., mx x x  are said to be linearly dependent. 

 Any set of vectors containing the null vector is linearly dependent. 

 Any set of non-null pair-wise orthogonal vectors is linearly independent. 

 If m > 1 vectors are linearly dependent, it is always possible to express at least one of them as a 

linear combination of the others. 

 

Linear function: 

Let  1 2( , ,..., ) 'mK k k k  be a 1m   vector of scalars and 1 2( , ,..., )mX x x x  be a m  1 vector of variables, 

then  
1

'
m

i i
i

K Y k y


   is called a linear function or linear form.  The vector K  is called the coefficient 

vector.  For example, the mean of 1 2, ,..., mx x x  can be expressed as  
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where  '1m  is a  1m  vector of all elements unity. 
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Contrast: 

The linear function 
1

'
m

i i
i

K X k x


    is called a contrast in 1 2, ,..., mx x x  if  
1

0.
m

i
i

k


     

For example, the linear functions 

         31
1 2 1 2 3 2, 2 3 ,

2 3

xx
x x x x x x      

are contrasts. 

 A linear function 'K X  is a contrast if and only if it is orthogonal to a linear function 
m

i
i

x

  or to 

the linear function  .
1

1 m

i
i

x x
m 

  . 

 Contrasts  1 2 1 3 1, ,..., jx x x x x x    are linearly independent for  all  2,3,..., .j m  

 Every contrast in 1 2, ,..., nx x x  can be written as a linear combination of (m - 1) contrasts 

1 2 1 3 1, ,..., mx x x x x x   . 

 

Matrix: 

A matrix is a rectangular array of real numbers. For example 

      

11 12 1

21 22 2

1 2

...

...

...

n

n

m m mn

a a a

a a a

a a a

 
 
 
 
 
 

   
 

is a matrix of order  m n  with m rows and n columns. 

 If  m = n,  then A is called a square matrix. 

 If  0, , ,ija i j m n     then A is  a diagonal matrix and is denoted  as  

11 22(  , ,..., ).mma aA g adia  

 If  m = n (square matrix) and 0ija   for  i  >  j , then A is called an upper triangular matrix.  On 

the other hand if  m = n and 0ija   for i  <  j  then A is called a lower triangular matrix.  

 If  A is a m n
 
matrix, then the  matrix obtained by writing the rows of A and  

      columns of A as columns of A and rows of A respectively is  called the transpose of a matrix  A 

and is denoted as  'A .  

 If 'A A  then A is a symmetric matrix. 

 If 'A A  then A is skew-symmetric matrix. 

 A matrix whose all elements are equal to zero is called a null matrix. 
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 An identity matrix is a square matrix of order p whose diagonal elements are unity (ones) and all 

the off  diagonal elements are zero. It is denoted as pI . 

 If A  and  B are matrices of order  m n    then ( ) ' ' '.A B A B    

 If A and  B are the matrices of order  m x n and  n x p  respectively  and k is any scalar, then  

           
( ) ' ' '

( ) ( ) ( ) .

AB B A

kA B A kB k AB kAB



  
 

 If  the orders  of  matrices  A  is  m x n, B  is n x p  and  C  is n x p  then ( ) .A B C AB AC    

 If  the orders  of  matrices  A  is  m x n, B  is n x p  and  C  is p x q  then ( ) ( ).AB C A BC  

 If   A  is the matrix of order m x n  then .m nI A AI A  . 

 

Trace of a matrix: 

The trace of  n n  matrix  A , denoted as  tr(A)  or  trace(A) is defined to be the sum of all the diagonal 

elements of A, i.e.  
1

( )
n

ii
i

tr A a


  . 

 If  A  is of order  m n  and  B  is of order n m , then 

      ( ) ( )tr AB tr BA . 

 If  A  is  n n  matrix and  P  is any nonsingular  n n  matrix  then   

      1( ) ( ).tr A tr P AP    

      If  P  is an orthogonal matrix  than  ( ) ( ' ).tr A tr P AP  

*    If  andA B  are  n n  matrices,  anda b  are scalars  then     

       ( ) ( ) ( )tr aA bB a tr A btr B   . 

 If  is anA m n  matrix, then 

           2

1 1

( ' ) ( ')
n n

ij
j i

tr A A tr AA a
 

   

and 

          ( ' ) ( ') 0tr A A tr AA    if and only if  0.A   

 If  isA n n  matrix then 

          ( ')tr A trA .    

 

 

 

 

 



Analysis of Variance  |  Chapter 1  |  Linear Algebra, Matrix Theory and Dist.  |   Shalabh, IIT Kanpur 
 55

Rank of matrices 

The rank of a matrix A of m n  is the number of linearly independent rows in A. 

Let B be any other matrix of order .n q  

 A  square matrix of order m is called non-singular if it has full rank. 

 ( ) min( ( ), ( ))rank AB rank A rank B  

 ( ) ( ) ( )rank A B rank A rank B    

 Rank A is equal to the maximum order of all nonsingular square sub-matrices of A. 

 ( ') ( ' ) ( ) ( ')rank AA rank A A rank A rank A   .  

 A is of full row rank if rank(A) = m < n.  

 A is of full column rank if rank(A) = n < m. 

 

Inverse of a matrix  

The inverse of a square matrix A of order m, is a square matrix of order m, denoted as  1A , such that  

1 1 .mA A AA I    

The inverse of A exists if and only if A is non-singular. 

 1 1( ) .A A    

 If A is non-singular, then  1 1( ') ( ) 'A A        

 If  A and  B are non-singular matrices of the same order, then their product, if defined, is also 

nonsingular and  1 1 1( ) .AB B A          

                     

Idempotent matrix: 

A square matrix A is called idempotent if  2 .A AA A  . 

 

If A is an n n
 
idempotent matrix  with rank(A) =  r   n.  Then 

 eigenvalues of A are 1 or 0. 

        .trace A rank A r   

 If A is of full rank n, then  nA I . 

 If  A and  B are idempotent and  AB = BA, then AB is  also idempotent. 

 If  A is idempotent then (I – A)  is also idempotent and  A(I - A) = (I - A)A = 0. 
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Quadratic forms: 

If  A is a given matrix of order  m n  and X and Y are two given vectors of order 1m and 1n  

respectively  

 
1 1

'
m n

ij i j
i j

X AY a x y
 

  

where ija   are the nonstochastic elements of  A. 

 

If  A is a square matrix of order m and X = Y , then 

        2 2
11 1 12 21 1 2 1, , 1 1' .... ( ) ... ( ) .mm m m m m m m mX AX a x a x a a x x a a x x           

 

If A is symmetric also, then 

         

2 2
11 1 12 1 2 1, 1

1 1

' .... 2 ..... 2

            =

mm m m m m m

m n

ij i j
i j

X AX a x a x a x x a x x

a x x

 

 

     


 

is called a quadratic form in m variables 1 2, ,..., mx x x  or a quadratic form in X. 

 To every quadratic form corresponds a symmetric matrix and vice versa. 

 The matrix A is called the matrix of the quadratic form. 

 The quadratic form 'X AX  and the matrix A of the form is called. 

 Positive definite if ' 0X AX   for all  0x  . 

 Positive semidefinite if ' 0X AX   for all 0x  . 

 Negative definite if ' 0X AX  for all 0x  . 

 Negative semidefinite if  ' 0X AX  for all 0x  . 

  If  A is positive semi-definite matrix then  0iia   and if 0iia   then  0ija   for all  j, and  

0jia   for  all j. 

 If P  is any nonsingular matrix and  A is any positive definite matrix (or positive semi-definite 

matrix) then 'P AP  is also a positive definite matrix (or positive semi-definite matrix). 

 A matrix A is positive  definite if and only if there  exists a non-singular matrix P such that 

' .A P P  

 A positive definite matrix is a nonsingular matrix. 

 If A is m n
 
matrix and  rank A m n   then  'AA   is positive definite and 'A A

 
is positive 

semidefinite. 

 If  A m n  matrix and    rank A k m n   , then both 'A Aand 'AA  are positive semidefinite. 

 



Analysis of Variance  |  Chapter 1  |  Linear Algebra, Matrix Theory and Dist.  |   Shalabh, IIT Kanpur 
 77

Simultaneous linear equations 

The set of m linear equations in  n  unknowns 1 2, ,..., nx x x   and scalars ija   and ib ,  

1, 2,..., , 1, 2,...,i m j n   of the form 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

....

....

....

n n

n n

m m mn n m

a x a x a x b

a x a x a x b

a x a x a x b

   
   

   


 

can be formulated as      AX = b 

where A is a real matrix of known scalars of  order m n  called as a coefficient matrix,  X is 1n  real 

vector and b is 1n  real vector of known scalars given by 

 

 

11 12 1

21 22 2

1 2

1 1

2 2

...

...
, is an real matrix called as coefficient matrix,

...

is an 1 vector  of variables and , is an 1 real vector.

n

n

m m mn

n m

a a a

a a a
A m n

a a a

x b

x b
X n b m

x b

 
 
  
 
 
 
   
   
      
   
   
   

   

 
 

    If A is a n n
 
nonsingular matrix, then AX = b has a unique solution. 

 Let B = [A, b] is an augmented matrix. A solution to AX = b exist if and only if rank(A) = rank(B). 

 If  A  is  a m n  matrix of rank  m , then  AX b  has a solution. 

  Linear homogeneous system AX = 0 has a solution other than X = 0 if and only if rank(A) < n. 

 If  AX = b  is consistent then AX = b has a unique solution if and only if rank(A)  = n 

 If  iia  is the ith diagonal element of an orthogonal matrix, then 1 1  iia . 

 Let the  n n  matrix be partitioned as  1 2[ , ,..., ] nA a a a where ia   is an 1n  vector of the 

elements of ith  column of A. A necessary and sufficient condition that A is an orthogonal matrix 

is given by the following:  

'

'

( )  1 for 1,2,...,

( ) 0 for 1,2,..., .

i i

i j

i a a i n

ii a a i j n

 

  
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 Orthogonal matrix 

A square matrix A is called an  orthogonal matrix if ' 'A A AA I 
 
 or equivalently if  1 '.A A   

 An orthogonal matrix is non-singular. 

 If  A is orthogonal, then 'AA   is also orthogonal. 

     If A is an n n  matrix and let  P  is an n n  orthogonal matrix, then the determinants of A and 

'P AP  are the same.  

 

Random vectors: 

  Let  1 2, ,..., nY Y Y   be n random variables then  1 2( , ,..., ) 'nY Y Y Y  is called a random vector. 

 The mean vector Y is 

        1 2( ) (( ( ), ( ),..., ( )) 'nE Y E Y E Y E Y  

 The covariance matrix or dispersion matrix of Y is  

         

1 1 2 1

2 1 2 2

1 2

( )      ( , ) ...   ( , )

( , )   ( )   ...   ( , )
( )

                                             

( , ) ( , ) ...      ( )

n

n

n n n

Var Y Cov Y Y Cov Y Y

Cov Y Y Var Y Cov Y Y
Var Y

Cov Y Y Cov Y Y Var Y

 
 
 
 
 
 

   
 

            which is a symmetric matrix 

 If  1 2, ,..., nY Y Y  are independently distributed, then the covariance matrix is a diagonal matrix. 

 If  2( )iVar Y   for all i = 1, 2,…,n  then  2( ) nVar Y I . 

 

Linear function of random variable : 

If  1 2, ,..., nY Y Y  are n random variables, and  1 2, ,.., nk k k  are scalars, then 
1

n

i i
i

k Y

  is called a linear function 

of random variables 1 2, ,..., nY Y Y . 

If  1 2 1 2( , ,..., ) ', ( , ,..., ) 'n nY Y Y Y K k k k   then  
1

'
n

i i
i

K Y k Y


  . 

 the mean 'K Y
  
is 

1

( ' ) ' ( ) ( )
n

i i
i

E K Y K E Y k E Y


   and 

 the variance of 'K Y  is     '   ' .Var K Y K Var Y K   
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Multivariate normal distribution 

A  random vector 1 2( , ,..., ) 'nY Y Y Y    has a multivariate normal distribution with mean vector   

1 2( , ,..., )n       and   dispersion matrix   if its probability density function is  

1
1/2/2

1 1
( / , ) exp ( ) ' ( )

2(2 )n
f Y Y Y  


        

 

assuming   is a nonsingular matrix. 

 

Chi-square distribution 

 If 1 2, ,..., kY Y Y  are independently distributed following the normal distribution random variables 

with common mean 0 and common variance  1, then the distribution of  2

1

k

i
i

Y

  is called the  2 -

distribution with  k degrees of freedom. 

 The probability density function of 2 -distribution with  k degrees of freedom is given as  

2

1
2

/2

1
( ) exp ;    0

( / 2)2 2

k

k

x
f x x x

k

           

 

 If 1 2, ,..., kY Y Y   are independently distributed following the normal distribution with common mean 

0 and common variance 2 , then 2
2

1

1 k

i
i

Y
 


 
has  2   distribution with k degrees of freedom. 

 If the random variables 1 2, ,..., kY Y Y   are normally distributed with non-null means 1 2, ,..., k    but 

common variance 1, then the distribution of  2

1

k

i
i

Y

  has noncentral  2   distribution with k 

degrees of freedom and noncentrality parameter  2

1

k

i
i

 


  . 

 If 1 2, ,..., kY Y Y  are independently and normally distributed following the normal distribution with 

means 1 2, ,..., k    but common variance  2  then  2
2

1

1 k

i
i

Y
 
  has non-central 2  distribution 

with k degrees of freedom   and noncentrality parameter  2
2

1

1 k

i
i

 
 

  .  

 If U has a Chi-square distribution with k degrees of freedom then  ( )E U k  and  

( ) 2Var U k . 

 If U has a noncentral Chi-square distribution with k degrees of  freedom and  
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noncentrality parameter     then  E U k    and ( ) 2 4Var U k   . 

 If   1 2, ,..., kU U U  are independently distributed random variables with  each iU  having a 

noncentral  Chi-square distribution with  in  degrees of freedom and non-centrality parameter  

, 1,2,...,i i k    then  
1

k

i
i

U

  has noncentral Chi-square distribution with  

1

k

i
i

n

  degrees of 

freedom and noncentrality parameter 
1

k

i
i



 . 

 Let  1 2( , ,..., ) 'nX X X X  has a multivariate distribution with mean vector    and positive 

definite covariance matrix  . Then 'X AX   is distributed as noncentral  2  with k degrees of 

freedom if and  only if  A  is an idempotent matrix of rank k. 

 Let  1 2( , ,..., )nX X X X  has a multivariate normal distribution with mean vector    and positive 

definite covariance matrix   .  Let the two quadratic forms-  

 1'X A X   is distributed  as  2  with  1n   degrees of freedom and noncentrality parameter  

1' A   and   

 2'X A X  is distributed as 2  with  2   degrees of freedom and noncentrality parameter  

2' A  . 

                  Then 1 2' and 'X A X X A X  are independently distributed if  1 2 0A A   

 

t-distribution 

 If  

 X has a normal distribution with mean 0 and variance 1,  

 Y has a  2  distribution with n degrees of freedom, and  

 X and Y are independent  random variables,  

then the distribution of the statistic  
/

X
T

Y n
  is called the t-distribution with n degrees of 

freedom. The probability density function of t is 

                            

1
2 2

1
2

( ) 1 ;    -

2

n

T

n
t

f t t
n nn

  
 

               
 

 

 If the mean of X is  nonzero then the distribution of  
/

X

Y n
  is called the noncentral t-  

distribution with n degrees of freedom and noncentrality  parameter   . 
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F-distribution 

 If X and Y are independent random variables with  2 -distribution with m and n degrees of 

freedom respectively,  then the distribution of the statistic  
/

/

X m
F

Y n
  is called the F-distribution  

with m and n degrees of freedom. The probability density function of F is 

/2

2
2

22
( ) 1 ;    0

2 2

m

m n
m

F

m n m
mn

f f f f f
m n n

    
  

 

                         
   

 

 If X  has a noncentral Chi-square distribution with m degrees of freedom and noncentrality 

parameter  ;Y  has a  2  distribution with  n degrees of freedom, and X and Y  are independent 

random variables,  then the distribution of   
/

/

X m
F

Y n
  is the noncentral F distribution with m and 

n degrees of freedom and noncentrality parameter  . 

 

Linear model: 

Suppose there are n observations. In the linear model, we assume that these observations are the values 

taken by n random variables 1 2, ,.., nY Y Y   satisfying the following conditions: 

1.  ( )iE Y  is a linear combination of p unknown parameters  

1 2

1 1 2 2

, ,..., ,

( ) ... , 1, 2,...,

p

i i i ip pE Y x x x i n

  

      
 

where 'ijx s  are known constants. 

2. 1 2, ,..., nY Y Y  are uncorrelated and normality distributed with variance  2( )iVar Y  . 

The linear model can be rewritten by introducing independent normal random variables following  

2(0, )N  ,as 

1 1 2 2 .... , 1, 2,..., .i i i ip p iY x x x i n          

 

These equations can be written using the matrix notations as 

           Y X     

where Y is a 1n  vector of observation, X is a n p   matrix of n observations on each of  1 2, ,..., pX X X   

variables,    is a 1p vector of parameters and    is  a 1n vector of random error components with 
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2~ (0, ).nN I    Here Y is  called study or dependent. variable, 1 2, ,..., pX X X  are called explanatory 

or independent variables and 1 2, ,..., p    are called as regression coefficients. 

Alternatively since  2~ ( , )Y N X I   so the linear model can also be expressed  in the expectation form 

as a normal random variable Y with 

                      
2

( )

( ) .

E y X

Var y I








 

Note that  2and   are unknown but X is known. 

 

Estimable functions: 

A linear parametric function   '   of the parameter is said to be an  estimable parametric function or  

estimable if there exists a linear  function of random variables  ' y  of Y where 1 2( , ,..., ) 'nY Y Y Y  such 

that 

        ( ' ) 'E y    

with 1 2( , ,..., ) 'n     and 1 2( , ,..., ) 'n     being vectors of  known scalars. 

 

Best linear unbiased estimates (BLUE) 

The unbiased minimum variance linear estimate  'Y  of an estimable function  '   is called the best 

linear unbiased estimate of  '  .  

 Suppose '
1Y  and '

2Y  are the BLUE of   ' '
1 2and    respectively. Then  1 1 2 2( ) 'a a Y   is 

the BLUE of  1 1 2 2( ) 'a a   . 

 If   '    is estimable, its best estimate  is  ˆ'   where ̂  is any solution of  the equations  

' ' .X X X Y   

 

Least squares estimation 

The least-squares estimate of    is  Y X     is the value of    which minimizes  the  

error sum of squares  '  . 

 

Let  

          
' ( ) '( )

' 2 ' ' ' ' .

S Y X Y X

Y Y X Y X X

   
  

   
  

   

Minimizing S with respect to    involves    
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0
S







 

    ' 'X X X Y   

which is termed as normal equation.  This normal equation has a unique solution given by 

 1ˆ ( ' ) 'X X X Y   

assuming      rank X p .  Note that  
2

'
'

S
X X

 



 

  is a positive definite matrix. So  1ˆ ( ' ) 'X X X Y   

is the value of    which minimizes '   and is termed as ordinary least squares estimator of  . 

 In this case,  1 2, ,..., p    are estimable and consequently, all the linear parametric function  are 

estimable. 

 1 1ˆ( ) ( ' ) ' ( ) ( ' ) 'E X X X E Y X X X X       

 1 1 2 1ˆ( ) ( ' ) ' ( ) ( ' ) ( ' )Var X X X Var Y X X X X X      

 If  ˆ ˆ' and '      are the estimates of  ' and '     respectively,  then 

 2 1ˆ ˆ( ' ) ' ( ) [ '( ' ) ]Var Var X X          

 2 1ˆ ˆ( ' , ' ) [ '( ' ) ]Cov X X       . 

 ˆY X   is called the residual vector  

 ˆ( ) 0.E Y X    

 

Linear model with correlated observations: 

In the linear model 

 Y X     

with  ( ) 0, ( )E Var    and    is normally distributed, we find  

            ( ) , ( )E Y X Var Y    

 

 

Assuming   to be  positive definite, so we can write 

            'P P   

where P  is a nonsingular matrix.  Premultiplying  Y X     by  P, we get 

            

           

or       * * *

where * , * and * .

PY PX P

Y X

Y PY X PX P

 
 

 

 
 
  

 

Note that in this model 2( *0 0 and ( *) .E Var I     



Analysis of Variance  |  Chapter 1  |  Linear Algebra, Matrix Theory and Dist.  |   Shalabh, IIT Kanpur 
 1414

 

 

 

Distribution of  'Y : 

In the linear model  2, ~ (0, )Y X N I       consider a  linear function 'Y  which is normally 

distributed with  

         
2

( ' ) ' ,

( ' ) ( ' ).

E Y X

Var Y









 
  

 

Then 

         
' '

~ ,1
' '

Y X
N


 

 
 
 

 
   

. 

 

Further, 
2

2

( ' )

'

Y



 

 has a noncentral Chi-square distribution  with one degree of freedom and noncentrality  

parameter 
2

2

( ' )
.

'

X


 

 

 

 

Degrees of freedom: 

A linear function  'Y  of the observations  ( 0)  is said to carry one degrees of  freedom. A set of 

linear functions 'L Y  where L is r x n matrix, is said to have M degrees of freedom if there exist M 

linearly independent functions in the set and no more. Alternatively, the degrees of freedom carried by 

the set 'L Y equals ( )rank L .  When the set 'L Y  are the estimates of  ' ,  the degrees of freedom of the 

set  'L Y will also be called the degrees of freedom for the estimates of  ' . 

 

Sum of squares: 

If  'Y  is a linear function of observations, then the projection of Y on    is  the vector 
'

.
'

Y  
 

.  The 

square of this projection is called the sum of squares (SS) due to ' y  is given by 
2( ' )

'

Y
 

. Since 'Y  has 

one degree of freedom, so the SS due 'Y  to has one degree of freedom. 

 

The sum of squares and the degrees of freedom arising out of the mutually orthogonal sets of functions 

can be added together to give the sum of squares and degrees of freedom for the set of all the function 

together and  vice versa. 
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Let  1 2( , ,..., )nX X X X  has a multivariate normal distribution with mean vector   and positive definite 

covariance matrix .   Let the two quadratic forms. 

 ' ,X A X  is distribution  2
1with n  degrees of freedom and noncentrality parameter  1' A   and   

 2'X A X  is distributed as  2  with  2n  degrees of freedom and noncentrality  parameter  2' A  . 

           Then 1 2' and 'X A X X A X  are independently distributed if  1 2 0A A  . 

 

Fisher-Cochran theorem 

If  1 2( , ,..., )nX X X X  has a multivariate normal distribution with mean vector    and positive definite 

covariance  matrix    and let 

           1
1 2' ... kX X Q Q Q      

where  'i iQ X A X  with rank ( ) , 1,2,..., .i iA N i k    Then  'iQ s  are independently distributed 

noncentral  Chi-square distribution with  iN  degrees of freedom and noncentrality  parameter  ' iA   if 

and only if  
1

k

i
i

N N


  is which case  

         1

1

' ' .
k

i
i

A   



  
 

 

Derivatives of quadratic and linear forms:  

Let  1 2( , ,..., ) ' nX x x x and   f(X) be any function of n independent  variables 1 2, ,..., nx x x , then 

1

2

( )

( )
( )

    

( )

 
  
 

    
 
 
 

  



n

f X

x

f X
f X

x
X

f X

x

. 

If  1 2( , ,..., ) ' nK k k k  is a vector of constants, then  

'



K X

K
X

 

If A is a m n  matrix, then 

'
2( ')


 


X AX

A A X
X

. 
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Independence of linear and quadratic forms: 

 Let  Y  be an 1n  vector having multivariate normal distribution ( , )N I  and B  be a m n  

matrix.  Then the 1m  vector linear form BY  is independent of the quadratic form 'Y AY  if BA = 

0 where A is a symmetric matrix of known elements. 

 Let  Y  be a 1n  vector having multivariate normal distribution ( , ) N  with ( ) rank n .  If  

0 B A , then the quadratic form 'Y AY  is independent of linear form BY  where  B  is a m n  

matrix.  

 


