Chapter 12

Analysis of Covariance

Any scientific experiment is performed to know something that is unknown about a group of treatments

and to test certain hypothesis about the corresponding treatment effect.

When variability of experimental units is small relative to the treatment differences and the experimenter
do not wishes to use experimental design, then just take large number of observations on each
treatment effect and compute its mean. The variation around mean can be made as small as desired by

taking more observations.

When there is considerable variation among observations on the same treatment and it is not possible to
take an unlimited number of observations, the techniques used for reducing the variation are
(1) use of proper experimental design and

(i)  use of concomitant variables.

The use of concomitant variables is accomplished through the technique of analysis of covariance. If both
the techniques fail to control the experimental variability then the number of replications of different
treatments (in other words, the number of experimental units) are needed to be increased to a point where

adequate control of variability is attained.

Introduction to analysis of covariance model
In the linear model

Y=XB+X,B,+.+X,B,+¢&,

if the explanatory variables are quantitative variables as well as indicator variables, i.e., some of them
are qualitative and some are quantitative, then the linear model is termed as analysis of covariance

(ANCOVA) model.

Note that the indicator variables do not provide as much information as the quantitative variables. For
example, the quantitative observations on age can be converted into indicator variable. Let an indictor

variable be
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D 1 if age>17 years
o if age<17 years.

Now the following quantitative values of age can be changed into indicator variables.

Ages (years) Ages
14 0
15 0
16 0
17 1
20 1
21 1
22 1

In many real application, some variables may be quantitative and others may be qualitative. In such

cases, ANCOVA provides a way out.

It helps is reducing the sum of squares due to error which in turn reflects the better model adequacy

diagnostics.

See how does this work:
Inone way model: Y; = u+ao; +¢, we have TSS, = SSA + SSE,
we have TSS, = SSA, +SSB, +SSE,
In three way model:Y; = u+a; + B; + y, +&,, we have TSS; = SSA, + SSB, +SSy; + SSE,

In two way model: Y; = u+a; + B, + &,
If we have a given data set, then ideally
TSS, =TSS, =TSS,
SSA, = SSA, =SSA;;
SSB, = SSB,
So SSE, > SSE, > SSE; .

SS(effects) / df

Note that in the construction of F -statistics, we use
SSE / df

So F -statistic essentially depends on the SSEs.

Smaller SSE = large F = more chance of rejection.
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Since SSA, SSB etc. here are based on dummy variables, so obviously if SSA,SSB, etc. are based on

quantitative variables, they will provide more information. Such ideas are used in ANCOVA models and

we construct the model by incorporating the quantitative explanatory variables in ANOVA models.

In another example, suppose our interest is to compare several different kinds of feed for their ability to
put weight on animals. If we use ANOVA, then we use the final weights at the end of experiment.
However, final weights of the animals depend upon the initial weight of the animals at the beginning of

the experiment as well as upon the difference in feeds.
Use of ANCOVA models enables us to adjust or correct these initial differences.

ANCOVA is useful for improving the precision of an experiment. Suppose response Y is linearly related
to covariate X (or concomitant variable). Suppose experimenter cannot control X but can observe it.
ANCOVA involves adjusting Y for the effect of X. If such an adjustment is not made, then the X can

inflate the error mean square and makes the true differences is Y due to treatment harder to detect.

If, for a given experimental material, the use of proper experimental design cannot control the
experimental variation, the use of concomitant variables (which are related to experimental material)
may be effective in reducing the variability.
Consider the one way classification model as

E(Y; =4, i=L..,p,j=L..,N,,

Var(Y,)=o"’.

If usual analysis of variance for testing the hypothesis of equality of treatment effects shows a highly
significant difference in the treatment effects due to some factors affecting the experiment, then consider

the model which takes into account this effect

E(Y,) =8+ i=L..,p,j=L..,N,
Var(Y,)=o’

where t; are the observations on concomitant variables (which are related to X;) and y is the
regression coefficient associated with t;. With this model, the variability of treatment effects can be

considerably reduced.
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For example, in any agricultural experimental, if the experimental units are plots of land then, t; can be

measure of fertility characteristic of the j" plot receiving i" treatment and X, can be yield.

In another example, if experimental units are animals and suppose the objective is to compare the growth
rates of groups of animals receiving different diets. Note that the observed differences in growth rates can
be attributed to diet only if all the animals are similar in some observable characteristics like weight, age

etc. which influence the growth rates.

In the absence of similarity, use t; which is the weight or age of j™ animal receiving i" treatment.

If we consider the quadratic regression in t; then in
E(Y)) =58 +rt; +7/2t§, i=1..,p,j=L..,n,
Var(Y,)=o".

ANCOVA in this case is the same as ANCOVA with two concomitant variables t; and t; .

In two way classification with one observation per cell,
EV)=u+o+p,+rt, i=L.,1,j=1..J
or
E(Y;)=u+a +,Bj + 7t + 7, W
with > a; =0, DB, =0,
i i

then (y;,t;) or (Y;,t;,W;) are the observations in (i, ™ cell and t;, w; are the concomitment variables.

The concomitant variables can be fixed on random.

We consider the case of fixed concomitant variables only.
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One way classification
- - . -th . .
Let Y, (j=1..n,i=1..p) be arandom sample of size n, from i" normal populations with mean
i =EX) =B+
2
Var(Y;)=o

t. are known constants which are the observations on

where f3,7 and o’ are the unknown parameters, i

a concomitant variable.

The null hypothesis is
Ho: B =...=5,.
Let

_ 1 _ 1 _ 1

Yio :n_z Yii> Yo :Bz Yii> Yoo :HZZ Yii
P i i

— 1 —_ 1 S |

t, = Ztij; t, :Eztij’ o :sztij
i [ [

n
n=>n.
Under the whole parametric space (7,), use likelihood ratio test for which we obtain the ,B, 's and y

using the least squares principle or maximum likelihood estimation as follows:
Minimize S =) > (y; — 44’
i
= ZZ(yij =B, _7tij)2
i
0S

— =0 for fixed y
op;

jﬂizyio_ytl_‘o

Put f in S and minimize the function by 2—8 =0,
4

i.e., minimize ZZ[yii ~ Vi — 7t —I;_‘O)]2 with respect to y gives
i
ZZ(YU _Vio)(tij _fo)
. T5
! ZZ(tij _ﬁo)2
j

Thus ﬁl =7i0_};to
,[‘ij =p; +77[”-
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Since Yy, — i; =Y —ﬁi -7
=Yy —Yio _77(tij ~t,).

we have

Zz(yij _Vio)(tij _ﬁ))

Z(tij _E:)Z
i
Under H,:f =..=8,=/ (say), consider S, = ZZ[yij - Bt ]2 and minimize S, under sample
i
space («,,),
oS, _o,
op
S, _ 0
oy

:é=700_7§t_00
Zz(yu _700)(tij _t_oo)
i

ZZ(tij _t_oo)z

,[‘ij :ﬂ+};tij'

>>

Hence

|:Zz(ylj _Voo)(tij _t_oo):|

OV = oy 2L

szl(yu luu) szl(yu yoo) Zz(t” —t_00)2
|

and

ZZ(/AIU _IL:lij)z = ZZ[(Y _V00)+7;(tij _fo)_;(tij _t_oo):|2'
i j 1 J

The likelihood ratio test statistic in this case is given by
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max L(f,7,07)
- maxL(f.7.0°)

Z Z (:[lij - :L:lij )2
i

B ZZ(yij _/[lij)z ‘

Now we use the following theorems:

Theorem 1: Let Y =(Y,,Y,,...,Y,)" follow a multivariate normal distribution N(x,X) with mean
vector x4 and positive definite covariance matrix X . Then Y'AY follows a noncentral chi-square

distribution with p degrees of freedom and noncentrality parameter u'Au, i.e., (P, Au) if and only
if A is an idempotent matrix of rank p.

Theorem 2: Let Y =(Y,Y,,....,Y,)" follows a multivariate normal distribution N(z,Y) with mean

vector 4 and positive definite covariance matrix . Let YAY follows y?(p,, A i)

and YAY follows y*(p,,u'Au). Then YAY and YAY are independently distributed if AZA, =0.

Theorem 3: Let Y =(Y,Y,,...Y,) follows a multivariate normal distribution N(z,o’l), then the
maximum likelihood (or least squares) estimator L'3 of estimable linear parametric function is

né*
2
(o2

independently distributed of 6%;LA3 follow N [L’ﬁ, L'(XX)™ L} and follows y*>(n—p) where

rank(X) = p.

Using these theorems on the independence of quadratic forms and dividing the numerator and
denominator by respective degrees of freedom, we have
ZZ(/AIU _/:lij )2

_nh-p-1775 ~ ~F(p-1,n-p) under H,

F =
p_l ZZ(yij _,[‘ij)

Soreject H, whenever F > F__ (p-1,n-p) at a level of significance.

The terms involved in A can be simplified for computational convenience follows:

We can write
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ZZ(yij _:L:lij)z
-E2[n--h]
- ZZ[(YU _yoo)_y;(tij _t_oo)i|2

i

= ZZ[(y'J _700)_]5(1:” t00)+7/(t|] t|o) y(tu |o):|2

i

- Z;[wu V) -7 ) |
=00 9o #7607 -T)]
P DNCROROWICE )
For computational convenience
ZZ(Y., i)’ (E _E;]

where
Ty =Z§(yﬁ ~ V)’
Ty =Z;(ti,- —%,)’
= Zg(yij ~ Voo )(t; = T)
E, =Z§(yi,- ~V)?
E, = Z;(ti,- -5’
E, =Z;<yu— =¥ ) —F):

Analysis of Variance | Chapter 12 | Analysis of Covariance | Shalabh, IIT Kanpur



Analysis of covariance table for one way classification is as follows:

Source of | Degrees Sum of products Adjusted sum of squares F
variation | of yy yt tt
freed Degress Sum of squares
reedom
of feedom
Populati - — — — — —_p—
opulation | p—1] Pyy(_Tyy_Eyy) Pyt(_Tyt_Eyt) Ptt(_Ttt_Ett) p-1 4 =00 —n P li
E2 p - 1 q2
n-p-1 q,=E,——
Error n—p Eyy Eyt Ett Eyy
T 2
yt
Total _ n-2 q, = e
n-1.T, Ty T voT

If H, is rejected, employ multiple comprises methods to determine which of the contrasts in S are

responsible for this.

For any estimable linear parametric contrast

C.B, with Zc =0,

A=2CN-72CF

0 17

2

9
ZZ(tij _ﬁ)z

Var(y) =

o (o] |
:>Var(g?))=0'22 Zz(t s
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Two way classification (with one observations per cell)
Consider the case of two way classification with one observation per cell.
Let y; ~ N(g; ,0°) be independently distributed with

E(y))=u+a+ B+, i=1.1,j=1.J

V(y;) =0’
where

A : Grand mean

|
a, : Effect of i" level of A satisfying Zai =0

J
pB: Effectof " level of B satisfying » B, =0

t;; : observation (known) on concomitant variable.

The null hypothesis under consideration are
Hy,:a,=a,=..=a, =0
Hy:B=B=..=5=0

Dimension of whole parametric space (7,):1+J
Dimension of sample space (r,,):J +1 under H,
Dimension of sample space (7,,,): 1 +1 under H,

with respective alternative hypotheses as

H,, : At least one pair of «'s is not equal
H,,: Atleast one pair of A's is not equal.
Consider the estimation of parameters under the whole parametric space (7).

Find minimum value of )" »" (y; — ;)* under ,,.
i

To do this, minimize

ZZ(yij —H—q _ﬁj _7tij)2 .
j

i
For fixed y, which gives on solving the least squares estimates (or the maximum likelihood estimates) of

the respective parameters as

Analysis of Variance | Chapter 12 | Analysis of Covariance | Shalabh, IIT Kanpur



#_Voo_yt_o
yoo ]/(tlo Eo) (1)
ﬁj - yoj - yoo _7/(t0j _t_oo)‘

Under these values of x,; and f;, the sum of squares Z Z (Y —#m—a =B =1 ) reduces to
i

— — — — — — 2
ZZI:yij_yio_yoj+yoo+7/(tij_tio_toj+too):| . (2)

i

Now minimization of (2) with respect to y gives

o

ZZ(YU - yio - yoj + Voo)(tij _ﬁo _t_oj +t—oo)

i=l j=1 | ; - - — )
ZZ(tij _tio _toj +too)

i=1 j=l

Using 7, we get from (1)

/& = _ _7;t_oo

a; = (7 = Voo) =7 (o —T)
Bi = (V= Vo) =7 (5 = To).

Hence

ZZ(yij _,[‘ij)2

i

|:Z Z (ylj ylo yo] + yoo )(tu t|o toj + too
= i io of T Yoo) —
ZZ(y, Vo = Voi + Vo)’ I
i
E2

:EW_E_:

where

=22y Yo =V + Vi)
Eyt = Zz(ylj - yio _yoj +yoo)(tij _fo _t_oj +t—oo)
Ett :ZZ(tij _tl_'o _t_oj +t—oo)2'
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Case (i) : Testof H,,
Minimize ZZ(yij — 1= B -1 )> with respect to p, B; and y gives the least squares estimates) (or the
i

maximum likelihood estimates) of respective parameters as
= f1=Y5 7%,
By =Y~ V=G~ T)
>3- V)t —T)
I JZ Zj:(tij -’ ©

R>>

ft:ﬁ+ﬁj +75tij.
Substituting these estimates in (3) we get
A 22 = V)t —T)
Oy =) = XX 0y =) = _
ZZJ: o ZZJ: b zz(tij_toj)z
]
[Ex A

=By tA

Ett + A\t

where
Ay = ZJ(EO Vo)’
A=20 T,
A= ZJ(ViO =Yoo )~ %)’
E, = ZZ Yy = Voo = Vg + Vo)’
E, = sz(tij ~t T+ %)’
E, = Zgwu Vo = Yoy + Voo )by =T =T + ).
Thus the likelihood ratio test statistic for testing H,, is
Yy i) =Dy = )’
Ao Z;wu'—ﬁ:j)z |

Adjusting with degrees of freedom and using the earlier result for the independence of two quadratic

forms and their distribution
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(10 -1-3) 20—y XAy
F = ] ]
- a-n 220~ &)

~F(-L1IJ-1-J) under H_, .
So the decision rule is to reject H,, whenever F >F (I -1L1J-1-J).

Case b: Testof H,

Minimize ZZ(YU —H—a —}/tij)2 with respect to u,c; and y gives the least squares estimates (or
i

maximum likelihood estimates) of respective parameters as
:[l = 700 - 77 t_oo
&j = yio _700 _}7(t|_'o _Eo)
ZZ(yij = Vi) -1,)
i

- ZZ(tij—f-o)Z

iy = fa+a; +y;.

(4

From (4), we get

Zz(yij_yio)(tij_t_oj)
Z;(Yij_ﬂij) :ZZj:(yij_Yio) - Zz(tij_tl_'o)z

(E, + Bytf

=E,+B, - 5

t
By = 2.1y = Voo’
where B, = > I(f, -,,)°
j
By, = Z,: 1(Vio = Yoo )& — o)
Thus the likelihood ratio test statistic for testing H, , is

ZZ(yij _/[lij )2 _ZZ(yij _/[lij)z

F2=(IJ_I_J) 5 i
(J-1 Zz(yij _,[‘ij)2
i

So the decision rule is to reject H,, whenever F, > F_ (J-1,1J-1-1J).

~FU-LI3-1-J) under H,.
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If H,, 1is rejected, use multiple comparison methods to determine which of the contrasts ¢, are

responsible for this rejection. The same is true for H, .

The analysis of covariance table for two way classification is as follows:

Degrees Sum of products F
Source of | of vy yt tt
variation freedom
Between 1 =1 Ayy Ayt A\t | -1 qoch—q2 = _|J—|—J g,
evels of A V [ | -1 E
Between
levels of J-1 Byy By B, | J-1 G =9 ~0, J-1-Jgq
e |
B *J-1 q,
E E;
rTor (|—1)(J—1) Eyy Eyt En 13=1-=1J qzzEyy__Yt
tt
Total 1J -1 Tyy Tyt Ttt 1J-2
E 2
Error + |J—J q3:(Ayy+Eyy)_(Ay1+ yt)
levels At + Ett
of A
(B, +E,)’
Error + B q4=(Byy_+_Eyt)_—y
levels -1 B“ + E“
of B
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