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Chapter 12 

Analysis of Covariance 

 

Any scientific experiment is performed to know something that is unknown about a group of treatments 

and to test certain hypothesis about the corresponding treatment effect. 

 

When variability of experimental units is small relative to the treatment differences and the experimenter 

do not  wishes to use experimental  design, then  just take large number of observations  on each  

treatment effect and compute its mean. The variation around mean can be  made as small as desired by 

taking more observations. 

 

When there is considerable variation among observations on the same treatment and it  is not possible to 

take an unlimited number of observations, the techniques used  for reducing the variation are  

(i) use of proper experimental design and 

(ii) use of concomitant variables. 

 

The use of concomitant variables is accomplished through the technique of analysis of covariance. If both 

the techniques fail to control the experimental  variability then the number of replications of  different 

treatments (in other words, the number of experimental units) are needed to be increased to a point where 

adequate  control of variability is attained. 

 

Introduction to analysis of covariance model 

In the linear model 

 1 1 2 2 ... ,p pY X X X         

if  the explanatory variables are quantitative variables as well as indicator  variables, i.e., some of them 

are qualitative and some are quantitative, then the linear model is termed as analysis of  covariance 

(ANCOVA) model. 

 

Note that the indicator variables do not provide as much information as the quantitative variables. For 

example, the quantitative observations on age can  be converted into indicator variable. Let an indictor 

variable be 
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1  if age  17 years

0 if age 1 7 years.
D


  

 

Now the following quantitative values of age can be changed  into indicator variables. 

 

      Ages (years)         Ages 

14 0 

15 0 

16 0 

17 1 

20   1 

21   1 

22   1 

 

In many real application, some variables may be quantitative and others may be qualitative. In such  

cases, ANCOVA provides a way out. 

 

It helps is reducing the sum of squares due to error which in turn reflects the better model adequacy 

diagnostics. 

 

See how does this work: 

     

1 1 1

2 2 2 2

3 3 3 3 3

In one way model : , we have

In two way model : , we have

In three way model : , we have

ij i ij

ij i j ij

ij i j k ik

Y TSS SSA SSE

Y TSS SSA SSB SSE

Y TSS SSA SSB SS SSE

  

   

     

    

      

        

 

If we have a given data set,  then ideally 

 
1 2 3

1 2 3

2 3

;

TSS TSS TSS

SSA SSA SSA

SSB SSB

 

 



 

1 2 3So SSE SSE SSE  . 

Note that in the construction of  F -statistics, we use  
( ) /

.
/

SS effects df

SSE df
 

So F -statistic essentially depends on the SSEs . 

Smaller largeSSE F   more chance of rejection. 
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Since  ,  SSA SSB  etc. here are based on dummy variables, so obviously if ,SSA SSB , etc. are based on 

quantitative  variables, they will provide more information. Such ideas are used in ANCOVA models and 

we construct the model by incorporating the quantitative explanatory variables in ANOVA models. 

 

In  another example, suppose our interest is to compare several different kinds of feed for their ability to 

put weight on animals. If we use ANOVA, then we use the final weights at the end of experiment.  

However, final weights of the animals depend upon the initial weight of the animals at the beginning of 

the experiment as well as upon the  difference in feeds. 

 

Use of ANCOVA models enables us to adjust or correct these initial differences. 

 

ANCOVA is useful for improving the precision of an experiment.  Suppose response Y  is linearly related 

to covariate X  (or concomitant variable). Suppose experimenter cannot control X  but can observe it.  

ANCOVA involves adjusting  Y for the effect of  .X   If such an adjustment is not  made, then the  X  can 

inflate  the error mean square and  makes the true differences is Y  due to treatment harder to detect. 

 

If, for a given experimental material, the use of  proper experimental design cannot  control the 

experimental variation, the  use of concomitant variables (which  are related to experimental material) 

may be effective in reducing the  variability. 

Consider the one way classification model as 

2

( 1,..., , 1,..., ,

( ) .

ij i i

ij

E Y i p j N

Var Y





  


 

 

If usual analysis of variance for testing the hypothesis of equality of treatment effects shows  a highly 

significant  difference in the treatment  effects due to some factors affecting the experiment, then consider  

the model which takes into account this effect 

2

( ) 1,..., , 1,..., ,

( )

ij i ij i

ij

E Y t i p j N

Var Y

 



   


 

where ijt  are the observations on concomitant variables (which are related to  )ijX  and    is the 

regression coefficient associated with  ijt . With this model, the variability of treatment effects can be 

considerably reduced. 
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For example,  in any agricultural experimental, if the experimental units are plots of land then,  ijt  can be 

measure of fertility characteristic  of the thj  plot receiving thi  treatment  and  ijX  can be yield. 

 

In another example, if experimental units are animals and suppose the objective is to compare the growth 

rates of groups of animals receiving different diets.  Note that the observed differences in growth rates can 

be attributed to diet only if all the animals are similar  in some observable characteristics  like weight, age 

etc. which influence  the growth rates. 

 

In the absence of similarity, use  ijt  which is the weight or age of thj   animal receiving thi  treatment. 

 

If we consider  the quadratic regression in  ijt  then in 

 
2

2

2

( ) , 1,..., , 1,..., ,

( ) .

ij i i ij ij i

ij

E Y t t i p j n

Var Y

  



    


 

ANCOVA  in this case is the same as ANCOVA with two concomitant variables  2andij ijt t . 

 

In two way classification with one observation per cell, 

2

i j

ij

( ) , 1,..., , 1,...,

or

( )

with 0, 0,

then ( , ) or  ( , , ) are the observations in ( , ) cell and , are the concomitment variables.

ij i j ij

ij i j i ij ij

i j

th
ij ij ij ij ij ij

E Y t i I j J

E Y t w

y t y t w i j t w

   

    

 

     

    

  

 

The concomitant variables can be fixed on random.  

We consider the case of fixed concomitant variables only. 
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One way classification 

Let  ( 1... , 1... )ij iY j n i p   be a random  sample of size  in  from  thi  normal populations with mean 

 
2

( )

( )

ij ij i ij

ij

E Y t

Var Y

  



  


 

where ,i   and  2  are the unknown parameters, ijt  are known constants which are the  observations on 

a concomitant variable. 

 

The null hypothesis is 

 0 1: ... pH    . 

Let 

1 1 1
; ,

1 1 1
; ,

.

io ij oj ij oo ij
j i i ji

io ij oj ij oo ij
j i i ji

i
i

y y y y y y
n p n

t t t t t t
n p n

n n

  

  



  

  



  

Under the whole parametric space ( ) ,  use likelihood ratio test for which we obtain the ˆ 'i s  and ̂  

using the  least squares principle or maximum likelihood estimation as follows: 

2

2

Minimize ( )

( )

0 for fixed

ij ij
i j

ij i ij
i j

i

i io io

S y

y t

S

y t



 



 

 

  






  




 

2

2

Put in and minimize the function by 0,

i.e.,minimize ( ) with respect to gives

( )( )

ˆ= .
( )

ˆ ˆThus

ˆ ˆˆ .

i

ij io ij io
i j

ij io ij io
i j

ij io
i j

i io io

ij i ij

S
S

y y t t

y y t t

t t

y t

t
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ˆ ˆˆSince

ˆ( ),

ij ij ij i ij

ij io ij io

y y t

y y t t

  



   

   
 

we have  

2 2
2

( )( )

ˆ( ) ( ) .
( )

ij io ij io
i j

ij ij ij io
i j ij io

i j

y y t t

y y y
t t



 
  

    



  

 

Under  0 1: ... pH       (say), consider  
2

w ij ij
i j

S y t       and minimize wS  under   sample 

space ( )w , 

2

0,

0

ˆ ˆˆ ˆ

( )( )
ˆ̂

( )

ˆ ˆˆ ˆ ˆˆ .

w

w

oo oo

ij oo ij oo
i j

ij oo
i j

ij ij

S

S

y t

y y t t

t t

t





 



  










  

 




 




 

 

Hence 

2

2 2
2

2
2

( )( )
ˆ̂( ) ( )

( )

and

ˆˆ ˆ ˆˆ ˆ( ) ( ) ( ) ( ) .

ij oo ij oo
i j

ij ij ij oo
i j i j ij oo

i j

ij ij i oo ij io ij oo
i j i j

y y t t

y y y
t t

y y t t t t



   

 
  

    


        


  

 

 

The likelihood ratio test statistic in this case  is given by 
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2

2

2

2

max ( , , )

max ( , , )

ˆˆ ˆ( )

.
ˆ( )

w

ij ij
i j

ij ij
i j

L

L

y

  


  

 















 

Now we use the following theorems: 

 

Theorem 1:  Let  1 2( , ,..., )nY Y Y Y   follow a multivariate normal distribution  ( , )N    with mean 

vector   and positive definite covariance matrix   . Then  Y AY  follows a noncentral  chi-square 

distribution with p  degrees of freedom and noncentrality parameter ,A   i.e., 2 ( , )p A    if and only 

if  A  is an idempotent matrix of rank p. 

Theorem 2: Let  1 2( , ,..., )nY Y Y Y    follows a multivariate normal distribution  ( , )N     with mean 

vector    and positive definite covariance matrix   .  Let  1Y AY  follows  2
1 1( , )p A    

and 2Y A Y  follows  2
2 2( , )p A   .  Then  1YAY  and 2Y A Y  are independently distributed if  1 2 0.A A   

 

Theorem 3:  Let  1 2( , ,..., )nY Y Y Y    follows a multivariate normal distribution 2( , )N I  , then the 

maximum likelihood  (or least squares) estimator  ˆL    of estimable linear parametric  function is 

independently distributed of  2 ˆˆ ; L   follow  1, ( )N L L X X L        and  
2

2

ˆn


 follows 2( )n p   where 

( ) .rank X p  

 

Using these theorems on the independence of quadratic forms and dividing the numerator and 

denominator by respective degrees of freedom, we have 

2

2

ˆˆ ˆ( )
1

ˆ1 ( )

ij ij
i j

ij ij

n p
F

p y

 




 


 




 0~ ( 1, ) underF p n p H   

So reject  0H   whenever 1 ( 1, )F F p n p    at   level of significance. 

The terms involved in    can be simplified for computational convenience follows: 

 

We can write 
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2

2

2

2

2

ˆ̂( )

ˆ ˆˆ ˆ

ˆ̂( ) ( )

ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( )

ˆˆ( ) ( )

ˆˆ ˆ( ) ( ) ( )

ij ij
i j

ij ij
i j

ij oo ij oo
i j

ij oo ij oo ij io ij io
i j

ij io ij io
i j

ij oo ij io ij oo

y

y t

y y t t

y y t t t t t t

y y t t

y y t t t t



 



  



 



     

     

         

     

     










2

2 ˆˆ ˆ ˆ( ) ( ).

i j

ij ij ij ij
i j i j

y   




   



 

 

For computational convenience 

2 2

2

2 2

ˆˆ ˆ( )

ˆ( )

yt yt
yy yyij ij

tt tti j

ij ij yt
i j yy

yy

T E
T E

T E

y E
E

E

 




   
         

    
  

  
 




 

where 

2

2

2

2

( )

( )

( )( )

( )

( )

( )( ).

yy ij oo
i j

tt ij oo
i j

yt ij oo ij oo
i j

yy ij io
i j

tt ij io
i j

yt ij io ij io
i j

T y y

T t t

T y y t t

E y y

E t t

E y y t t
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Analysis of covariance table for one way classification is as follows: 

Source of 

variation 

Degrees 

of 

freedom 

                         Sum of products
 

                     yy yt tt  

      Adjusted sum of squares F  

Degress 

of feedom 

Sum of squares 

Population 

 

 

Error 

1p   

 

 

n p  

( )yy yy yyP T E  ( )yt yt ytP T E  ( )tt tt ttP T E   

    

yyE                                   ytE                      ttE  

1p 
            1 0 2q q q   

1n p    
2

2
yt

yy
yy

E
q E

E
   

1

2

1

1

qn p

p q

 


 

 

Total 

 

1n  

 

yyT                                    ytT                        ttT                        
2n           

2

0
yt

yy
tt

T
q T

T
   

 

 

If   0H  is rejected, employ multiple comprises methods to determine which of the contrasts in i  are 

responsible for this. 

 

For any estimable linear parametric contrast 

1 1

1 1 1

with 0,

ˆˆ ˆ

p p

i i i
i i

p p p

i i i i ii i
i i i

C C

C C y C t

 

  

 

  

 

  

 

  
 

2

2

2

2
2

2

ˆ( )
( )

ˆ( ) .
( )

ij i
i j

i i
ii

i i ij i
i j

Var
t t

C t
C

Var
n t t
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Two way classification (with one observations per cell) 

Consider the case of two way classification with one observation per cell. 

2Let ~ ( , )ij ijy N    be independently distributed with 

 
2

( ) , 1... , 1...

( )

ij i j ij

ij

E y t i I j J

V y

   



     


 

where 

 : Grand mean 

1 : Effect of  thi  level of  A  satisfying  0
I

i
i

     

1 : Effect of  thj  level of  B  satisfying  0
J

j
i

     

ijt : observation (known) on concomitant variable. 

The null hypothesis under consideration are 

0 1 2

0 1 2

: ... 0

: ... 0
I

J

H

H




  
  
   
   

 

Dimension of whole parametric space  ( ) : I J   

Dimension of sample space ( ) : 1w J   under 0H   

Dimension of sample space ( ) : 1w I   under 0H   

with respective alternative hypotheses  as 

1 :H   At least one pair of  's  is not equal 

1H  : At least one pair of  's  is not equal. 

Consider the estimation of parameters under the whole parametric space ( ) . 

Find minimum value of  2( )ij ij
i j

y    under  . 

To do this, minimize 

2( )ij i j ij
i j

y t       . 

For fixed  ,  which gives on solving the least squares estimates (or the maximum likelihood estimates) of 

the respective parameters as 
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( ) (1)

( ).

oo o

i i oo io oo

j oj oo oj oo

y t

y y t t

y y t t

 
 
 

 

   

   
 

Under these values of  j, and ,i    the sum of squares 2( )ij i j ij
i j

y t       reduces to  

2
( ) .ij io oj oo ij io oj oo

i j

y y y y t t t t                       (2) 

Now minimization of  (2)  with respect to   gives 

 1 1

2

1 1

( )( )

ˆ

( )

I J

ij io oj oo ij io oj oo
i j

I J

ij io oj oo
i j

y y y y t t t t

t t t t
  

 

     


  




. 

Using ˆ,  we get from (1) 

ˆˆ

ˆ ˆ( ) ( )

ˆ ˆ( ) ( ).

oo oo

i io oo io oo

j oj oo oj oo

y t

y y t t

y y t t

 
 

 

 

   

   

 

Hence 

2

2
2

2

ˆ( )

( )( )

( )
( )

ij ij
i j

ij io oj oo ij io oj oo
i j

ij io oj oo
i j ij io oj oo

i j

yt
yy

tt

y

y y y y t t t t

y y y y
t t t t

E
E

E



 
      

     
  

 




 

 

where 

 

2

2

( )

( )( )

( ) .

yy ij io oj oo
i j

yt ij io oj oo ij io oj oo

tt ij io oj oo
i j

E y y y y

E y y y y t t t t

E t t t t

   

      

   






 

 

 

 



Analysis of Variance  |  Chapter 12  |  Analysis of Covariance  |  Shalabh, IIT Kanpur 
 12 

Case (i) : Test of 0H   

Minimize 2( )ij j ij
i j

y t      with respect to , j   and   gives the least squares estimates)  (or the 

maximum likelihood estimates) of respective parameters as 

2

ˆˆ ˆˆ

ˆ ˆˆ ˆ( )

( )( )
ˆ̂ (3)

( )

ˆ ˆˆ ˆ ˆ ˆˆ ˆ .

oo oo

j oj oo oj oo

ij oj ij oj
i j

ij oj
i j

j ij

y t

y y t t

y y t t

t t

t

 

 



   

  

   

 




  




  

Substituting  these estimates in (3) we get 

2 2
2

( )( )
ˆ̂( ) ( )

( )

ij oj ij oj
i j

ij ij ij j
i j i j ij oj

i j

yt yt

yy yy
tt tt

y y t t

y y y
t t

E A
E A

E A



 
  

    


    



    

where 

2

2

2

2

2

( )

( )

( )( )

( )

( )

( )( ).

yy io oo
i

tt io oo
i

yt io oo io oo
i

yy ij io oj oo
i j

tt ij io oj oo
i j

yt ij io oj oo ij io oj oo
i j

A J y y

A J t t

A J y y t t

E y y y y

E t t t t

E y y y y t t t t

 

 

  

   

   

      













 

Thus the likelihood ratio test statistic for testing 0H   is 

 

2 2

1 2

ˆ̂ ˆ( ) ( )

ˆ( )

ij ij ij ij
i j i j

ij ij
i j

y y

y

 




  




 


. 

Adjusting with degrees of freedom and using the earlier  result for the independence of two  quadratic 

forms and their distribution 
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2 2

1 2

ˆ̂ ˆ( ) ( )
( )

ˆ( 1) ( )

ij ij ij ij
i j i j

ij ij
i j

y y
IJ I J

F
I y

 



   
  

    
 

 


  ~ ( 1, )F I IJ I J    under  oH   . 

So the decision rule is to reject oH   whenever  1 1 ( 1, ).F F I IJ I J     

 

Case b: Test of 0H   

Minimize 2( )ij i ij
i j

y t      with respect to , i   and   gives the  least squares estimates (or 

maximum likelihood estimates) of respective parameters as 

2

ˆ

( )

( )( )

(4)
( )

.

oo oo

j io oo io oo

ij io ij io
i j

ij io
i j

ij i ij

y t

y y t t

y y t t

t t

 
 



   

 

   

 




  





 



  

  

From (4), we get 

2 2
2

2

( )( )

( ) ( )
( )

ij io ij oj
i j

ij ij ij io
i j i j ij io

i j

yt yt

yy yy
tt

y y t t

y y y
t t

E B
E B

B



 
  

    


    


  


 

where

2

2

2

( )

( )

( )( ) .

yy oj oo
j

tt oj oo
j

yt io oo oj oo
j

B I y y

B I t t

B I y y t t

 

 

  







 

Thus the likelihood ratio test statistic for testing 0H   is 

2 2

2 2

ˆ( ) ( )
( )

~ ( 1, )
ˆ( 1) ( )

ij ij ij ij
i j i j

ij ij
i j

y y
IJ I J

F F J IJ I J
J y

 



   
          

 



  under  .oH    

So the decision rule is to reject  0H   whenever 2 1 ( 1, ).F F J IJ I J     
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If  oH    is rejected, use multiple comparison methods to determine  which of the contrasts  i  are 

responsible for this rejection.  The same is true for  oH   . 

 

The analysis of covariance table for two way classification is as follows:  

 

 

Source of 

variation 

Degrees 

of 

freedom       

Sum of products 

yy yt tt
  

 F  

Between 

evels of  A 

 

Between 

levels of  

B  

 

 

Error 

 

 

 

Total 

 

 

Error + 

levels 

of  A 

 

Error + 

levels  

of  B  

1I           yyA                  ytA                  ttA   

 

 

1J        yyB                  ytB                     ttB   

  

 

 

( 1)( 1)I J   yyE       ytE                    ttE  

 

 

1IJ               yyT           ytT                     ttT   

 

 

IJ J      

 

 

 

IJ I  

 

30 21I q q q  
 

 

 

1J        1 4 2q q q   

 

 

2

2
yt

yy
tt

E
IJ I J q E

E
     

 

2IJ   

 

2

3

( )
( ) yt yt

yy yy
tt tt

A E
q A E

A E


  


 

2

4

( )
( ) yt yt

yy yt
tt tt

B E
q B E

B E


  


 

0
1

21

qIJ I J
F

I q

 



 

 

1
2

21

qIJ I J
F

J q

 



 

 


