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Chapter 2 

General Linear Hypothesis and Analysis of Variance 

Regression model for the general linear hypothesis 

Let  1 2, ,..., nY Y Y  be a sequence of n independent random variables associated with responses. Then 

we can write it as  

1

2

( ) , 1, 2,..., , 1, 2,...,

( ) .

p

i j ij
j

i

E Y x i n j p

Var Y






  




 

This is the linear model in the expectation form where 1 2, , ..., p    
are the unknown parameters and 

ijx ’s  are the known values of independent covariates  1 2, , ..., pX X X .
 

 

Alternatively, the linear model can be expressed as 

1

, , 1, 2, ..., ; 1, 2, ...,
p

i j ij i
j

Y x i n j p 


     

where i ’s  are identically and independently distributed random error component with mean 0 and 

variance 2,  i.e., ( ) 0iE   2( )iVar    and ( , ) 0( ).i jCov i j     

 

In matrix notations, the linear model can be expressed as 

Y X     

where  

 1 2( , ,..., ) ' nY Y Y Y  is a 1n  vector of observations on the response variable,  

 the matrix

11 12 1

21 22 2

1 2

 ...

 ...

  

 ...

p

p

n n np

X X X

X X X
X

X X X

 
 
   
 
 
 

   
is a n p  matrix of  n  observations on  p  independent 

covariates 1 2, , ..., ,pX X X  

 1 2( , ,..., )p      is a  1p   vector of  unknown regression parameters (or regression 

coefficients) 1 2, , ..., p    associated  with  1 2, , ..., ,pX X X  respectively and   

 1 2( , ,..., )n      is a 1n   vector of random errors or disturbances.  

 We assume that  ( ) 0,E     the covariance matrix  2( ) ( ') , ( )pV E I rank X p     . 
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In the context of analysis of variance and design of experiments,  

 the matrix X  is termed as the design matrix;  

 unknown 1 2, , ..., p    are termed as effects,  

 the covariates 
1 2, , ..., ,pX X X  are counter variables or indicator variables where 

ijx   counts 

the number of times the effect j  occurs in the ith  observation  ix .  

 
ijx  

mostly takes the values 1 or 0 but not always.  

 The value 1ijx   indicates the presence of effect 
j  in ix   and  0ijx  indicates the absence  

of effect j  in .ix  

Note that in the linear regression model, the covariates are usually continuous variables.  

 

When some of the covariates are counter variables, and  rest are continuous variables, then the 

model is called a mixed model and is used in the analysis of covariance. 

 

Relationship between the regression model and analysis of variance model 

The same linear model is used in the linear regression analysis as well as in the analysis of variance. 

So it is important to understand the role of a linear model in the context of linear regression analysis 

and analysis of variance. 

 

Consider the multiple linear model 

0 1 1 2 2 ...         p pY X X X . 

 

In the case of analysis of variance model,  

 the one-way classification considers only one covariate,  

 two-way classification model considers two covariates,  

 three-way classification model considers three covariates and so on.  

 

If  ,   and   denote the effects associated with  the covariates ,X Z  and W which are the counter 

variables,  then in 

One-way model:  Y X      

Two-way model: Y X Z        

Three-way model: Y X Z W           and so on. 
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Consider an example of agricultural yield. The study variable Y denotes the yield which depends on 

various covariates 
1 2, , ..., pX X X . In the case of regression analysis, the covariates 

1 2, , ..., pX X X  are 

the different variables like temperature, the quantity of fertilizer, amount of irrigation etc.  

 

Now consider the case of  one-way model and try to understand its interpretation in terms of the 

multiple regression model. The covariate X is now measured at different levels,  e.g., if X is the 

quantity of fertilizer then suppose there are p possible values, say 1 Kg., 2 Kg.,..., p Kg.  then  

1 2, , ..., pX X X  denotes these p values in the following way. 

The linear model now can be expressed as  

1 1 2 2 ...o p pY X X X            

by defining 

1

2

1 if effect of 1 Kg.fertilizer is present

0 if effect of 1 Kg.fertilizer is absent

1 if effect of 2 Kg.fertilizer is present

0 if effect of 2 Kg.fertilizer is absent

1 if effect of Kg.fertilizer is present

0 if effect of Kgp

X

X

p
X

p


 



 






.fertilizer is absent.





 

 

If the effect of 1 Kg. of fertilizer is present, then other effects will obviously be absent and the linear 

model is expressible as 

0 1 1 2 2( 1) ( 0) ... ( 0)p pY X X X              

    0 1      

 

If the effect of 2 Kg. of fertilizer is present then  

0 1 1 2 2

0 2

( 0) ( 1) ... ( 0)

 

p pY X X X    

  

        

  
 

 

If the effect of  p Kg. of fertilizer is present then  

0 1 1 2 2

0

( 0) ( 0) ... ( 1)

 

    

  

        

  
p p

p

Y X X X
 

and so on. 
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If  the experiment with 1 Kg. of fertilizer is repeated 1n  number  of times then 1n  observation on  

response variables are recorded which can be  represented as 

1

11 0 1 2 11

12 0 1 2 12

1 0 1 2 1 1

.1 .0 ... .0

.1 .0 ... .0

.1 .0 ... .0

p

p

n p n

Y

Y

Y

    

    

    

     

     

     


 

If  X2 =1 is  repeated   n2  times, then  on  the  same lines 2n  number of times then 2n  observation on  

response variables are recorded which can be  represented as 

2 2

21 0 1 2 21

22 0 1 2 22

2 0 1 2 2

.0 .1 ... .0

.0 .1 ... .0

.0 .1 ... .0

p

p

n p n

Y

Y

Y

    

    

    

     

     

     


 

The experiment is continued and if 1pX   is repeated pn  times, then on the same lines  

1 0 1 2 1

2 0 1 2 2

0 1 2

.0 .0 ... .1

.0 .0 ... .1

.0 .0 ... .1
p p

p p P

p p P

pn p pn

Y

Y

Y

    

    

    

     

     

     


 

All these 
1 2, , .., pn n n  observations can be represented as 

1

2

11

12

1

21

22

2

1

2

1 1 0 0 0 0

1 1 0 0 0 0

       

1 1 0 0 0 0

1 0 1 0 0 0

1 0 1 0 0 0

          

1 0 1 0 0 0

       

1 0 0 0 0 1

1 0 0 0 0 1

        

1 0 0 0
p

n

n

p

p

pn

y

y

y

y

y

y

y

y

y

 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
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 
 
 
 




      




      


     



    
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1
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1

2

1

2

0 1
p
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






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










 
   
   
   
   
   
   
   

    
    
        
         

   
   
   
   
   
    
   

 










 

or 

.Y X     
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In the two-way analysis of  variance model, there are two covariates and the linear model is 

expressible as  

0  1 1 2 2 1 1 2 2+ ... ...p p q qY X X X Z Z Z                 

where 1 2, , ..., pX X X  denotes, e.g., the p levels of the quantity of fertilizer, say 1 Kg., 2 Kg.,...,p Kg. 

and  
1 2, , ..., qZ Z Z  denotes, e.g., the q levels of level of irrigation, say 10 Cms., 20 Cms.,…10 q  Cms. 

etc.  The levels 
1 2, , ..., pX X X 1 2, , ..., qZ Z Z  are the counter variable indicating the presence or absence 

of the effect as in the earlier case. If   the effect of  1X   and  1Z  are present, i.e., 1 Kg of fertilizer and 

10 Cms. of  irrigation is used then the linear  model is written as 

0 1 2 1 2

0 1 1

.1 .0 ... .0 .1 .0 ... .0

.

p pY        

   

         

   
 

 
If 2 1X   and 2 1Z   is used, then the model is 

0 2 2 .Y         

 

The design matrix can be written accordingly as in the one-way analysis of variance case. 

In the  three-way analysis of variance model 

1 1 1 1 1 1... ... ...p p q q r rY X X Z Z W W                   

 

The regression parameters ' s  can be fixed or random. 

 If all ' s  are unknown constants, they are called as parameters of the model and the model is 

called as a fixed effect model or model I. The objective, in this case, is to make inferences 

about the parameters and the error variance  2  . 

 If for some , 1ijj x   for all 1, 2,...,i n  then 
j  is termed an additive constant. In this case, 

j  

occurs with every observation and so it is also called a general mean effect. 

 If all  ’s are observable random variables except the additive constant, then the linear model is 

termed as random effect model, model II  or variance components model. The objective, in 

this case, is to make inferences about the variances of ' s , i.e., 
1 2

2 2 2, , ...,    
p
 and error 

variance 2  and/or certain functions of them.. 

 If some parameters are fixed and some are random variables, then the model is called a mixed 

effect model or model III.  In the mixed effect model, at least one  j  is constant and at least 

one  j  is a random variable.    The objective is to make inference about the fixed effect 

parameters, variance of random effects and error variance 2 . 
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Analysis of variance 

Analysis of variance is a body of statistical methods of analyzing the measurements assumed to be 

structured as 

1 1 2 2 ... , 1, 2, ...,i i i p ip iy x x x i n          

where 
ijx  are integers, generally 0 or 1 indicating usually the absence or presence of effects  j

; and 

i ’s are assumed to be identically and independently distributed with mean 0 and variance 2 . It 

may be noted that the i ’s  can be assumed additionally to follow a normal distribution 2(0, )N   . It 

is needed for the maximum likelihood estimation of parameters from the beginning of the analysis, 

but in the least-squares estimation, it is needed only when conducting the tests of hypothesis and the 

confidence interval estimation of parameters. The least-squares method does not require any 

knowledge of distribution like normal up to the stage of estimation of parameters. 

 

We need some basic concepts to develop tools. 

 

Least squares estimate of  : 

Let  1 2, ,..., ny y y  be a sample of observations on  1 2, ,..., .nY Y Y   The least-squares estimate of    is the 

values  ̂  of    for which the sum of squares due to errors, i.e., 

2 2

1

' ( ) ( )

2 '

    

 


    

    


n

i
i

S y X y X

y y X y X X

 

is minimum where  1 2( , ,..., )ny y y y  .  Differentiating 2S   with respect to    and substituting it  to 

be zero, the normal equations  are obtained as 

2

2 2 0
dS

X X X y
d




     

or X X X y  . 

If   X  has full rank ,p   then ( )X X  has a unique inverse and the unique least squares estimate of 

  is 

1ˆ ( )X X X y    

which is the best linear unbiased estimator of    in the sense of having minimum variance in the 

class of linear and unbiased estimator. If the rank of  X is  not full, then generalized inverse is  used 

for finding the inverse of ( ).X X  
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If  L    is a linear parametric function where  1 2( , , ..., )pL      is a non-null vector, then the least-

squares estimate of L    is  ˆ.L   

 

A question arises that what are the conditions under which a linear parametric function L    admits 

a unique least-squares estimate in the general case. 

 

The concept of estimable function is needed to find such conditions. 

 

Estimable functions: 

A linear function     of the parameters with known   is said to be an estimable parametric  

function  (or estimable) if there exists a linear  function  L Y  of Y  such that  

( )E L Y      for all . pR  

Note that not all parametric functions are estimable. 

 

Following results will be useful in understanding further topics. 

 

Theorem 1: A linear parametric function L    admits a unique least squares estimate if and only 

if L   is estimable. 

 

Theorem 2  (Gauss Markoff theorem): 

If the linear parametric function L    is estimable then the linear estimator ˆL    where ̂  is a 

solution of  

ˆX X X Y   

is the best linear unbiased estimator of  'L   in the sense of having minimum variance in the class of 

all linear and unbiased estimators of L  . 

 

Theorem 3: If the linear parametric function  ' ' '
1 1 2 2, , ...,       k kl l l  are estimable, then any 

linear combination of  1 2, ,...,  k  is also estimable. 
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Theorem 4: All linear parametric functions in   are estimable if and only if  X has full rank. 

 

If X is not of full rank, then some linear parametric functions do not admit the unbiased linear 

estimators and nothing can be inferred about them. The linear parametric functions which are not 

estimable are said to be confounded. A possible solution to this problem is to add linear restrictions 

on    so as to reduce the linear model to full rank. 

 

Theorem 5:  Let  '
1L   and '

2L   be two estimable parametric functions and let  '
1

ˆL   and '
2

ˆL   be 

their least squares estimators.  Then 

' 2 ' 1
1 1 1

' ' 2 ' 1
1 2 1 2

ˆ( ) ( )

ˆ ˆ( , ) ( )

 

  









Var L L X X L

Cov L L L X X L
 

assuming that  X is a full rank matrix. If not, the generalized inverse of  XX  can be used in place of 

the unique inverse. 

 

Estimator of  2  based on least squares estimation: 

Consider an estimator of  2  as,  

2

1 1

1 1

1

1 ˆ ˆˆ ( ) ( )

1
[ ( ) ' ] [ ( ) ]

1
'[ ( ) '][ ( ) ]

1
'[ ( ) ]

 

 



  


     


    


  


y X y X
n p

y X X X X y y X X X X y
n p

y I X X X X I X X X X y
n p

y I X X X X y
n p

  

 

where the hat  matrix 1[ ( ) ]I X X X X   is an idempotent matrix with its trace as 

1 1

1

[ ( ) ] ( )

( ) (using the result ( ) ( ))

.

 



    

   
 

 
p

tr I X X X trI trX X X X

n tr X X X X tr AB tr BA

n tr I

n p

 

Note that using ( ' ) ( )E y Ay tr A  , with ( )  Cov y , we have 

2
2 1

2

ˆ( ) [ ( ) ]E tr I X X X X
n p





  




 

and so 2̂   is an unbiased estimator of  2.  
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Maximum Likelihood Estimation 

The least-squares method does not use any distribution of the random variables in case of the 

estimation of parameters. We need the distributional assumption in case of least squares only while 

constructing the tests for hypothesis and the confidence intervals. For maximum likelihood 

estimation, we need the distributional assumption from the beginning. 

 

Suppose  1 2, ,..., ny y y  are independently and identically distributed following a normal distribution 

with mean 
1

( )
p

i j ij
j

E y x


  and variance 2( ) iVar y  (i =1, 2,…, n). Then the likelihood function 

of  1 2, ,..., ny y y  is 

2
2

22 2

1 1
( , ) exp ( ) ( )

2
(2 ) ( )

n nL y y X y X   


 

      
 

where 1 2( , ,..., )ny y y y  . Then 

2 2
2

1
ln ( , ) log 2 log ( ) ( ).

2 2 2

n n
L L y y X y X     


        

Differentiating the log-likelihood with respect to  and   2 ,  we have 

2
2

0

1
0 ( ) ( )




  


    

     




 

L
X X X y

L
y X y X

n

 

 

Assuming the full rank of ,X  the normal equations are solved and the maximum likelihood 

estimators are obtained as   

1

2

1

( )

1
( ) ( )

1
( ) .

X X X y

y X y X
n

y I X X X X y
n



  





 

  

     



   

 

The second-order differentiation conditions can be checked and they are satisfied for ̂ and 2  to be 

the maximum likelihood estimators. 
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Note that in the  maximum likelihood estimator    is the same as the least-squares estimator   and 

   is an unbiased estimator of    ,i.e., ( )E    unlike the least-squares estimator but   

 2   is not an unbiased estimator of  2  ,i.e., 2 2 2( )  
  n p

E
n

like the least-squares  

estimator. 

 

Now we use the following theorems for developing the test of hypothesis. 

 

Theorem 6:  Let  1 2( , ,..., )nY Y Y Y   follow a multivariate normal distribution  ( , )N    with mean 

vector   and positive definite covariance matrix   . Then  Y AY  follows a noncentral chi-square 

distribution with p  degrees of freedom and noncentrality parameter ,A   i.e., 2 ( , )p A    if and 

only if  A  is an idempotent matrix of rank p. 

 

Theorem 7: Let  1 2( , ,..., )nY Y Y Y    follows a multivariate normal distribution  ( , )N     with 

mean vector    and positive definite covariance matrix   .  Let  1Y AY  follows  2
1 1( , )p A    

and 2Y A Y  follows  2
2 2( , )p A   .  Then  1Y AY  and 2Y A Y  are independently distributed if  

1 2 0.A A   

 

Theorem 8:  Let  1 2( , ,..., )nY Y Y Y    follows a multivariate normal distribution 2( , )N I  , then 

the maximum likelihood  (or least squares) estimator  ˆL    of estimable linear parametric  function 

is independently distributed of  2 ˆˆ ;  L    follows  1, ( )N L L X X L        and  
2

2

ˆn


 follows 

2( )n p   where ( ) .rank X p  

 

Proof:  Consider 1ˆ ( ) ,X X X Y     then 

1

1

2 1

ˆ( ) ( ) ( )

( )

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

( ) .

E L L X X X E Y

L X X X X

L

Var L L Var L

L E L

L X X L






 

   









 

 




   

   



Analysis of Variance  |  Chapter 2  |  General Linear Hypothesis and Anova  | Shalabh, IIT Kanpur
  
 11

Since ̂  is a linear function of y and ˆL   is a linear function of ̂ , so ˆL   follows a normal 

distribution   2 1, ( )N L L X X L      . Let  1( )A I X X X X     and 1( ) ,B L X X X    then 

1ˆ ( )     L L X X X Y BY  

and   2 1ˆ ( ) ' ( ) ( ) ' .n Y X I X X X X Y X Y AY           

So, using Theorem 6 with rank(A) = n - p,  
2

2

ˆn


  follows a 2 ( )n p  . Also 

1 1 1( ) ( ) ( )

0.

BA L X X X L X X X X X X X          


 

So using Theorem 7, 'Y AY  and BY  are independently distributed. 

 

Tests of Hypothesis in the Linear Regression Model 

First, we discuss the development of the tests of hypothesis concerning the parameters of a linear 

regression model. These tests of the hypothesis will be used later in the development of tests based 

on the analysis of variance. 

 
Analysis of Variance   

The technique in the analysis of variance involves the breaking down of total variation into 

orthogonal components. Each orthogonal factor represents the variation due to a particular factor 

contributing in the total variation. 

 
Model 

Let  1 2, ,..., nY Y Y  be independently distributed following a normal distribution with mean 

1

( )
p

i j ij
j

E Y x


  and variance  2 . Denoting 1 2( , ,..., )nY Y Y Y   a 1n  column vector, such 

assumption can be expressed in the form of a linear regression model 

Y X     

where X  is a n p  matrix,    is a 1p   vector and     is a 1n  vector of disturbances with 

( ) 0 E   

2( ) Cov I  and   follows a normal distribution.  

This implies that 

( )E Y X   

2( )( ) .E Y X Y X I      
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Now we consider four different types of tests of hypothesis.  

 
In the first two cases, we develop the likelihood ratio test for the null hypothesis related to the 

analysis of variance. Note that, later we will derive the same test on the basis of least squares 

principle also. An important idea behind the development of this test is to demonstrate that the test 

used in the analysis of variance can be derived using the least-squares principle as well as the 

likelihood ratio test. 

 

Case 1: Consider the null hypothesis for testing 0
0 :H    where 

0 0 0 0
1 2 1 2( , ,..., ) , ( , ,..., ) '        p p  is specified and  2  is unknown. This null hypothesis is 

equivalent to 0 0 0
0 1 1 2 2: , ,..., .p pH          

Assume that all  'i s  are estimable,  i.e., ( )rank X p  (full column rank). We now develop the 

likelihood ratio test. 
 
The ( 1) 1p    dimensional parametric space    is a collection of points such that 

 2 2( , ); , 0, 1,2,... .i i p            

Under  0,H  all  ’s ‘s are known and  equal, say 0  all are known and the    reduces to one-

dimensional space given by 

 0 2 2( , ); 0     . 

The likelihood function of  1 2, ,..., ny y y  is 

2
2 0 0

2 2

1 1
( , ) exp ( ) ( )

2 2

n

L y y X y X   
 

            
 

The likelihood function is maximum over    when   and  2   are substituted  with their maximum 

likelihood estimators, i.e., 

1

2

ˆ ( )

1 ˆ ˆˆ ( ) ( ).



  

 

  

X X X y

y X y X
n

 

Substituting ̂  and  2̂  in  2( | , )L y    gives 

2
2

2 2

2

1 1 ˆ ˆ( , ) exp ( ) ( )
ˆ ˆ2 2

    exp .
ˆ ˆ 22 ( ) ( )

n

n

Max L y y X y X

n n

y X y X

   
 

  



         
   

           
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Under 0,H   the maximum likelihood estimator of  2  is 
2 0 01

ˆ ( ) ( ).    y X y X
n

 

The maximum value of the likelihood function under  0H  is 

2
2 0 0

2 2

2

0 0

1 1
( , ) exp ( ) ( )

ˆ ˆ2 2

    exp
2 ( ) ( ) 2

         
   

           

n

n

Max L y y X y X

n n

y X y X


   

 

  

 

The likelihood ratio test statistic is 

2

2

2

0 0

2

'
0 0

0 0 2

2
1

2

( , )

( , )

ˆ ˆ( ) ( )

( ) ( )

ˆ ˆ( ) ( )
 

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ( ) ' ( )
 1

ˆ ˆ( ) ( )

 1

n

n

n

n

Max L y

Max L y

y X y X

y X y X

y X y X

y X X X y X X X

X X

y X y X

q

q


 


 

 
 

 

     

   
 









  
    

 
                 

  
  

  

 
  
 

 

2

0 0
1

ˆ ˆwhere ( ) ( )

ˆ ˆ and ( ) ( ).

 

   

  

   

q y X y X

q X X  

 

 

The expression of 1q  and 2q  can be further simplified as follows. 

Consider 

0 0
1

1 0 1 0

1 0 1 0

0 1 1 0

0 1 0

ˆ ˆ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

q X X

X X X y X X X X X y

X X X y X X X X X X y X

y X X X X X X X X X y X

y X X X X X y X

   

 

 

 

 

 

 

 



   

            
            

      

    
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2

1 1

1

0 0 1 0 0

0 1 0

ˆ ˆ( ) ( )

( ) ( )

( )

[( ) ] [ ( ) '][( ) ]

( ) [ ( ) ]( )

q y X y X

y X X X X y y X X X X y

y I X X X X y

y X X I X X X X y X X

y X I X X X X y X

 

   

 

 







  

           
     

       

     

 

 

Other two terms become zero using 

1[ ( ) ] 0I X X X X X    

 

In order to find out the decision rule for 0H  based on   , first, we need to find if    is a monotonic 

increasing or decreasing function of  1

2

q

q
. So we proceed as follows: 

Let  1

2

,
q

g
q

  so that 

2
1

2

2

1

(1 )






 
  
 

 

n

n

q

q

g

 

then 

1
2

1

2
(1 )




 


n

d n

dg
g

 

So as g increases,    decreases. 

Thus   is a monotonic decreasing function of  1

2

q

q
. 

The decision rule is to reject   0H   if  0   where  0   is a constant to be determined on the basis 

of  size of the test .   Let us simplify this in our context. 

0   

or  
2

1

2

1 


 
  

 

n

o

q

q
 

or  
  2

1

1



on

g
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or   
2

0(1 ) 


  ng  

or   
2

0 1


 ng  

or   g C  

where C is a constant to be determined by the size   condition of the test. 

So reject 0H  whenever  1

2

q

q
.C  

Note that the statistic 1

2

q

q
  can also be obtained by the least-squares method as follows. The least-

squares methodology will also be discussed in further lectures. 

0 0
1

1
                          

ˆ ˆ( ) ( )

              ( ) ( )                ( ) ( )

                                     

um

of

squares

due to

deviation

from

OR

sum of

square

o

q X X

q Min y X y X Min y X y X

s

H



   
   



   
      

  

um sum

of of

squares squares

due to due to error

                                        
OR

Totalsum of

s due squares

to

o

s

H



 

It will be seen later that the test statistic will be based on the ratio 1

2

q

q
. In order to find  an appropriate 

distribution of 1

2

q

q
 , we use the following theorem: 

Theorem 9:  Let 

 0Z Y X   

 
1

1

1
2

( ) '

[ ( ) ] .





 

   

Q Z X X X X Z

Q Z I X X X X Z
. 

Then   1
2

Q


 and 2

2

Q


 are independently distributed. Further, when 0H  is true, then 21

2
~ ( )


Q

p  

and  22
2

~ ( )



Q

n p  where  2 ( ) m  denotes the  2  distribution with ‘m’ degrees of freedom. 



Analysis of Variance  |  Chapter 2  |  General Linear Hypothesis and Anova  | Shalabh, IIT Kanpur
  
 16

Proof: Under  0,H  

0 0

2

( ) 0

( ) ( ) .

 



  

 

E Z X X

Var Z Var Y I
 

Further  Z is a linear function of  Y and  Y  follows a normal distribution. So 

2~ (0, )Z N I  

The matrices 1( )X X X X   and 1[ ( ) ]I X X X X   are idempotent matrices.  So 

1 1

1 1

[ ( ) ] [( ) ] ( )

[ ( ) ] [ ( ) ]

 

 

     

       
p

n

tr X X X X tr X X X X tr I p

tr I X X X X tr I tr X X X X n p
 

So using theorem 6, we can write that under 0H  

21
2

~ ( )

Q

p
       

and          22
2

~ ( )



Q

n p  

where the degrees of freedom  p and ( )n p  are obtained by the trace of  1( )X X X X     and trace 

of 1( )I X X X X    , respectively. 

 
Since 

1 1( ) ( ) 0,I X X X X X X X X             

So using theorem 7, the quadratic forms 1Q  and 2Q  are independent under  0H . 

Hence the theorem is proved.    

 

Since Q1  and  Q2 are independently distributed, so under 0H  

1

2

/

/( )

Q p

Q n p
 follows a central  F distribution, i.e. 

1

2

( , ).
Qn p

F p n p
p Q

 
 

 
  

 

Hence the constant C in the likelihood ratio test statistic   is  given by 

1 ( , )C F p n p   

where  1 1 2( , )F n n  denotes the upper 100 %   points of F-distribution with 1n  and  2n  degrees of 

freedom. 
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The computations of this test of hypothesis can be represented in the form of an analysis of variance 

table. 

ANOVA  for testing 0
0 :H    

______________________________________________________________________________ 
Source of Degrees  Sum of  Mean  F-value 
variation of freedom squares squares 
______________________________________________________________________________ 

Due to       p  1q       1q

p
  1

2

qn p

p q

 
 
 

 

 

Error  n p   2q   2

( )
q

n p  
 

Total    n  0 0( ) ( )y X y X    

 

 

Case 2: Test  of a subset  of  parameters 0
0 : , 1, 2, ..,k kH k r p      when 1 2, ,...,r r p     and 

2   are unknown. 

 

In case 1 , the test of hypothesis was developed when all  ’s are considered in the sense that we test 

for each 0 , 1, 2,..., .i i i p     Now consider another situation, in which the interest is to test only a 

subset of  1 2, , ..., p   , i.e., not all but only a few parameters. This type of test of hypothesis can be 

used, e.g., in the following situation. Suppose five levels of voltage are  applied to check the 

rotations per minute (rpm) of a fan at 160 volts, 180 volts, 200 volts, 220 volts and 240 volts. It can  

be realized in practice that when the voltage is low, then the rpm at 160, 180 and 200 volts can be 

observed easily. At 220 and 240 volts, the fan rotates at the full speed and there is not much 

difference in the rotations per minute at these voltages. So the interest of the experimenter lies in 

testing the  hypothesis related to only first  three effects, viz., 1 , for  160 volts, 2  for 180  volts 

and  3  for 200 volts. The null hypothesis in this  case can be written as:  

0 0 0 0
0 1 1 2 2 3 3: , ,H          

when 4 5,   and 2  are unknown. 

Note that under  case 1, the null hypothesis will be 
0 0 0 0 0 0

0 1 1 2 2 3 3 4 4 5 5: , , , ,             H . 

Let 1 2, , ..., p    be the p parameters. 
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We can divide them into two parts such that out of 1 2 1, , ..., , , ...,r r p     and we are interested in 

testing a hypothesis of a subset of it. 

Suppose, We want to test the null hypothesis  

0
0 : , 1, 2, ..,k kH k r p      when 1 2, ,...,r r p     and 2   are unknown. 

The alternative hypothesis under consideration is 0
1 :  for at least one 1, 2,.., .k kH k r p     

In order to develop a test for  such a hypothesis, the linear model  

Y X     

under the usual assumptions can be rewritten as follows: 

Partition 1 2( )X X X ,  (1)

(2)





 

  
 

 

where  (1) 1 2( , ,..., )r     , (2) 1 2( , ,..., )r r p        

with the order as 
1 2 (1): , : ( ), : 1X n r X n p r r     

and (2) : ( ) 1.p r    

 

The model can be rewritten as 

(1)

1 2
(2)

1 (1) 2 (2)

( )

Y X

X X

X X

 





  

 

 
  

 
  

 

 

The null hypothesis of interest is now 

0 0 0 0
0 (1) (1) 1 2: ( , ,..., )rH      

 
where (2)  and 2  are unknown. 

 

The complete parametric space is  

 2 2( , ); , 0, 1,2,...,          i i p  

and sample space under 0H  is 

 0 2 2
(1) (2)( , , ); , 0, 1, 2,..., .i i r r p               

The likelihood function is  

2
2

2 2

1 1
( , ) exp ( ) ( )

2 2

n

L y y X y X   
 

            
. 
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The maximum value of likelihood function under   is obtained by substituting the maximum 

likelihood estimates of    and  2 , i.e., 

1

2

ˆ ( )

1 ˆ ˆˆ ( ) ( )

X X X y

y X y X
n



  

 

  
 

as 

2
2

2 2

2

'

1 1 ˆ ˆ( , ) exp ( ) ( )
ˆ ˆ2 2

exp .
ˆ ˆ 22 ( ) ( )

n

n

Max L y y X y X

n n

y X y X

   
 

  



            

           

 

Now we find the maximum value of likelihood function under  0H . The  model under 0H  becomes 

0
1 (1) 2 2Y X X     .  The likelihood function under 0H  is 

2
2 0 0

1 (1) 2 (2) 1 (1) 2 (2)2 2

2

2 (2) 2 (2)2 2

1 1
( , ) exp ( ) ( )

2 2

1 1
exp ( * ) ( * )

2 2

n

n

L y y X X y X X

y X y X

     
 

 
 

              

            

 

where (0)
1 (1)*  y y X . Note that  (2)  and 2 are the unknown parameters. This likelihood function 

looks like as if it is written for 2
2 (2)* ~ ( , ). y N X  

This helps is writing the maximum likelihood estimators of  (2)  and 2  directly as 

' 1 '
(2) 2 2 2

2
2 (2) 2 (2)

ˆ ( ) *

1 ˆ ˆˆ ( * ) ( * ).



  



  

X X X y

y X y X
n

. 

Note that  '
2 2X X  is a principal minor of  .X X   Since X X  is a positive definite matrix, so '

2 2X X  is 

also positive definite. Thus ' 1
2 2( )X X   exists and is unique. 

Thus the maximum value of likelihood function under  0H  is obtained as 

2
2

2 (2) 2 (2)2 2

2

2 (2) 2 (2)

1 1ˆ ˆ ˆ( * , ) exp ( * ) ( * )
ˆ ˆ2 2

 exp
ˆ ˆ 22 ( * ) '( * )

n

n

Max L y y X y X

n n

y X y X


   

 

  

            

            
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The likelihood ratio test statistic for  0
0 (1) (1):H    is 

2

2

 
2

2 (2) 2 (2)

  
2

2 (2) 2 (2)

max ( , )

max ( , )

ˆ ˆ( ) ( )
ˆ ˆ( * ) ( * )

-ˆ ˆ ˆ ˆ ˆ ˆ( * ) ( * ) ( ) ( ) ( ) ( )
ˆ ˆ( ) ( )

n

n

L y

L y

y X y X

y X y X

y X y X y X y X y X y X

y X y X


 


 

 
 

     
 





  
  

   

          
  

   

 

 
2

2 (2) 2 (2)

 
2

1

2

- ˆ ˆ ˆ ˆ( * ) ( * ) ( ) ( )
1

ˆ ˆ( ) ( )

-
1

n

n

y X y X y X y X

y X y X

q

q

   
 

      
  

   

 
  
 

 

where 1 2 (2) 2 (2)
ˆ ˆ ˆ ˆ( * ) ( * ) ( ) ( )         q y X y X y X y X  and  2

ˆ ˆ( ) ( ).   q y X y X  

Now we simplify 1q and 2q . 

Consider 

2 (2) 2 (2)

' 1 ' ' 1 '
2 2 2 2 2 2 2 2

' 1 '
2 2 2 2

'0 ' 1 ' 0
1 (1) 2 (2) 2 (2) 2 2 2 2 1 (1) 2 (2) 2 (2)

0
1 (1)

ˆ ˆ( * ) ( * )

      = ( * ( ) *) ( * ( ) *)

     * ' ( ) *

( ) ( ) ( )

(

 

     



 





   

 

   

                 

 

y X y X

y X X X X y y X X X X y

y I X X X X y

y X X X I X X X X y X X X

y X ' 1 ' 0
2 (2) 2 2 2 2 1 (1) 2 (2)) ( ) ( ).        X I X X X X y X X

 

The other terms become zero using the result  ' ' 1 '
2 2 2 2 2( ) 0   X I X X X X .  

Note that  under 0
0 1 (1) 2 (2),   H X X  can be expressed as 0

1 2 (1) (2)(    )(    ) 'X X   , 
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Consider 

1 1

1

0 0
1 (1) 2 (2) 1 (1) 2 (2)

1 0 0
1 (1) 2 (2) 1 (1) 2 (2)

ˆ ˆ( ) ( )

      = ( ( ' ) ' ) ( ( ' ) ' )

      = ( ) '

ˆ      = ( ) )

ˆ         ( ' ) ( ) )

     

y X y X

y X X X X y y X X X X y

y I X X X X y

y X X X X

I X X X X y X X X X

 

   

   

 





   

 

   
     

          
0 1 0

1 (1) 2 (2) 1 (1) 2 (2)

0 1 0
1 (1) 2 (2) 1 (1) 2 (2)

    ( ) ( ) ( )

      = ( ) ' ( ) ( )

y X X I X X X X y X X

y X X I X X X X y X X

   

   





        
       

 

and another term becomes zero using the result  1' ( ) 0.    X I X X X X

 

Note that under 0H , the term 0
1 (1) 2 (2)X X   can be expressed as 0

1 2 (1) (2)(     )(     ) 'X X   . Thus 

 

1 2 (2) 2 (2)

1 1
2 2 2 2

0 ' 1 ' 0
1 (1) 2 (2) 2 2 2 2 1 (1) 2 (2)

0 1
1 (1) 2 (2)

ˆ ˆ ˆ ˆ( * ) ( * ) ( ) ( )

     = *' ( ) * ' ( )

( ) ( ) ( )

       ( ) ' ( ) (

q y X y X y X y X

y I X X X X y y I X X X X y

y X X I X X X X y X X

y X X I X X X X

   

   

 

 





        

           
        

      
0

1 (1) 2 (2)

0 1 ' 1 ' 0
1 (1) 2 (2) 2 2 2 2 1 (1) 2 (2)

)

( ) ( ) ( ) ( )

y X X

y X X X X X X X X X X y X X

 

    

 

         

 

 

 
 

2

'0 0
1 (1) 2 (2) 1 (1) 2 (2)

0 0
1 (1) 2 (2) 1 (1) 2 (2)

0 1 0
1 (1) 2 (2) 1 (1) 2 (2)

ˆ ˆ( ) ( )

( )

( ) ( ) ( )

         ( ) ( )

( ) ' ( ) ( ).

 

   

   

   

  

    

         
      

        

q y X y X

y I X X X X y

y X X X X I X X X X

y X X X X

y X X I X X X X y X X

 

Other terms become zero. Note that  in simplifying the terms 1q and 2q , we tried to write them in the 

quadratic form with the same  variable 0
1 (1) 2 (2)( ).  y X X  

 

Using the same argument  as in case 1, we can say that since    is a monotonic decreasing function 

of  1

2

,
q

q
 so the likelihood ratio test rejects  0H  whenever    

1

2

q
C

q


 

where C is a constant to be determined by the size   of the test. 
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The likelihood ratio test statistic can also be obtained  through least-squares method as  follows: 

1 2( )q q    : Minimum value of  ( ) ( )  y X y X   when 0
0 (1) (1):H    holds true.  

               :  Sum of squares due to 0H  

2q            :   Sum of squares due to error. 

1q             :  Sum of squares due to the deviation from  0H  or sum of squares due to  
(1)  adjusted    

                 for (2) . 

 

If 0
(1) 0    then 

   

 

 

 

 

 

 

 

 

 

Now we have the following theorem based on Theorems  6  and 7. 

 

Theorem 10: Let 0
1 (1) 2 (2) 1;      Z Y X X Q Z AZ       and   2 Q Z BZ  where  

1 ' 1 '
2 2 2 2( ) ' ( )A X X X X X X X X    and 1( ) '.B I X X X X   

Then 1
2

Q

  
and 2

2

Q


 are independently distributed. Further 21

2
~ ( )

Q
r


and 22

2
~ ( ).

Q
n p


   

Thus  under  0H , 1 1

2 2

/

/( )

Q r Qn p

Q n p r Q





 follows an F-distribution ( , ).F r n p  

Hence the constant C in   is 

1 ( , ),C F r n p   

where 1 ( , )F r n p   denotes the upper  100 % points on F-distribution with r  and ( )n p  degrees 

of freedom. 

 

1 2 (2) 2 (2)

' '
(2) 2

' '
(2) 2

(2)

(1)

ˆ ˆ ˆ ˆ( ) '( ) ( ) '( )

ˆ ˆ    = ( ) ( )

ˆ ˆ               .

     

sum of squaresReduction
due tosum of squares

or ignoring

sum of squares

due to

q y X y X y X y X

y y X y y y X y

X y X y

   

 

 







     

     

  

 
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The analysis of variance table for this null hypothesis is as follows: 

 
ANOVA for testing  0

0 (1) (1):H    

Source of Degrees Sum of  Mean  F-value 
Variation of  squares squares 
  Freedom 

Due to 
(1)  r  1q   1q

r
  1

2

qn p

r q

 
 
 

 

Error  n p   2q         2

( )
q

n p
 

Total  ( )n p r      1 2q q  

 

Case 3: Test of 0 :H L     

Let us consider the test of hypothesis related to a linear parametric function. Assuming that the linear 

parameter function L   is estimable where 1 2( , , ..., )pL      is a 1p   vector of known constants  

and 1 2( , , ..., )p     . The null hypothesis of interest is 

0 :H L    . 

where    is some specified constant. 

 
Consider the set up of linear model Y X     where 1 2( , ,..., )nY Y Y Y   follows 2( , ).N X I   The 

maximum likelihood estimators of    and  2  are 

1ˆ ( )   X X X y  and   2 1 ˆ ˆˆ ( ) ( )y X y X
n

      

respectively.  The maximum likelihood estimate of estimable  L    is ˆL  , with 

2 1

2 1

ˆ( ' )

ˆ( ) ( )

ˆ' ~ , ( )







  

    

E L L

Cov L L X X L

L N L L X X L

 

 

  

 

and 

2
2

2

ˆ
~ ( )

n
n p

 


  

assuming X to be the full column rank matrix. Further,  ˆL   and 
2

2

ˆn


are also independently 

distributed. 
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Under 0 : ,H L     the statistic  

2 1

ˆ( ) ( )

ˆ ( )

n p L
t

n L X X L

 

 

 


 
 

follows a t-distribution with  ( )n p  degrees of freedom. So the test for  0 :H L     against 

1 :H L     rejects 0H   whenever 

1
2

( )t t n p


   

where  1 1( )t n  denotes the upper 100 % points on t-distribution with  1n  degrees of freedom. 

 

Case 4:  Test of 0 1 1 2 2: , ,..., k kH          

Now we develop the test of hypothesis related to more than one linear parametric functions. Let the 

ith  estimable linear parametric function is  

' i iL  and there are k such functions with  iL  and   both being 1p   vectors as in the Case 3.  

Our interest is to test the hypothesis 

0 1 1 2 2: , ,..., k kH           

where 1 2, ,...,  k  are the known constants. 

Let  1 2( , ,..., )     k

 
and 1 2( , ,.., ) .     k   

Then 0H  is expressible as  0 :H L     

where L   is a k p  matrix of constants  associated with 1 2, ,..., .kL L L   The  maximum likelihood 

estimator of i  is : 'ˆ ˆ
i iL    where 1ˆ ( ) .X X X y    

Then   1 2
ˆ ˆ ˆ ˆ ˆ( , ,..., )k L      . 

Also  ˆ( )E    

       2ˆ( )Cov V   

where  ' 1(( ( ) )) i jV L X X L  where ' 1( ( ) )i jL X X L  is the ( , )thi j  element of V . Thus  

1

2

ˆ ˆ( ) ( )V   


 
 

follows a  2  distribution with k degrees of freedom and 

2

2

ˆn


follows  a 2  distribution with ( )n p  degrees of freedom where  
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2 1 ˆ ˆˆ ( ) ( )y X y X
n

      is the maximum likelihood estimator of 2 .  

Further  
1

2

ˆ ˆ( ) ( )V   


 
 and 

2

2

ˆn


 are also independently distributed.  

Thus under 0 : H  

1

2

2

2

ˆ ˆ( ) ( )

ˆ

( )

   





  
 
 
 
 
 

 
 
 

  
 

V

k

n

n p

 

or  
1

2

ˆ ˆ( ) ( )
ˆ

   


 
 
 

  n p V
k n

 

follows  F- distribution with k and ( )n p  degrees of freedom. So the hypothesis 0 :H    is 

rejected against 1 : At least one  for 1,2,...,  ì iH i k  whenever  1 ( , )F F k n p   where 

1 ( , )F k n p   denotes the 100 % points on F-distribution with k and (n – p) degrees of freedom. 

  

One-way classification with fixed effect linear models of full rank: 

The objective in the one-way classification is to test the hypothesis about the equality of means on 

the basis of several samples which have been drawn from univariate normal populations with 

different means but the same variances. 

 

Let there be p univariate normal populations and samples of different sizes are drawn from each of 

the population.  Let ( 1, 2, ..., )ij iy j n  be a random sample from the ith normal population with mean 

i  and variance  2, 1,2,..., i p , i.e., 

2~ ( , ), 1, 2,..., ; 1, 2,..., .   ij i iY N j n i p  

The random samples from different populations are assumed to be independent of each other. 

 

These observations follow the set up of linear model 

Y X     

where 
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1 2

1 2

1 2

11 12 1 21 2 1 2

11 12 1 21 2 1 2

1 2

11 12 1 21 2 1 2

( , ,..., , ,..., ,..., , ,..., ) '

( , ,..., , ,..., ,..., , ,..., ) '

( , ,..., )

( , ,..., , ,..., ,..., , ,..., ) '

p

p

p

n n p p pn

n n p p pn

p

n n p p pn

Y Y Y Y Y Y Y Y Y

y y y y y y y y y

   

        









 

1

2

1 0...0

values

1 0 0

0 1...0

values

0 1...0

   

0 0...1

values

0 0...1

 
 

 
  

 
 
   

 
 
  
 
 

 

 

 

  

  p

n

n
X

n

 

1

1 if occurs in the observation

or if effect is present in

0 if effect is absent in

.

th
i j

ij i j

i j

p

i
i

j x

x x

x

n n












 





 

So  X is a matrix of order  ,n p   is fixed and  

- first 1n  rows of    are '
1 (1,0,0,..., 0),    

- next 2n   rows of     are  '
2 (0,1, 0,..., 0)   

- and similarly, the last pn   rows of   are ' (0,0,...,0,1).p   

Obviously,    ,  rank X p E Y X    and  2( ) .Cov Y I    

This completes the representation of a fixed effect linear model of full rank. 

 

The null hypothesis of interest is  0 1 2: ... pH        (say)  

and : At least one ( )1 i jH i j    

where    and 2  are unknown. 

 

We would develop here the likelihood ratio test. It may be noted that the same test can also be 

derived through the least-squares method. This will be demonstrated in the next module. This way 

the readers will understand both the methods. 
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We already have developed the likelihood ratio for the hypothesis 
0 1 2: ... pH       in case 1. 

 
The whole parametric space    is a ( 1)p  dimensional space 

 2 2( , ) : , 0, 1,2,...,i p           . 

Note that there are  ( 1)p
 
 parameters are 1 2, , ..., p     and  2 . 

 
Under  0H ,    reduces to two dimensional space   as 

 2 2( , ); , 0 .          .  

 
The likelihood function under   is 

              

2
2 2

2 2
1 1

2 2 2
2

1 1

1

2 2
2

1 1

1 1
( , ) exp ( )

2 2

1
ln  ( , )  ln  (2 ) ( )

2 2

1ˆ0

1
ˆ0 ( ) .

i

i

i

i

n
np

ij i
i j

np

ij i
i j

n

i ij io
ji i

np

ij io
i j

L y y

n
L L y y

L
y y

n

L
y y

n

  
 

   








 

 



 

      
   

    


   




   











 

The dot sign ( o ) in  ioy  indicates that the average has been taken over the second subscript j.  The 

Hessian matrix of second-order partial derivation of ln L with respect to i  and  2  is negative 

definite at   ioy  and 2 2ˆ   which ensures that the likelihood function is maximized at these 

values. 

Thus the maximum value of  2( , )L y    over   is 

2
2 2

2 2
1 1

/2

2

1 1

1 1 ˆ( , ) exp ( )
ˆ ˆ2 2

                     exp .
2

2 ( )


 

 

      
   

 
 

        
 





i

i

n
np

ij i
i j

n

np

ij io
i j

Max L y y

n n

y y

  
 


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The likelihood function under   is 

2
2 2

2 2
1 1

2 2 2
2

1 1

1 1
( , ) exp ( )

2 2

1
ln ( , ) ln(2 ) ( )

2 2

i

i

n
np

ij
i j

np

ij
i j

L y y

n
L y y

  
 

   


 

 

      
   

   




 

 

The normal equations and the least-squares are obtained as follows: 

2

1 1

2

2 2
2

1 1

ln ( , ) 1ˆ0

ln ( , ) 1
ˆ0 ( ) .

i

i

np

ij oo
i j

np

ij oo
i j

L y
y y

n

L y
y y

n

 




 




 

 


   




   






 

 

The maximum value of the likelihood function over   under 0H  is 

2
2 2

2 2
1 1

/ 2

2

1 1

1 1 ˆ( , ) exp ( )
ˆ ˆ2 2

                     exp .
2

2 ( )
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 

 

      
   

 
 

        
 


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The likelihood ratio test statistic is 

2

2

/ 2

2

1 1
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1 1
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nnp

ij io
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We have that  

2

2

1 1 1 1

2 2

1 1 1

( ) ( ) ( )
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   

  
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Thus 

2

2 2

1 1 1

2

1 1

 
2

1

2

( ) ( )

( )

1





  

 
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 
   
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ij i i io oo
i j I

np

ij io
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q

q

 

where  

2
1

1

( )


 
p

i io oo
i

q n y y ,  and   2
2

1 1

( )
 

 
inp

i j io
i j

q y y . 

 

Note that if the least-squares principal is used, then 

q1 : sum of squares due to deviations from  0H  or the between population sum of squares, 

q2 : sum of squares due to error or the within-population sum of squares, 

q1+q2 : sum of squares due to 0H  or the total sum of squares. 

Using theorems 6 and 7, let 

2 2
1 2

1 1

( ) ,      
p p

i io oo i
i i

Q n Y Y Q S
 

     
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then under 0H   

21
2

22
2

~ ( 1)

~ ( )

Q
p

Q
n p










 

and  1
2

Q


 and 2

2

Q


 are independently distributed. 
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Thus under 0H  

1
2

2
2

1

~ ( 1, ).

Q

p

F p n p
Q

n p





 
 
  
   
 
 
  
 

 

The likelihood ratio test reject  0H  whenever 

1

2

q
C

q
  

where the constant 1 ( 1, ).C F p n p    

The analysis of variance table for the one-way classification  in fixed effect model is  

 
Source of   Degrees of Sum of  Mean sum         F 
Variation   freedom squares of squares 
                                

Between Population              1p   1q   1

1

q
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1

2

.
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qn p

p q

 
  

 

Within  Population             n p   2q   2q

n p
 

Total  1n             1 2q q  

 

Note that 
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 
  


 

     




 

 

Case of rejection of 0H    

If  1 ( 1, ),F F p n p     then  0 1 2: ... pH       is rejected. This means that at least one  i  is 

different from others which is responsible for the rejection.  So the objective is to investigate and 

find out such i  and divide the population into groups such that the means of populations within the 

groups are same. This can be done by pairwise testing of ' . s  
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Test  0 : ( )i kH i k    against 1 :  i kH . 

This can be tested using following t-statistic 

2 1 1




 
 

 

io ko

i k

Y Y
t

s
n n

 

which follows the t distribution with  ( )n p degrees of freedom under  0H  and  2 2 .
q

s
n p




  Thus 

the decision rule is to  reject 0H  at the level    if the observed difference 

2

1 , 
2

1 1
( )io ko

n p
i k

y y t s
n n

 

 
   

 
  

The quantity 2

1 , 
2

1 1
n p

i k

t s
n n

 

 
 

 
 is called the critical difference. 

Thus following steps are followed : 

1. Compute all possible critical differences arising out of all possible pair ( , ),  1,2,...,i k i k p    . 

2. Compare them with their observed differences 

 3. Divide the p populations into different groups such that the populations in the same group have 

the same means. 

 
The computation are simplified if  in n  for all i.  In such a case, the common critical difference 

(CCD) is 

2

1 , 
2

2
n p

s
CCD t

n
 

  

and the observed difference ( ), io koy y i k  are compared with CCD. 

If   io koy y CCD  

then the corresponding effects/means ioy  and koy  are coming from populations with different 

means. 

 

Note: In general we say that if there are three effects 1 2 3, ,    then  

if 01 1 2: (  denote as event )  H A is accepted 

and if  02 2 3: ( denote as event )  H B is accepted 

then 03 1 2: ( denote as event )  H C will be accepted.   
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The question arises here that in what sense do we conclude such a statement about the acceptance of 

H03.  The reason is as follows: 

Since event ,A B C  so 

 ( ) ( )P A B P C  

In this sense if the probability of an event is higher than the intersection of the events, i.e., the 

probability that 03H  is accepted is higher than the probability of acceptance of  01H  and 02H                  

both,  so  we conclude, in general, that the  acceptance of  01 02andH H  implies the acceptance of  

03.H  

 

Multiple comparison test: 

One interest in the analysis of variance is to decide whether population means are equal or not.  If the 

hypothesis of equal means is rejected then one would like to divide the populations into subgroups 

such that all populations with the same means come to the same subgroup. This can be achieved by 

the multiple comparison tests. 

 
A multiple comparison test procedure conducts the test of hypothesis for all the pairs of effects and 

compares them at a significance level     i.e., it works on per comparison basis.  

This is based mainly on the t-statistic. If we want to ensure that the significance level         

simultaneously for all group comparison of interest, the approximate multiple test procedure is one 

that controls the error rate per experiment basis. 

There are various available multiple comparison tests. We will discuss some of them in the context 

of one-way classification. In two-way or higher classification, they can be used on similar lines. 

 
1. Studentized range test: 

It is assumed in the Studentized range test that the p samples, each of size n, have been drawn from p 

normal populations. Let their sample means be 1 , 2 , ...,o o poy y y   These means are ranked and arranged 

in ascending order as  * * *
1 2, ,..., py y y   where  *

1  io
i

y Min y
 
and * ,  1, 2,..., . p io

i
y Max y i p  

 
Find the range as * *

1pR y y  .  

The Studentized range is defined as 

, p n p

R n
q

s   
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where  , ,pq   
is the upper  100 % point of Studentized range when .  n p   The tables for , ,pq   

are available. 

The testing procedure involves the comparison of ,pq   with  , , pq  in the usual way as-  

 if , , , p n p p n pq q  then conclude that 1 2 ... p     . 

 if  
, , , p n p p n pq q  then all  s   in the group are not the same. 

 

 2. Student-Newman-Keuls test: 

The Student-Newman-Keuls test is similar to Studentized  range test in the sense that the range is 

compared with 100 %  points on critical Studentized range  WP  given by 

2

, ,p p

s
W q

n  . 

The observed range * *
1pR y y   is now compared with   .pW  Let the effects 

1 2, , ... p    are denoted 

as * * *
1 2, , ..., p    corresponding to * * *

1 2, ,..., py y y  respectively in the context of Student-Newman-Keuls 

test. For example, the largest mean  *
py  maybe 3y and so  *

3p  .  

 If pR W  then stop the process of comparison and conclude that * * *
1 2 ... p     . 

 If  pR W  then 

(i) divide the ranked means * * *
1 2, ,..., py y y  into two subgroups containing - * * *

1 2( , ,..., )p py y y  

and
 

* * *
1 2 1( , ,..., )p py y y   

(ii) Compute the ranges * *
1 2pR y y   and * *

2 1 1pR y y  . Then compare the ranges 1R  and 2R  

with  1pW  . 

 If either range ( 1R  or 2R  ) is smaller than 1pW  , then the means (or i ’s) in each of the 

groups are equal. 

 If 1R  and/or 2R  are greater then 1pW   , then the ( 1)p  means (or i ’s) in the group 

concerned are divided into two groups of ( 2)p 
 
means (or i ’s) each and compare the 

range of the two groups with 2 .pW   

Continue with this procedure until a group of i means (or i ’s) is found whose range does not exceed 

iW . 



Analysis of Variance  |  Chapter 2  |  General Linear Hypothesis and Anova  | Shalabh, IIT Kanpur
  
 34

By this method, the difference between any two means under test is significant when the range of the 

observed means of each and every subgroup containing the two means under test is significant 

according to the studentized critical range. 

 

This procedure can be easily understood by the following flow chart. 
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
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p

p

p
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p

p
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

  














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  



and at least one
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One subgroup has

and another has only
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3

* *
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* *
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* *
2 1

1. ,...,

2. ,...,

3. ,...,

4. ,...,

p

p

p

p

y y

y y

y y

y y






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infour groups
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* *
1 2

* *
2 1 1

1 2 1 

p

p

p

R y y

R y y

R R W





 

 
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1 2 1pR R W 4 possibilities of and with
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3.  Duncan’s multiple comparison test: 

The test procedure in Duncan’s multiple comparison test is the same as in the Student-Newman-

Keuls test except the observed ranges are compared with Duncan’s 100 % critical range 

2
*

, , 
pp p

s
D q

n
 

where  
,

1 *
,1 (1 ) ,       

p

p
p pq  denotes the upper  100 %  points of the Studentized range based on  

Duncan’s range.  

 

Tables for Duncan’s range are available. 
 

Duncan felt that this test is better than the Student-Newman-Keuls test for comparing the differences 

between any two ranked means. Duncan regarded that the Student-Newman-Keuls method is too 

stringent in the sense that the true differences between the means will tend to be missed too often. 

Duncan notes that in testing the equality of a subset , (2 ) k k p  means through null hypothesis, 

we are in fact testing whether ( 1)p   orthogonal contrasts between the ' s  differ from zero or not. 

If these contrasts were tested in separate independent experiments, each  at level  , the probability 

of incorrectly rejecting the null hypothesis would be 11 (1 ) p     . So Duncan proposed to use 

11 (1 ) p      in place of    in the Student-Newman-Keuls test. 

[Reference: Contributions to order statistics, Wiley 1962, Chapter 9 (Multiple decision and multiple 

comparisons, H.A. David, pages 147-148)]. 

 

Case of unequal sample sizes: 

When sample means are not based on the same number of observations, the procedures based on 

Studentized range, Student-Newman-Keuls test and Duncan’s test are not applicable. Kramer 

proposed that in Duncan’s  method, if a set of p means is to be tested for equality, then replace  

* *

* *

, , , ,

1 1 1
by  

2p pp p
U L

s
q q s

n nn   

 
 

 
 

where Un  and Ln  are the number of observations corresponding to the largest and smallest means in 

the data. This procedure is only an approximate procedure but will tend to be conservative since 

means based on a small number of observations will tend to be overrepresented in the extreme 

groups of means. 

Another option is to replace n
 
by the harmonic mean of  1 2, , ..., pn n n , i.e.,    

1

.
1



 
 
 


p

i i

p

n
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4.  The “Least Significant Difference” (LSD): 

In the usual testing of  0 :  i kH  against  1 : ,i kH    the t-statistic  

( )

io ko

io ko

y y
t

Var y y





 

is used which follows a t-distribution , say with degrees of freedom ' 'df .  Thus 0H  is rejected 

whenever 

, 1
2

df
t t 


  

and it is concluded that 1  and 2  are significantly different.  The inequality 
, 1

2
df

t t 


  can be 

equivalently written as 


, 1

2

( )io ko io ko
df

y y t Var y y


   . 

If every pair of sample for which  

io koy y  exceeds 
, 1

2

( )io ko
df

t Var y y


  

then this will indicate that the difference between i  and k  is significantly different. So according 

to this, the quantity 
, 1

2

( )io ko
df

t Var y y


  would be the least difference of  ioy  and koy  for which it 

will be declared that the difference between i  and k is significant. Based on this idea, we use the 

pooled variance of the two samples   io koVar y y  as s2 and the Least Significant Difference (LSD) 

is defined as 

2

, 1
2

1 1
df

i k

LSD t s
n n



 
  

 
. 

If 1 2 ,n n n    then 

2

, 1
2

2
df

s
LSD t

n


 . 

Now all 
( 1)

2

p p 
 pairs of  ioy  and koy , ( 1, 2,..., )i k p   are compared with LSD.  Use of LSD 

criterion may not lead to good results if it is used for comparisons suggested by the data 

(largest/smallest sample mean) or if all pairwise comparisons are done without correction of the test 

level. If LSD is used for all the pairwise comparisons then these tests are not independent. Such 

correction for test levels was incorporated in Duncan’s test. 
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5. Tukey’s “Honestly significant Difference”  (HSD) 

In this procedure, the Studentized rank values  , ,nq   are used in  place of t-quantiles and the 

standard  error of the difference  of pooled mean is used in place of standard error of mean  in 

common critical difference for testing 0 : i kH    against  0 : i kH    and Tukey’s  Honestly 

Significant  Difference is computed as 

1 , ,
2

error

p

MS
HSD q

n 
  

assuming all samples are of the same size n.  All 
( 1)

2

p p 
 pairs io koy y   are compared with HSD.  

If  io koy y HSD   then  i  and k  are significantly different. 

 

We notice that all the multiple comparison test procedure discussed up to now are based on the 

testing of hypothesis. There is one-to-one relationship between the testing of hypothesis and the 

confidence interval estimation. So the confidence interval can also be used for such comparisons.  

Since 0 : i kH    is same as 0 : 0  i kH   so first we establish the relationship and then describe 

the Tukey’s and Scheffe’s procedures for multiple comparison test which are based on the 

confidence interval. We need the following concepts. 

 

Contrast: 

A linear parametric function 
1

' 


 
p

i i
i

L l  where 1 2( , ,..., )P      and  1 2( , , ..., )p     are 

the 1p    vectors of parameters and constants respectively is said to be a contrast when 
1

0.
p

i
i

  

For example,  1 2 1 2 3 1 1 2 30, 0, 2 3 0                   etc. are contrast whereas  

1 2 1 2 3 4 1 2 30, 0, 2 3 0                  etc. are not contrasts. 

 

Orthogonal contrast: 

If  1
1

' 


  
p

i i
i

L  and 2
1

' 


 
p

i i
i

L m m  are contrasts such that 0  m  or 
1

0



p

i i
i

m  then 1L  

and 2 L are called orthogonal contrasts.  

For example,  1 1 2 3 4L          and  2 1 2 3 4L         are contrasts. They are also the 

orthogonal contrasts. 
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The condition  
1

0
p

i i
i

m


  ensures that  1L  and 2L   are  independent in the sense that  

2
1 2

1

( , ) 0.
p

i i
i

Cov L L m


 
 

 

Mutually orthogonal contrasts: 

If there are more than two contrasts then they are said to be mutually orthogonal, if they are pair-

wise orthogonal. 

 

It may be noted that the number of mutually orthogonal contrasts is the number of degrees of 

freedom. 

 

Coming back to the multiple comparison test, if the null hypothesis of equality of all effects is 

rejected then it is reasonable to look for the contrasts which are responsible for the rejection. In terms 

of contrasts, it is desirable to have a procedure 

(i) that permits the selection of the contrasts after the data  is available. 

(ii) with which a known level of significance is associated. 

 

Such procedures are Tukey’s and Scheffe’s procedures. Before discussing these procedures, let us 

consider the following example which illustrates the relationship between the testing of hypothesis 

and confidence intervals. 

 

Example: Consider the test of hypothesis for 

0

0

0

0

: ( 1,2,..., )

or : 0

or : contrast 0

or : 0.

 

 

  

 




i j

i j

H i j p

H

H

H L

 

The test statistic for  0 : i jH     is 

 

ˆ ˆ ˆ( ) ( )

ˆ( ) ( )

i j i j

io ko

L L
t

Var y y Var L

      
 


 

where  ̂  denotes the maximum likelihood (or least-squares) estimator of    and t follows a t-

distribution with df  degrees of freedom. This statistic, in fact, can be extended to any linear contrast, 

say e.g., 1 2 3 4 1 2 3 4
ˆ ˆ ˆ ˆˆ,              L L .   
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The decision rule is  

reject 0 : 0H L   against  1 : 0H L  . 

If   ˆ ˆ( )dfL t Var L . 

The 100 (1 ) % confidence interval of L is obtained as 



ˆ
1

ˆ( )
df df

L L
P t t

Var L


      
  

 

or  ˆ ˆ ˆ ˆ( )  ( ) 1df dfP L t Var L L L t Var L         
 

so that the 100(1 ) % confidence interval of L is  

 ˆ ˆ ˆ ˆ( ),  ( )df dfL t Var L L t Var L    
 

and 

 ˆ ˆ ˆ ˆ( ) ( )df dfL t Var L L L t Var L     

 

If this interval includes  0L   between lower and upper  confidence limits, then  0 : 0H L   is 

accepted. Our objective is to know if the confidence interval contains zero or not. 

 

Suppose for some given data the confidence intervals for  1 2   and 1 3  are obtained as 

1 23 2      and 1 32 4.     

Thus we find that the interval of  1 2  includes zero which implies that  0 1 2: 0H     is 

accepted. Thus 1 2  .  On the other hand interval of 1 3   does not include zero and so 

0 1 3: 0H     is not accepted. Thus 1 3 .   

 

If the interval of 1 3  is 1 31 1      then 0 1 3:H    is accepted. If both 0 1 2:  H  and 

0 1 3: are accepted thenH   we can conclude that  1 2 3    . 
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Tukey’s procedure for multiple comparisons (T-method) 

The T-method uses the distribution of the studentized  range statistic . (The S-method (discussed 

next)  utilizes the F-distribution). The T-method can be used to make  the simultaneous confidence 

statements about contrasts  ( )i j   among a set of parameters  1 2, ,..., p    and an estimate  2s  of 

error variance if certain restrictions are satisfied.  

 
These restrictions have to be viewed according to the given conditions. For example, one of the 

restrictions is that all  ˆ 'i s  have equal variances. In the setup of one-way classification, ̂i  has it's 

mean  iY  and its variance is  
2

in


.  This reduces to a simple condition that all 'in s  are same, i.e., 

in n  for all i. so that all the variances are the same.  

 
Another assumption is to assume that 1 2

ˆ ˆ ˆ, ,..., p    are statistically independent and the only contrasts 

considered are the 
( 1)

2

p p 
  differences  , 1,2,...,i j i j p    . 

We make the following assumptions: 

(i) The 1 2
ˆ ˆ ˆ, ,..., p    are statistically independent 

(ii) 2 2ˆ ~ ( , ), 1, 2,..., , 0i iN a i p a      is a known constant. 

(iii) 2s  is an  independent estimate of  2  with    degrees of freedom (here )n p   , i.e., 

2
2

2
~ ( )

  

s

   

and 

(iv) 2s  is statistically independent of  1 2
ˆ ˆ ˆ, ,..., p   . 

 

The statement of  T-method is as follows: 

Under the assumptions (i)-(iv), the probability is (1 )  that the values of contrasts 

1 1

   ( 0)
 

  
p p

i i i
i i

L C C  simultaneously satisfy 

1 1

1 1ˆ ˆ
2 2

p p

i i
i i

L Ts C L L Ts C
 

   
      

   
   
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where 
0

ˆ ˆˆ ,  
p

i i i
i

L C  


  is the maximum likelihood (or least squares) estimate of  i , , , ,  pT aq  

with , , pq  being the upper    point of the distribution of studentized range. 

Note that if  L is a contrast like ( )i j i j    then  
1

1
1

2

p

i
i

C


  and the variance is  2  so that 

1a  and  the interval simplifies to   

ˆ ˆ ˆ ˆ( ) ( )i j i j i jTs Ts              

where , ,  pT q . Thus the maximum likelihood (or least squares) estimate ˆ ˆˆ
i jL     of 

i jL    is said to be significantly different from zero according to T-criterion if the interval  

ˆ ˆ ˆ ˆ( ,  )i j i jTs Ts        does not cover 0,i j   i.e.,  

if  ˆ ˆ
i j Ts    

or more general if  
1

1ˆ .
2

p

i
i

L Ts C


 
  

 
  

The steps involved in the testing now involve the following steps: 

- Compute  ˆ ˆˆ  or .i jL    

- Compute all possible pairwise differences. 

- Compare all the differences with  

 , ,
1

1
.

2 


 
 
 


p

p i
i

s
q C

n
 

- 
1

1ˆ ˆˆIf or ( )
2

p

i j i
i

L Ts C 


 
   

 
  

then  ̂i  and ̂ j are significantly different where , ,  pq
T

n
.  

Tables for T are available. 

When sample sizes are not equal, then Tukey-Kramer Procedure suggests to compare L̂  with 

, ,
1

1 1 1 1
 

2 2

p

p i
ii j

q s C
n n 



   
       



 

or 

 

1

1 1 1 1
 .

2 2

p

i
ii j

T C
n n 

   
       


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The Scheffe’s method (S-method) of multiple comparisons 

S-method generally gives shorter confidence intervals then T-method.  It can be used in a number 

of situations where T-method is not applicable, e.g., when the sample sizes are not equal. 

 

A set L of estimable functions    is called a p-dimensional space of estimable functions if there 

exists p linearly independent estimable functions 1 2( , , ..., )p    such that every    in L is of the 

form   =
1

p

i i
i

C y

  where  1 2, , ..., pC C C  are known constants. In other words, L is the set of all 

linear combinations of  1 2, , ..., p   . 

 

Under the assumption that the parametric space   is 2~ ( , )Y N X I   with
 

( ) ,rank X p  

1( ,..., ),   p  X  is n p  matrix, consider a p-dimensional space L of estimable functions 

generated by a set of p linearly independent estimable functions 1 2{ , , ..., }.p    

For any ,L    Let  
1

ˆ
n

i i
i

C y


  be its least squares (or maximum likelihood) estimator, 

2 2

1

2

ˆ( )

( )

n

i
i

Var C

say

 









 

and  2 2 2

1

ˆ
n

i
i

s C


   

where 2s  is the mean square due to error with ( )n p degrees of freedom. 

 
The statement of S-method is as follows: 

Under the parametric space  , the probability is  (1 )  that simultaneously for all 

ˆ ˆˆ ˆˆ ˆ,              L S S   where the constant 1 ( , )S pF p n p  . 

      Method: For a given space L of estimable functions and confidence coefficient (1 ) , the    

      least  square (or maximum likelihood) estimate ̂  of    L  will be said to  be significantly  

     different from zero according to S-criterion if the confidence interval 

      ˆ ˆˆ ˆˆ ˆ( )S S          

    does not cover 0,     i.e., if ˆˆ ˆ   S . 

    The S-method is less sensitive to the violation of assumptions of normality and homogeneity of  

    variances. 
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Comparison of Tukey’s and Scheffe’s methods: 

1. Tukey’s method can be used only with equal sample size for all factor level but S-method is 

applicable whether the sample sizes are equal or not. 

2. Although, Tukey’s method is applicable for any general contrast, the procedure is more 

powerful when comparing simple pairwise differences and not making more complex 

comparisons. 

3. It only pairwise comparisons are of interest, and all factor levels have equal sample sizes, 

Tukey’s method gives shorter confidence interval and thus is more powerful. 

4. In the case of comparisons involving general contrasts, Scheffe’s method tends to give 

narrower confidence interval and provides a more powerful test. 

5. Scheffe’s method is less sensitive to the violations of assumptions of normal distribution and 

homogeneity of variances. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


